
immune systems. However, whilst much has been 
documented about the shared physical characteristics of 
aging and uremia, the molecular and cellular similarities 
between the two have received less attention. In 
order to bridge this perceived gap we have reviewed 
published research concerning the common molecular 
processes seen in aging subjects and CKD patients, with 
specific attention to altered proteostasis, mitochondrial 
dysfunction, post-translational protein modification, 
and senescence and telomere attrition. We have also 
sought to illustrate how the cell death and survival 
pathways apoptosis, necroptosis and autophagy are 
closely interrelated, and how an understanding of these 
overlapping pathways is helpful in order to appreciate 
the shared molecular basis behind the pathophysiology 
of aging and uremia. This analysis revealed many 
common molecular characteristics and showed similar 
patterns of cellular dysfunction. We conclude that 
the accelerated aging seen in patients with CKD is 
underpinned at the molecular level, and that a greater 
understanding of these molecular processes might 
eventually lead to new much needed therapeutic 
strategies of benefit to patients with renal disease. 

Key words: Aging; Uremia; Apoptosis; Autophagy; 
Senescence; Telomeres; Mitochondria; Post-transla-
tional protein modification; Klotho
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Core tip: This review presents evidence that suggests 
that the morphological similarities between uremia and 
physiological aging are underpinned by similarities at 
a cellular and molecular level. Several of the classical 
cellular features of aging such as mitochondrial 
dysfunction and altered proteostasis have been observed 
in the cells and tissues of uremic humans and animals, 
and in in vitro  models of uremia. There are also many 
shared features between aging and uremia in terms of 
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Abstract
Many observers have noted that the morphological 
changes that occur in chronic kidney disease (CKD) 
patients resemble those seen in the geriatric population, 
with strikingly similar morbidity and mortality profiles 
and rates of frailty in the two groups, and shared 
characteristics at a pathophysiological level especially 
in respect to the changes seen in their vascular and 

REVIEW

19 February 6, 2015|Volume 4|Issue 1|WJN|www.wjgnet.com

Aging and uremia: Is there cellular and molecular 
crossover?

World Journal of 
NephrologyW J N

Submit a Manuscript: http://www.wjgnet.com/esps/
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
DOI: 10.5527/wjn.v4.i1.19

World J Nephrol  2015 February 6; 4(1): 19-30
ISSN 2220-6124 (online)

© 2015 Baishideng Publishing Group Inc. All rights reserved.



cell death and survival pathways. These commonalities 
may present new targets for the future management of 
patients with chronic kidney disease. 
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INTRODUCTION
Observation alone suggests that patients with end 
stage kidney disease (ESKD) are biologically older 
than their unaffected peers. As a group, ESKD patients 
have a morbidity and mortality profile similar to that 
of the geriatric population, and the pathophysiology 
of the uremic syndrome has interesting parallels with 
the aging process. Based on these thoughts it has 
been posited that kidney failure results in accelerated, 
pathological aging[1]. Indeed there are striking ana
logies between the effects of aging and uremia on the 
structure and function of the heart and vasculature, 
with similar changes seen in pulse contour, pulse wave 
velocity, and impedance, and similar structural abno
rmalities with wall thickening, decreased elastin, and 
increased collagen content[2].

Aging is characterized by a progressive loss of phy
siological integrity, leading to impaired function and 
increased vulnerability to death[3]. Dialysis dependent 
patients of any age have an increased risk of mortality 
when compared to those with a functioning transplant 
and healthy controls of the same age[4], and are more 
susceptible to disease, particularly that of the cardiova
scular system: a 2534yearold dialysis patient has 
a relative risk of cardiovascular mortality similar to 
that of a > 75yearold in the general population[5]. 
Furthermore, the prognosis for chronic kidney disease 
(CKD) patients is still extremely poor and has not 
improved greatly despite many treatment advances: 
CKD patients receiving dialysis aged 50 and under are 
likely to live 30 years less than agematched people 
without CKD[5]. Whilