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Competition between Primary Nucleation and Autocatalysis in Amyloid
Fibril Self-Assembly
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ABSTRACT Kinetic measurements of the self-assembly of proteins into amyloid fibrils are often used to make inferences about
molecular mechanisms. In particular, the lag time—the quiescent period before aggregates are detected—is often found to scale
with the protein concentration as a power law, whose exponent has been used to infer the presence or absence of autocatalytic
growth processes such as fibril fragmentation. Here we show that experimental data for lag time versus protein concentration
can show signs of kinks: clear changes in scaling exponent, indicating changes in the dominant molecular mechanism deter-
mining the lag time. Classical models for the kinetics of fibril assembly suggest that at least two mechanisms are at play during
the lag time: primary nucleation and autocatalytic growth. Using computer simulations and theoretical calculations, we investi-
gate whether the competition between these two processes can account for the kinks which we observe in our and others’ exper-
imental data. We derive theoretical conditions for the crossover between nucleation-dominated and growth-dominated regimes,
and analyze their dependence on system volume and autocatalysis mechanism. Comparing these predictions to the data, we
find that the experimentally observed kinks cannot be explained by a simple crossover between nucleation-dominated and auto-
catalytic growth regimes. Our results show that existing kinetic models fail to explain detailed features of lag time versus con-
centration curves, suggesting that new mechanistic understanding is needed. More broadly, our work demonstrates that care is
needed in interpreting lag-time scaling exponents from protein assembly data.
INTRODUCTION
Amyloid fibrils are structured polymeric aggregates of pro-
tein molecules, which form when proteins misfold, such that
they stack together in a cross-b-sheet conformation. Under-
standing the mechanisms involved in the self-assembly of
these fibrils is of great importance, both because they are
implicated in many degenerative diseases (1), and because
they have potential applications in the design of new mate-
rials (2,3). The molecular processes involved in the very
early stages of aggregation are of particular interest because
increasing evidence suggests that early aggregates, rather
than mature fibrils, may be the toxic species in fibril-linked
diseases (4–6). In this article, we investigate the interplay
between two competing processes, primary nucleation and
autocatalytic growth, during the early stages of amyloid
fibril aggregation, and assess whether this interplay can ac-
count for so-far unexplained features of our own and others’
experimental data.

Amyloid fibril formation is commonly studied by moni-
toring the kinetics of self-assembly in vitro. In these exper-
iments, a protein sample is placed under conditions where
fibril formation is favored, and measurements of fluores-
cence (with b-sheet binding fluorescent dyes) or absorbance
are made as a function of time. The resulting kinetic curves
Submitted January 13, 2014, and accepted for publication November 26,

2014.

*Correspondence: eden.kym@gmail.com

Editor: Elizabeth Rhoades.

� 2015 by the Biophysical Society

0006-3495/15/02/0632/12 $2.00
typically show a sigmoidal shape, with an initial lag time in
which little fibrillar material is detected, followed by a
period of rapid growth, and finally saturation as the pool
of available unaggregated protein is exhausted. Addition
of preformed fibril seeds at the start of the experiment usu-
ally abolishes the lag phase, suggesting that aggregation is
initiated by a nucleation process, in which a rare fluctuation
leads to the energetically unfavorable formation of the
smallest stable growth-competent aggregate (primary nu-
cleus). Once a fibril has been formed, it is expected to
grow by sequential addition of protein molecules at its
ends (and possibly by end-joining with other fibrils (7)).

Fitting observed kinetic data to theoretical models pro-
vides a powerful tool for elucidating the molecular mecha-
nisms involved in fibril self-assembly (8,9). This approach
has shown that the sigmoidal shape of typical kinetic curves
cannot be explained by models that only involve primary
nucleation and fibril growth; it also requires autocatalytic
formation of new fibrils from existing ones (8,10–13). The
breaking of fibrils into shorter fragments (fragmentation)
provides one such autocatalysis mechanism, because it in-
creases the number of growth-competent ends. Alterna-
tively, or additionally, autocatalysis could happen via the
nucleation of new fibrils on the surfaces of existing ones
(secondary nucleation) (11–13).

The results of in vitro kinetic experiments are often sum-
marized by plotting the measured lag time tlag as a function
of the protein concentration mtot, defining tlag as the time at
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which the concentration of aggregated protein reaches a pre-
defined threshold (although other definitions are also used
(11,14–16)). The lag time decreases as the protein concen-
tration increases, and this relation is typically fitted to a po-
wer-law function tlag f mtot

�g (i.e., one plots log(tlag)
versus log(mtot), and obtains the exponent g from the
gradient). Explaining experimentally observed lag time
versus concentration behavior is an important challenge
for theoretical models, and different models make different
predictions for the scaling exponent g. In particular, if the
lag time is dominated by the formation of a primary nucleus,
we expect g > 1, while for models where the lag time is
dominated by autocatalytic growth by fragmentation, theory
predicts that g ¼ 1/2 (8,11–13).

In this article, we show, using our own and others’ exper-
imental datasets, that lag time versus concentration curves
are not always well-fitted by a simple power law. In contrast,
we observe clear kinks in these curves, where the lag-time
scaling changes. These kinks may reflect changes in the
dominant molecular mechanism at play during the lag
time. We explore using theoretical arguments and computer
simulations whether the kinks can be explained by the inter-
play between the two mechanisms identified in existing
models as being important during the lag phase: primary
nucleation and autocatalytic growth. Our results show that
the position and shape of the kinks are not well explained
by the competition between nucleation and growth, as rep-
resented in existing models. This suggests that new mecha-
nistic insights are needed to fully understand kinetic data on
amyloid fibril assembly.
BACKGROUND

Theoretical models for amyloid fibril assembly

Theoretical models for the kinetics of amyloid fibril assem-
bly often represent the key molecular processes as a set of
chemical reactions. This reaction set typically includes pri-
mary nucleation, fibril elongation, and (possibly) fragmen-
tation or secondary nucleation, and can be written as

nc m/fnc ; (1)

fi þ m/fiþ1; (2)
fi/fj þ fi�j; (3)
fi þ ns m/fi þ fns : (4)
Here, fi denotes a fibril of length i, m denotes a protein
monomer, and it is implicitly assumed that concentrations
of all components are spatially homogeneous, i.e., that the
system is well-mixed.

Reaction 1 describes the spontaneous formation of a pri-
mary nucleus (fnc ), from nc monomers (i.e., we assume that
the nucleus consists of the smallest stable growth-competent
fibril which is of length nc). The total rate of this process is
given by ðkn=nc!Þ � mðtÞnc, where kn is a nucleation rate con-
stant and m(t) is the time-dependent monomer concentra-
tion. This representation of nucleation as a single-step
reaction whose rate depends on the ncth power of m arises
from a classical nucleation picture in which prenuclear ag-
gregates are in rapid equilibrium before formation of the nu-
cleus (17). The factor of nc! in the nucleation rate, which is
not used in some other work (8), arises from ignoring the or-
der in which the nc monomers come together. This is equiv-
alent to rescaling kn.

Reaction 2 describes fibril growth by monomer addition
at the ends. This process occurs at rate 2kþm(t)fi, where
kþ is the elongation rate constant and fi is the concentration
of fibrils of length i. The factor of 2 arises because each fibril
has two ends; omitting this amounts to a rescaling of kþ.

Reaction 3 describes fragmentation, in which a fibril of
length i breaks into two shorter fibrils of length j and i �
j. The fibril is assumed to break with equal probability at
all sites along its length, so that the total rate of this process
is given by (i – 1)kf � fi, where kf is the fragmentation rate
constant and the factor (i ¼ 1) arises because there are i � 1
possible breakage sites in a fibril of length i. In the case that
one of the fragments is shorter than the nucleus size nc, this
fragment is assumed to split immediately into monomers—
i.e., Reaction 3 should be replaced by fi/ j mþ fi�j or fi/
fj þ (i – j) m, as appropriate.

Reaction 4 describes the autocatalytic formation of new
fibrils by secondary nucleation on the surface of existing
ones. Here, ns monomers combine to form a fibril of length
ns, catalyzed by the presence of a fibril of length i. The
rate at which this process happens is assumed to be
iðks=ns!Þ � mðtÞns , where ks is the secondary nucleation
rate; this form of the rate equation is analogous to that for
primary nucleation except for the factor of i, which accounts
for the fact that longer fibrils have more sites where second-
ary nucleation can take place.

In this article, we base our theoretical analysis on the
model described by Reactions 1–4 (using either the frag-
mentation reaction (3) or the secondary nucleation reaction
(4), but not both). It is important to note, however, that
others have also considered models including fibril end-
joining (18), inhomogeneous fragmentation (19), and spatial
propagation of the fibrillation process (20).
Predictions for lag-time scaling with protein
concentration

The model described by Reactions 1–4 leads to a number of
analytical predictions for the scaling of the lag time with pro-
tein concentration, in different parameter regimes.As inmany
experimental studies, we define the lag time as the time taken
for the total amount of aggregated protein to reach a predeter-
mined threshold (typically 10% of full aggregation).
Biophysical Journal 108(3) 632–643
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Lag-time scaling without autocatalysis

We first discuss the case where new fibrils form only by pri-
mary nucleation (Reaction 1) and grow by elongation (Re-
action 2)—i.e., the autocatalytic mechanisms, Reactions 3
and 4, are absent. This case has two possible regimes de-
pending on the relative rates of primary nucleation and fibril
elongation.

If primary nucleation is slow relative to the rate of fibril
growth once a nucleus has formed, then we expect the lag
time to be dominated by the time to formation of the first
primary nucleus. As discussed above, the primary nucle-
ation rate is assumed to be proportional to mðtÞnc . At early
stages in the aggregation process, almost all protein is pre-
sent as monomers and m(t) z mtot. We therefore expect
that the lag time is tlag � m�nc

tot —i.e., in this regime the
model predicts a lag-time versus concentration scaling
exponent g ¼ nc.

If, on the other hand, primary nucleation occurs on a
similar or faster timescale than fibril growth, so that the
fibril growth process makes a significant contribution to
the lag time, a different prediction holds. In classic work,
Oosawa and Asakura (21) and Oosawa and Kasai (22)
showed that in this scenario, the kinetic curves for fibril
growth can be described by

MðtÞ ¼ mtot

h
1� sech2=nc

h�
dðnc=2Þ1=2

�
t
ii
; (5)
where M(t) is the total concentration of fibrillar protein and
d�1hð2kþknmnc =nc!Þ�1=2 defines a characteristic timescale.
tot

From Eq. 5, one can show that the lag-time scales with the
protein concentration as tlag � m

�nc=2
tot —i.e., that in this

regime the scaling exponentg¼ nc/2 (11,21). (Someversions
of this model have instead g¼ (ncþ 1)/2. This arises from a
subtlety in the definition of the nucleus. Here we have
assumed that the nucleus, of size nc, is a growth-competent
fibril. One could alternatively assume that the nucleus only
becomes growth-competent upon addition of a further mono-
mer. The latter scenario results in g ¼ (nc þ 1)/2.)

Lag-time scaling with autocatalysis

We now turn to the case where in addition to primary nucle-
ation, and elongation, autocatalytic fibril formation can
occur via fragmentation (Reaction 3) or secondary nucle-
ation (Reaction 4). We assume that these mechanisms do
not occur simultaneously—i.e., we have either Reaction 3
or Reaction 4 but not both. Knowles et al. (8) have presented
an analytical solution to the deterministic differential equa-
tions corresponding to Reactions 1, 2, and either 3 or 4, un-
der the assumptions that monomer depletion can be ignored
at early times, and that kn << kþ. This solution can be writ-
ten as follows:

MðtÞ ¼ mtot

�
1� exp

�
C�e

�kt � Cþe
kt þ d2

k2

��
: (6)
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Here, two timescales come into play. The first is given by
d�1, where d is the same as in the Oosawa model (Eq. 5),
and represents the characteristic timescale of fibril growth
in the absence of autocatalysis. The second timescale is
given by k�1, where k takes different forms for fragmenta-
tion and secondary nucleation:

k ¼ �
2kþkf mtot

�1=2
and
k ¼ �
2kþksm

nsþ1
tot

�
ns!
�1=2

;

respectively. This is the characteristic timescale for the auto-
catalytic growth process and depends on the rates of both
growth and autocatalytic fibril formation. Finally, the con-
stants C5 are given by

C5 ¼ ðN0kþ=kÞ5
	
M0=ð2mtotÞ þ d2

��
2k2
�

;

where N0 and M0 are the initial numbers of fibrils, and total

fibrillar protein, per unit volume.

Defining a threshold concentration of aggregated protein
M*, we can compute from Eq. 6 the lag time tlag as the time
at which M(t) reaches M* (provided M0 << M*),

tlag ¼ 1

k
log

 
D� Fþ �ðF� DÞ2 þ 4CþC�

�1=2
2Cþ

!
; (7)

where D ¼ d2/k2 and F ¼ log(1 – M*/mtot) (note that all

logarithms are to base e). For unseeded aggregation,
M0 ¼ 0 and N0 ¼ 0. If we further assume that the timescale
of autocatalytic growth is faster than the Oosawa timescale,
i.e., that d<< k, and thatM*<<mtot, we obtain the simpler
prediction

tlagz� 1

k
log

�
Cþ
F�

M

�
; (8)

where F*M ¼ M*/mtot. In Eq. 8, the dominant contribution

to the lag-time scaling comes from the dependence of the
prefactor k�1 on the protein concentration mtot (while Cþ
also varies with mtot, the logarithm means that this contribu-
tion is weak). The value k�1 scales differently with protein
concentration for the two autocatalysis models. For frag-
mentation, k�1 ~ mtot

�1/2, leading to a prediction for the
lag-time scaling exponent g ¼ 1/2 (8,11–13). For secondary
nucleation, k�1 � m

�ðnsþ1Þ=2
tot , so that the model instead pre-

dicts g ¼ (ns þ 1)/2 (12).
MATERIALS AND METHODS

Experiments

Insulin sample preparation

Bovine insulin was obtained from Sigma-Aldrich, St. Louis, MO (I5,500,

lot No. 0001434060) with zinc content ~0.5% (w/w). The samples in this
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study were dissolved in 25 mMHCl (pH 1.6) immediately before the exper-

iment. All solvents and solutions were filtered through a 0.22-mm filter

(Millipore, Billerica, MA). Concentrations were checked via UV-vis ab-

sorption spectroscopy. ThTwas added to each solution to a final concentra-

tion of 20 mM.

Lysozyme sample preparation

Lysozyme was obtained from Seikagaku, Tokyo, Japan (100940, lot No.

E00 301), 6� crystallized. All samples in this study were dissolved in

20 mM HCl-KCl (pH2.0) buffer and 1 M NaCl, immediately before the

experiment. All solvents and solutions were filtered through a 0.22 mm fil-

ter (Millipore). Concentrations were checked via UV-vis absorption spec-

troscopy. ThTwas added to each solution to a final concentration of 55 mM.

ThT fluorescence kinetic measurements for bovine insulin
and lysozyme

The ThT fluorescence measurements were conducted using a Fluostar plate

reader (BMG Labtech, Life Technologies, Offenburg, Germany) and NBS

96-well plates (Cat. No. 3641; Corning, Corning, NY). Each well of the

plate was filled with 100 mL of solution. Experiments for each protein con-

centration of bovine insulin were replicated across 2–3 whole plates, while

those for lysozyme were replicated with several protein concentrations on

the same plate. The final number of individual experiments for a given con-

centration of bovine insulin ranged from 140 to 200, and those of lysozyme

ranged from 12 to 60. The plates were incubated at 60�C and fluorescence

readings were taken from the bottom of the plate at wavelengths of 450 nm

for excitation and 485 nm for emission. Readings were taken every 10 min

in the case of bovine insulin, and 3 min for lysozyme.

Lag times for b2-microglobulin

The lag-time data for b2-microglobulin was kindly provided by Xue et al.

(9). These data were obtained from ThT fluorescence kinetics at pH 2.0

and 37�C with 50 mM NaCl and 0.02% NaN3. The data set contains 20

different protein concentrations in the range 8–244 mM, totaling 235

measurements.
Computer simulations

Simulation algorithm

We carried out stochastic computer simulations of the model defined by the

chemical reaction sets 1–4 (including either Reaction 3 or Reaction 4, but

not both), using a kinetic Monte Carlo algorithm (23). As we have shown in

previous work, these simulations can quantitatively reproduce experimental

kinetic curves (14). Here, we extend the parameter range, allowing us to

explore the full range of possible behaviors of the model. Because our sim-

ulations are stochastic and account for discrete numbers of molecules, we

can resolve individual molecular events such as the formation of the first

primary nucleus. Because we focus on the lag time, simulations were termi-

nated once half of the total protein was aggregated. For each parameter

combination, 150 replicate simulation runs were performed.

Baseline parameter set

Our baseline parameter set for these simulations was obtained as in our pre-

vious work (14), by fitting Eq. 6 to averaged experimental data for the aggre-

gation kinetics of bovine insulin at concentrations of 0.1, 0.2, 0.4, and

0.75 mg mL�1, assuming fragmentation but not secondary nucleation, and

a primary nucleus size nc ¼ 2. This fitting resulted in parameter values for

fibril elongation and fragmentation kþ ¼ 5 � 104 M�1 s�1 and kf ¼ 3 �
10�8 s�1. The primary nucleation rate kn was varied in our simulations as

described in Results. All protein was assumed to start in the monomeric

form. For computational convenience, in most of our simulations we chose

a small simulationvolumeV¼0.83pL, comparablewith that of a humancell.
Determination of lag times and scaling exponent

For each simulation trajectory, the total amount of fibrillar protein was ob-

tained as a function of time by summing over all fibril lengths. The lag time

was then determined as the time at which 3% of the total protein had been

incorporated into fibrils (however, our results do not depend strongly on the

choice of threshold). The lag time was computed for each simulation run

and then averaged over replicate runs. To obtain the lag-time scaling expo-

nent g, we repeated our simulations over a range of protein concentrations

mtot, and using the Levenberg-Marquardt algorithm to fit our data to the

functional form log(tlag) ¼ log(A) – glog(mtot), where A is a constant,

mtot is the protein concentration and tlag denotes the lag time, averaged

over replicate simulations, for a given protein concentration.
RESULTS

Experimental data shows kinks in lag time versus
concentration plots

Fig. 1 shows lag time versus protein concentration data, ob-
tained from our own experiments with bovine insulin and
lysozyme (Fig. 1, a and b, respectively), and experiments
by Xue et al. (9) on b2 microglobulin Fig. 1 c). These exper-
iments involved a large number of replicate experiments,
and covered a wide range of protein concentrations (for de-
tails, see the caption of Fig. 1). These data show clear evi-
dence for kinks: well-defined points in the lag-time versus
concentration curves where the lag-time scaling changes.
Because different lag-time scaling exponents are predicted
to arise from different molecular mechanisms, this observa-
tion suggests that the dominant mechanism in early self-as-
sembly kinetics changes with the protein concentration.
Present-day theoretical models suggest that three mecha-
nisms may be at play during the lag time: primary nucle-
ation, sequential addition of monomers to existing fibrils,
and autocatalytic growth via fragmentation or secondary
nucleation. These mechanisms produce different lag-time
scaling exponents (respectively, g ¼ nc, g ¼ nc/2, and
g ¼ 1/2 or (ns þ 1)/2). Our starting hypothesis is therefore
that the kinks that we observe in Fig. 1 arise from a cross-
over between regimes in which one or other of these mech-
anisms is dominant. In the rest of the article, we test this
hypothesis, by assessing whether our models indeed predict
kinks similar to those seen in the experimental data, first
from a qualitative and then from a quantitative point of view.
Model predicts kinks due to competition between
primary nucleation and autocatalysis

Simulations reveal changes in lag-time scaling exponent due
to interplay between nucleation and growth

We first explore, for present-day theoretical models, how the
interplay between different molecular mechanisms leads to
changes in the lag-time scaling exponent. We carried out
stochastic simulations of the chemical reaction sets Reac-
tions 1–3, i.e., of a model which includes primary nucle-
ation, fibril growth by elongation, and fragmentation (for
Biophysical Journal 108(3) 632–643
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FIGURE 1 Lag time as a function of protein concentration for (a) bovine

insulin, (b) lysozyme, and (c) b2 microglobulin, in all cases averaged over

replicate experiments. The data in panel cwas kindly provided by Xue et al.

(9). The error bars indicate the standard deviation among replicate experi-

ments at a given concentration, and the lines indicate the best fit of the po-

wer law tlagfmtot
�g to data for a specified range of protein concentrations.

(a) Two data sets for bovine insulin: (black) data fitted by the single power

law over all protein concentrations (resulting in g ¼ 0.36) indicate experi-

ments in the absence of NaCl; (red) data fitted by two power laws indicate

self-assembly in the presence of 0.49 M NaCl. Each point corresponds to

the mean and standard deviation of 140–200 kinetic traces at each of six

protein concentrations (see Materials and Methods). Fitting the data for
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simulation details, see Methods). For now we neglect sec-
ondary nucleation, but this will be considered later. As a
simple way to control the interplay between different molec-
ular mechanisms, we systematically varied the primary
nucleation rate constant kn over a wide range (15 orders of
magnitude), keeping all other parameters fixed. Primary
nucleation rates are poorly determined by fitting theoretical
predictions such as Eq. 6 to experimental data (8), so reli-
able estimates of their true values are lacking, but the
information that is available does suggest a wide range
of possible nucleation rate constants: 10�4–10�14 s�1

(8,24,25) for various protein systems. For each value of
the nucleation rate constant kn, we repeated our simulations
for protein concentrations mtot in the range 1 � 10�5 %
mtot % 7.5 � 10�4 M (commensurate with concentration
ranges used in our own and others’ experiments (9,14)),
and computed the lag-time scaling exponent g using linear
fits to our simulation data for log(tlag) versus log(mtot), as
described in Materials and Methods.

Fig. 2 a shows plots of lag-time versus concentration
obtained in our simulations, for increasing values of the pri-
mary nucleation rate constant (top to bottom; also color-
coded purple to red). As expected, we see clear changes
in lag-time scaling behavior as the nucleation rate constant
changes, reflecting the shift in relative importance of pri-
mary nucleation and growth in determining the lag time.
These changes in lag-time scaling can be seen in more detail
in Fig. 2 b. Here, the black symbols (with error bars) show
the scaling exponent g, extracted from the gradients of the
curves in Fig. 2 a, plotted as a function of the primary nucle-
ation rate constant kn (note that, for clarity, Fig. 2 a shows
only a subset of our simulated nucleation rates). Two fea-
tures are immediately apparent.

1) The limits of high and low nucleation rate constants are
consistent with theoretical predictions. If nucleation is
very slow, g tends to 2; this is consistent with the predic-
tion g¼ nc (¼ 2 in this case), for the regime in which the
lag time is dominated by the time to formation of the first
primary nucleus. In contrast, if nucleation is very rapid,
we obtain g ¼ 1, consistent with the Oosawa prediction
g ¼ nc/2 of nucleation-dependent polymerization in the
absence of autocatalysis.
bovine insulin in the presence of NaCl in the range mtot % 160 mM results

in g ¼ 0.90(2) (dashed line). Fitting the data in the range mtot R 160 mM

results in g ¼ 0.42(10) (dotted line). (b) Data for lysozyme (for conditions,

see Materials and Methods), where each point corresponds to the mean and

standard deviation of 12–60 kinetic traces at each of 25 protein concentra-

tions (see Materials and Methods). Fitting this data in the range mtot %
300 mM results in g ¼ 0.41(6) (dashed line); while fitting the data in the

range mtot R 300 mM results in g ¼ 0.06(5) (dotted line). (c) Data for b2
microglobulin, where each point corresponds to the mean and standard de-

viation of 235 kinetic traces at 20 different protein concentrations (for con-

ditions, see Materials andMethods and Xue et al. (9)). Fitting the data in the

range mtot R 30 mM gives g¼ 0.77(14) (dashed line), while fitting the data

in the rangemtotR 40 mM gives g¼ 0.54(5) (dotted line). To see this figure

in color, go online.
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FIGURE 2 Lag-time scaling with protein concentration for the fragmen-

tation model depends on the primary nucleation rate constant. (a) Lag-time

versus concentration curves obtained from stochastic simulations, for

several values of the nucleation rate constant kn: kn increases top to bottom

in factors of 100, from 10�12 M�1 s�1 (purple) to 1 M�1 s�1 (red). (b) Lag-

time scaling exponent g as a function of primary nucleation rate constant kn.

(Black symbols) Simulation results obtained by fitting the data shown in

panel a to log(tlag) ¼ log(A) – glog(mtot). The error bars are dominated

by the confidence in the fit, rather than the error in the lag-time measure-

ments. (Red line) The value g(kn) extracted from the full prediction of

the fragmentation model, Eq. 7. (Magenta line) The value g(kn) extracted

from the approximate prediction of the fragmentation model, Eq. 8. (Blue

line) The value g(kn) extracted from the lag-time expression Eq. 9—i.e.,

the full fragmentation model solution augmented by an extra term to

describe the first primary nucleation event. For all the data shown, the pro-

tein concentration range was 1 � 10�5 % mtot % 7.5� 10�4 M and the pa-

rameters were nc ¼ 2, kþ ¼ 5 � 104 M�1 s�1, kf ¼ 3 � 10�8 s�1, and the

volume V ¼ 0.83 pL. To see this figure in color, go online.
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2) For intermediate values of the nucleation rate constant,
the scaling exponent dips down toward the prediction
of the fragmentation model, g ¼ 1/2, but never actually
reaches this value.

These results show clearly that changes in the dominant
molecular mechanism can indeed produce shifts in the
scaling exponent. Interestingly, they also show that the
regime where autocatalysis (in the form of fibril fragmenta-
tion) is dominant can become masked by the effects of pri-
mary nucleation, leading to an apparent scaling exponent
significantly larger than one-half, even for systems where
fragmentation plays an important role.

Modification of standard theory is needed to reproduce
simulation results

Fig. 2 b (red line) also shows the lag-time scaling exponents
emerging from the analytical expression for the lag time,
Eq. 7, derived for a model that includes nucleation, fibril
elongation, and fragmentation, all treated deterministically.
Lag-times derived from the limit of this expression in the
case of rapid autocatalysis (Eq. 7; magenta line) produce
similar results. These results were obtained by using the
analytical expressions to plot log(tlag) versus log(mtot),
from which predictions for g were extracted numerically,
for different values of the nucleation rate constant kn. The
predictions of this deterministic model are in good agree-
ment with our simulation results for higher nucleation rate
constants, showing that the analytical solution to the frag-
mentation model does correctly capture the crossover to
an Oosawa-like regime. (The crossover to the Oosawa-like
regime can be seen in the analytical expression Eq. 7 by
noting that at high values of kn, d >> k, and in this limit
D in Eq. 7 becomes large, which gives tlag z (2F)1/2 d�1

and g ¼ 1.) However, the deterministic model does not cap-
ture the shift to the primary nucleation-dominated regime
(g ¼ nc ¼ 2) at low values of kn, instead tending toward
the fragmentation-like value of g ¼ 1/2 as kn decreases.

Why does the analytical result fail to capture the simula-
tion behavior at low nucleation rates? This discrepancy
arises because the deterministic differential equations used
to generate the theoretical prediction, Eq. 7, do not take
account of the discrete nature of the primary nucleation pro-
cess. In the deterministic differential equation representa-
tion, all concentrations are continuous variables that can
be arbitrarily small—thus the concentration of nuclei in-
creases continuously from time zero and initially corre-
sponds to less than one nucleus in the corresponding
simulated volume. In the continuous model, the autocata-
lytic growth processes are able to operate on this very low
concentration of nuclei, leading to a lag time that is domi-
nated by k (the timescale of autocatalytic growth) rather
than by slow primary nucleation. In contrast, in our stochas-
tic simulations, as in reality, the autocatalytic growth
processes cannot start until the first nucleus has been gener-
ated—thus the lag time is dominated by the formation of the
first primary nucleus, leading to g ¼ nc ¼ 2.

Fortunately, it turns out that this problem can easily
be remedied. The formation of the first primary nucleus
in the volume V occurs as a Poisson process, with mean
waiting time nc!ðVNAknm

nc
totÞ�1, where V is the volume and

NA is Avogadro’s number (this follows from our definition
of the nucleation reaction, Reaction 1). In the regime where
the nucleation rate is very low, we expect that a single nu-
cleus forms, and grows autocatalytically until the threshold
is reached (i.e., we do not expect to see multiple primary
nucleation events). Once the nucleus has formed, its growth
should be well described by the deterministic model predic-
tion, Eq. 7. We can therefore simply add the predicted wait-
ing time for formation of a single nucleus to Eq. 7 to obtain
the new prediction

tlag ¼ 1

k
log

 
D� Fþ �ðF� DÞ2 þ 4CþC�

�1=2
2Cþ

!

þ nc!

VNAknm
nc
tot

;

where, as before, D ¼ d2/k2 and F ¼ log(1 – M*/mtot).
Because we are considering the unseeded case,
Biophysical Journal 108(3) 632–643
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C5 ¼ 5d2/k2 ¼ 5D/2, we can rewrite Eq. 7. Modification
of standard theory is needed to reproduce simulation results,
thus:

tlag ¼ 1

k
log

�
1� FD�1 þ

��
FD�1

�2 � 2FD�1
�1

2

�

þ nc!

VNAknm
nc
tot

:

If kn is large such that d >> k, we expect the second term in
Eq. 7. Modification of standard theory is needed to repro-
duce simulation results to become negligible, leading to
the same scaling behavior as Eq. 8 (red line in Fig. 2 b).

If, on the other hand, kn is small such that d << k, Eq. 9
can be simplified by neglecting small terms in the logarithm:

tlagz
1

d2

�
Dklog

�
FD�1

�þ 2kþ
VNA

�
: (9)

As kn / 0, the logarithmic term can be neglected
2

FIGURE 3 Transitions between different scaling regimes appear as kinks

in lag-time versus concentration curves. Lag-time versus concentration

curves predicted by Eq. 9 are plotted for a range of primary nucleation rates

kn. The kn value increases top-right to bottom-left and is color-coded from

kn ¼ 10�30 M�1 s�1 (blue) to kn ¼ 1010 M�1 s�1 (red), being increased by

factors of 100. The two panels show results for different system volume V:

(a) V ¼ 0.83 pL, (approximately the size of a human cell). (b) The much

larger volume V ¼ 83 mL (a typical volume used in in vitro protein aggre-

gation experiments). In panel a, the crosses correspond to the simulation

data given in Fig. 2 a. In all cases, kþ ¼ 5 � 104 M�1 s�1, kf ¼ 3 �
10�8 s�1, and nc ¼ 2. To see this figure in color, go online.
completely, yielding tlag z 2kþ/(VNAd ) and hence g ¼
nc as expected when primary nucleation is very slow. For
large nucleation rates kn, the logarithmic term dominates,
leading to the autocatalysis-dominated scaling regime with
g ¼ 1/2.

The blue line in Fig. 2 b shows the lag-time scaling expo-
nent extracted from the modified lag-time expression (9), as
a function of the nucleation rate constant kn. This prediction
is indeed in excellent agreement with our simulation results
over the entire range of primary nucleation rates.

Theory predicts kinks in lag-time versus concentration plots

Using the modified analytical lag-time expression, Eq. 9,
which correctly accounts for the stochasticity of primary
nucleation, we now investigate whether present-day theoret-
ical models can account for the kinks that we observe in
experimental lag time versus concentration plots. Fig. 3 a
shows lag-time versus concentration curves predicted by
Eq. 9, plotted over a wide range of protein concentrations
(nine orders of magnitude). Results are shown for various
values of the nucleation rate constant kn, indicated by the
colors; kn increases top-right to bottom-left. The symbols
show our stochastic simulation results, which are in good
agreement with the predictions of Eq. 9. It is immediately
apparent from Fig. 3 a that the model does indeed predict
kinks in the lag-time versus concentration curves. These
kinks appear for intermediate values of the nucleation rate
constant. In these curves, the lag-time scaling changes
smoothly, over approximately an order of magnitude in pro-
tein concentration, between the fragmentation-dominated
scaling g ¼ 1/2 and either the primary nucleation-domi-
nated scaling g ¼ nc or the Oosawa (elongation-dominated)
scaling g ¼ nc/2. For very low or very high values of the
nucleation rate constant, the lag-time versus concentration
Biophysical Journal 108(3) 632–643
curves in Fig. 3 a do not show kinks, showing instead either
primary nucleation-dominated scaling, g ¼ nc ¼ 2, or
Oosawa scaling, g ¼ nc/2 ¼ 1, respectively. Thus our anal-
ysis shows that present-day models are consistent with the
occurrence of kinks in lag-time versus concentration curves.
These curves may show no kinks, one kink, or two kinks, de-
pending on the molecular parameters and the protein con-
centration range observed.

Fragmentation-dominated scaling is more apparent at larger
volumes

In vitro protein aggregation experiments are typically per-
formed using system volumes of between 10 mL and
10 mL (10�5 to 10�2 L), while the typical volume of a hu-
man cell is %10–100 pL (10�11–10�10 L). To investigate
the effect of sample volume, we repeated our analysis for
a larger volume of 83 mL. For this volume, stochastic simu-
lations are not practical, but the analytical result of Eq. 9
still holds. We expect that changing the sample volume
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FIGURE 4 Kinks are also predicted in lag-time versus concentration

curves for a model where the autocatalysis mechanism is provided by sec-

ondary nucleation. Lag-time versus concentration curves predicted by Eq. 9

are shown for a series of values of the primary nucleation rate kn (increasing

top-right to bottom-left) from 10�30 M�1 s�1 (blue) to 106 M�1 s�1 (red),

increasing by factors of 100. The two panels show results for different sys-

tem volume V: (a) V ¼ 0.83 pL (approximately the size of a human cell).

(b) The much larger volume V ¼ 83 mL (a typical volume used in

in vitro protein aggregation experiments). The other parameters are kþ ¼
5 � 104 M�1 s�1, ks ¼ 24 M�1 s�1, nc ¼ 2, and ns ¼ 2. To see this figure

in color, go online.

Lag-Time Scaling Transitions 639
will have a strong effect on the kinks in the lag-time versus
concentration curves, because the time to formation of the
first primary nucleus scales inversely with the volume (see
Eq. 9). However, once a nucleus has been formed, the
average time for the autocatalytic growth process to reach
the threshold is independent of the volume (see, for
example, Eq. 7). This implies that changing the system vol-
ume will shift the crossover points between the regimes in
which the lag time is dominated by primary nucleation
and by fragmentation—i.e., it will shift the kinks in the
lag-time versus concentration curves. For larger systems,
we expect the fragmentation-dominated regime to extend
over a wider range of protein concentrations than for smaller
systems.

Fig. 3 b shows lag-time versus concentration curves,
computed using Eq. 9 for a volume of 83 mL, for the same
parameter set as in Fig. 3 a. For the larger volume, we still
see the two primary nucleation-dominated regimes g ¼ nc
and g ¼ nc/2 at low and high nucleation rates, respectively.
However, for intermediate nucleation rates, the fragmenta-
tion-dominated scaling regime g ¼ 1/2 typically extends
over a wide range of concentrations (for some nucleation
rates, we even see g ¼ 1/2 over the entire nine orders of
magnitude of protein concentration).

Interestingly, these results suggest that lag-times for am-
yloid fibril formation are likely to scale quite differently
with protein concentration in small volume samples than
in in vitro experiments where the volume is large. While
fragmentation-dominated lag-time scaling, with exponent
g ¼ 1/2, may be a common feature of in vitro experiments,
it is likely to be much less prevalent in smaller volumes on
the scale of human cell, which are of clinical relevance.

Similar results are obtained for autocatalysis via secondary
nucleation

Up to now, we have focused on the case where the autocat-
alytic growth mechanism is provided by fibril fragmenta-
tion. We now show that similar phenomena occur when
autocatalysis instead occurs by secondary nucleation on
the surface of existing fibrils. Fig. 4 a shows predicted
lag-time versus concentration curves, for different values
of the nucleation rate constant, for a model with primary
nucleation, fibril elongation, and secondary nucleation
(i.e., Reactions 1, 2, and 4). In this case, the same theoretical
prediction for the lag time, Eq. 9, holds, but we use the alter-
native expression for the timescale of autocatalytic growth,
k ¼ ð2kþksmnsþ1

tot =ns!Þ1=2. The predicted values of g in the
primary nucleation-dominated regimes are the same as for
the fragmentation case: for very low nucleation rates (or
low protein concentrations) we expect g ¼ nc ¼ 2 while
for high nucleation rates (or high protein concentrations)
we expect g ¼ nc/2 ¼ 1. However, the scaling in the inter-
mediate, autocatalysis-dominated regime is now predicted
to be g ¼ (ns þ 1)/2, where ns is the size of the secondary
nucleus (here assumed to be ns ¼ 2 so that we predict
g ¼ 3/2). These three regimes are indeed apparent in
Fig. 4 a. As in the fragmentation case, increasing the system
size increases the range of parameters (i.e., kn and protein
concentration) for which autocatalysis dominates the lag
time (Fig. 4 b).

Interestingly, the predicted lag-time scaling in the high
concentration limit is somewhat different in the case of
secondary nucleation, compared to fragmentation. In the
fragmentation case, at very high protein concentrations,
we expect to obtain the Oosawa-like scaling g ¼ nc/2
(see Fig. 3). In contrast, for secondary nucleation, some
of our lag time versus concentration curves never
reach the Oosawa-like scaling limit but instead converge
to the secondary nucleation-dominated scaling exponent
g ¼ (ns þ 1)/2 ¼ 3/2 in the high concentration limit (this
is most apparent in Fig. 4 b). The crossover between the
Oosawa-like and autocatalysis-dominated regimes occurs
when d ¼ k. These two parameters scale differently with
protein concentration: d scales as m

nc=2
tot while k scales as
Biophysical Journal 108(3) 632–643
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m
ðnsþ1Þ=2
tot for secondary nucleation and mtot

1/2 for fragmenta-
tion. For fragmentation, because nc/2 > 1/2, at high enough
protein concentration there will always be a regime where
d > k, leading to Oosawa-like scaling. For secondary
nucleation, however, we may be in a situation where nc/2 <
(ns þ 1)/2 (this is indeed the case for our parameter set).
In this case, for some parameter combinations, there may
be no protein concentration range for which d > k; thus the
Oosawa-like scaling regime may never be reached. In this
case, we expect to see only a single kink in the lag time versus
concentration curve, at the transition between the primary
nucleation- and secondary nucleation-dominated regimes.
Are the kinks in experimental data explained
by contemporary models?

We now assess quantitatively whether the kinks that we
observe in the experimental data of Fig. 1 are consistent
with the shifts among regimes dominated by primary nucle-
ation, autocatalytic growth, and sequential monomer addi-
tion, as predicted by the model.

We first consider the values of the scaling exponent to the
left and right of the kink, which we denote gL and gR. For
insulin (Fig. 1 a), we obtain gL ¼ 0.90(2) and gR ¼
0.42(10). These exponents are roughly consistent with a
shift from a primary nucleation-dominated regime at low
concentration, with gL ¼ nc z 1 to a fragmentation-domi-
nated regime at higher concentration, with gR z 1/2. Simi-
larly, the exponents for b2 microglobulin (Fig. 1 c), gL ¼
0.77(14) and gR ¼ 0.54(5), are roughly consistent with the
same scenario. In contrast, for lysozyme (Fig. 1 b), we
obtain quite different exponents, gL ¼ 0.41(6) and gR ¼
0.06(5). In this case, while gL could conceivably correspond
to a fragmentation-dominated regime (g z 1/2), the
observed value of gR ¼ 0.06(5) appears to be too small to
correspond to any of the regimes predicted by the model.
We also note that in the case where nc ¼ 1, our model pre-
dicts that the Oosawa regime of nucleation-dependent poly-
merization will have a lag-time scaling exponent g ¼ 1/2
and thus not be distinguishable from the fragmentation-
dominated regime. However, the shape of the growth curves
at protein concentrations to the right of the kink (9,14) still
appear strongly dominated by autocatalysis, and so it is un-
likely that our range of data encompasses the second kink,
i.e., a transition to the Oosawa regime.

We next consider the protein concentration at which the
kink happens (the position of the kink) in the plots of
Fig. 1. If the kinks do indeed signify a transition between
primary nucleation- and fragmentation-dominated regimes
(at least for insulin and b2 microglobulin), we can use our
analytical model results to predict the concentration at
which this should happen. Returning to our lag-time predic-
tion, Eq. 9, the two terms inside the square brackets arise
from autocatalytic growth and primary nucleation, respec-
tively. The crossover in dominance between these mecha-
Biophysical Journal 108(3) 632–643
nisms should happen when these two terms are equal in
magnitude, i.e., when the following condition is satisfied:

2kþ
V NA

¼ Dklog
�
F�1D

�
: (10)

Here, F ¼ log(1 – M*/mtot) is a constant relating to the lag-
time threshold M*, and D ¼ d2/k2 measures the relative
importance of the characteristic timescales for Oosawa-
like growth d�1hð2kþknmnc

tot=nc!Þ�1=2 and fragmentation-
dominated growth k�1 ¼ (2kþkfmtot)

�1/2. We now would
like to determine whether Eq. 10 is satisfied for the kinks
that we observe in the experimental data of Fig. 1.

Adirect test of Eq. 10 requires knowledge of the kinetic pa-
rameters k, kþ, and kn, for each of the protein systems shown
in Fig. 1. The value of k can be extracted to a high degree of
accuracy byfitting the predictions of the deterministicmodel,
Eq. 6, to kinetic curves, and it can be reasonably assumed that
the elongation rate kþ takes a similar value to that of insulin,
for which it is known (14). Kinetic fits do not, however, accu-
rately determine the nucleation rate constant kn, which is
believed to vary widely among proteins (8,24,25). We are
therefore obliged to take an indirect approach to testing
Eq. 10. We ask what value of the nucleation rate constant
kn would be required in order for Eq. 10 to be satisfied, for
the data of Fig. 1. Then we ask whether this resulting predic-
tion for kn is reasonable. If it is not reasonable, we can
conclude that the kinks observed in the data of Fig. 1 cannot
be explained by a transition between primary nucleation- and
autocatalytic growth-dominated lag time regimes.

To this end, we extracted from the datasets of Fig. 1 the
protein concentration (i.e., the value of mtot) at which the
kink was observed. Using these values together with
the known values of the sample volume V and lag-time
threshold M*, values of k obtained by fitting kinetic curves
(either in our own work (14) or that of Xue et al. (9)), and the
value of kþ obtained by fitting the kinetic curves of insulin
(14), we solved Eq. 10 numerically for D. From this, we ob-
tained a value of the nucleation rate constant consistent with
the position of the kink on the protein concentration axis, for
each dataset. Based on our observations for the scaling ex-
ponents left of the kink, gL, we chose to use a nucleus
size nc ¼ 1, but we also repeated our calculations for larger
values of nc. The parameters used in these calculations,
together with the resulting values of kn, are presented in
Table 1. Note that the predicted value of kn has different
dimensionality depending on the assumed nucleus size.

To determine whether the resulting predictions for the
nucleation rate constant kn were reasonable, we used them
to calculate an estimated time to formation of the first nu-
cleus, in a sample of the same volume and protein concen-
tration as the experiment. This time is given by
nc!=½knmnc

totNAV�, and, due to a cancellation with the nc-
dependence of kn, it is independent of the chosen value of
nc. Table 1 lists the resulting times to formation of the first



TABLE 1 Testing whether the condition from Eq. 10 is consistent with the kinks observed in the experimental data of Fig. 1

Description Insulin Lysozyme b2 microglobulin

mtot at kink (from Fig. 1) 160 mM 300 mM 40 mM

k from kinetic fit (9,14) 1.3 � 10�4 s�1 1.2 � 10�3 s�1 7.2 � 10�5 s�1

kþ from insulin kinetic fit (14) 5 � 104 M�1 s�1 5 � 104 M�1 s�1 5 � 104 M�1 s�1

V 100 mL 100 mL 100 mL

M*/mtot 0.1 0.1 0.1

Solution for kn for nc ¼ 1 5.2 � 10�22 M�1 s�1 2.3 � 10�21 s�1 1.2 � 10�21 s�1

Solution for kn for nc ¼ 2 6.4 � 10�18 M�1 s�1 1.6 � 10�17 M�1 s�1 5.8 � 10�17 M�1 s�1

Solution for kn for nc ¼ 3 1.2 � 10�13 M�1 s�1 1.6 � 10�13 M�1 s�1 4.4 � 10�12 M�1 s�1

Average time to nucleus ¼ nc!=½knmnc
totNAV� 56 h 7 h 98 h

Predicted lag time at kink 112 h 13 h 197 h

Lag time at kink (from Fig. 1) ~25 h ~20 h ~10 h

rows 2–6 show the parameter values used. Rows 7–9 show the resulting values of the nucleation rate constant kn from numerical solution of Eq. 10, for nc¼ 1,

nc ¼ 2, and nc ¼ 3. Rows 10–12 show the implied predictions for the time to formation of the first nucleus and the lag time at the kink. The latter is compared

to the experimental value extracted from Fig. 1. Values of k were extracted from the gradient of the steepest part of the growth curves. Those shown here are

the means, for each protein, at the protein concentration where the kink occurs.
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nucleus. For insulin and b2 microglobulin, it is immediately
apparent that the predicted waiting times are not reasonable,
because they are significantly longer than the observed lag
time at the kink. We can also directly calculate the predicted
lag time at the kink, by inputting our predicted value of kn
(together with the other parameters) into Eq. 9. The results
are presented in Table 1 and compared with the observed lag
times at the kink, extracted from the data of Fig. 1 (again,
these predictions are independent of nc).

Again, for insulin and b2 microglobulin, the predicted lag
time is far longer than the observed lag time, suggesting that
Eq. 10 is not satisfied for a reasonable choice of primary
nucleation rate constant. Interestingly, for lysozyme, this
procedure actually predicts a lag time that is within a factor
of 2 of that observed experimentally (and is shorter rather
than longer than the experimental value). While this might
suggest that the kink observed for lysozyme could be ex-
plained by a transition between primary nucleation- and
autocatalytic growth-dominated regimes, we note that for
lysozyme, unlike the other proteins, the scaling exponents
to the left and right of the kink do not seem to be consistent
with such a transition.

To conclude, our analysis shows that the kinks we observe
in the experimental lag-time versus concentration plots of
Fig. 1 are not quantitatively consistent with a transition
from primary nucleation- to growth-dominated lag-time re-
gimes. For bovine insulin and b2 microglobulin, such a tran-
sition requires a primary nucleation rate constant that is too
small to be consistent with the data, while for lysozyme the
scaling exponents to the left and right of the kink are incon-
sistent with this transition. Understanding the origin of these
kinks is likely to require new mechanistic understanding,
beyond that provided by existing kinetic models.
DISCUSSION

In experimental studies of amyloid fibril self-assembly ki-
netics, measurements of lag time as a function of protein
concentration are often used to diagnose the underlying mo-
lecular mechanism (26). Based on predictions of theoretical
models that include primary nucleation, elongation by
monomer addition, and autocatalytic growth via fragmenta-
tion (or secondary nucleation), a scaling exponent g < 1 is
usually taken to imply a fragmentation-dominated mecha-
nism, while an exponent g > 1 suggests that fragmentation
is not involved. In this article, we find that a more complex
picture emerges from experimental lag-time versus concen-
tration curves, when they are averaged over many replicates
and measured over a wide range of protein concentrations.
For three different protein systems (including both our
own and others’ data), we observe kinks in the lag-time
versus concentration curves, at which the scaling exponent
g changes. Other published datasets also show tantalizing
hints of kinks, but with insufficient statistical certainty, or
without a sufficiently wide concentration range to be sure
(9,27–29).

The presence of a kink in the lag-time versus concentra-
tion curve apparently signifies a change in the dominant mo-
lecular mechanism at play during the lag phase of fibril
assembly. To test whether these kinks are consistent with
the existing theoretical picture, we carried out a detailed
analysis of the lag-time scaling behavior of the standard
model, including nucleation, elongation, and fragmentation
(or secondary nucleation). Our analysis shows that indeed
this model does predict changes in lag-time versus concen-
tration scaling, and that these kinks in the lag-time versus
concentration curve are due to crossovers among primary
nucleation-dominated, autocatalysis-dominated, and elon-
gation-dominated regimes. Capturing these kinks correctly
requires us to modify the deterministic expression for the
lag time to take account of stochastic primary nucleation
events.

Importantly, however, an inconsistency is revealed upon
quantitative comparison between the properties of the kinks
that we observe in our and others’ experimental data, and
the model predictions. For our data on bovine insulin (14)
Biophysical Journal 108(3) 632–643
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(Fig. 1 a) and the data of Xue et al. (9) on b2 microglobulin
(Fig. 1 c), the scaling exponents to the left and right of the
kink are broadly consistent with a transition from a primary
nucleation-dominated regime at low protein concentration
to a fragmentation-dominated regime at higher concentra-
tion. However, fitting the protein concentration at which
this transition is observed to the prediction of the theoretical
model requires us to assume a primary nucleation rate con-
stant that is too low to account for the observed magnitude
of the lag time. Thus for these protein systems, the theoret-
ical model prediction is not quantitatively consistent with
the data. For lysozyme (Fig. 1 b) the model also fails to ac-
count for the data, but in a different way: while the position
of the kink is predicted correctly within a factor of 2, the
scaling exponent to the right of the kink is inconsistent
with any of the regimes predicted by the model. Thus, while
the standard theoretical model generally does a good job of
explaining kinetic curves for amyloid fibril formation, new
mechanistic understanding is needed to explain detailed fea-
tures of the lag-time concentration curves.

What mechanisms could account for the kinks that we see
in the data of Fig. 1? The standard theoretical model inves-
tigated in this work is incomplete in that it does not include
fibril end-joining (18) or length-dependent fragmentation;
however, neither of these factors is expected to have a sig-
nificant influence during the lag phase (30). Another factor
not included in our model is spatial heterogeneity. For insu-
lin fibril formation tracked microscopically in microdrop-
lets, fibril formation has been shown to propagate out
from an initial nucleation site as a spatial wave (20,31). It
would be very interesting to investigate the consequences
of this spatial propagation for the apparent lag-time scaling;
however, it seems unlikely that it would affect the scaling in
the apparent nucleation-dominated regime (left of the kink),
where we obtain lower-than-expected scaling exponents for
insulin and b2 microglobulin. It seems possible that our re-
sults may reflect the nature of the primary nucleation event
itself. While this is often assumed to be a homogeneous, sto-
chastic event occurring at a rate proportional to mnc (i.e.,
involving the spontaneous union of nc monomers), fitting
in vitro kinetic data is actually highly sensitive to the nature
of the nucleation event. Factors such as nucleation on the
surface of the sample chamber, the presence of preexisting
nuclei, or slow conformational changes during the nucle-
ation process could result in lag-time scaling with exponents
lower than those predicted by the standard model. More
generally, high-concentration saturation, either of the pri-
mary nucleation step (e.g., due to surface nucleation) or of
the fibril elongation process, seems likely to lead to
decreased lag-time scaling exponents. Indeed, lag-time
scaling exponents smaller than one-half are quite frequently
observed both in our own experimental work (14), and in
that of others (8,16,32–36).

From an immediate practical point of view, our results
demonstrate that great care is needed in interpreting lag-
Biophysical Journal 108(3) 632–643
time scaling exponents from protein assembly data. More
broadly, our work highlights a need to better understand
the molecular mechanisms at play during the lag phase of
amyloid fibril assembly. The lag phase of fibril assembly
is of particular importance in the clinical context, both
because lag-time variability may be associated with variable
time of neurodegenerative disease onset (30) and because it
has been suggested that toxicity of early-stage aggregates
rather than fully assembled fibrils may be causative in dis-
ease (5,37,38). Detailed measurements of lag-time versus
concentration scaling, combined with the development of
new mechanistic models, may provide a way to probe
what is going on during this crucial stage of the assembly
process.
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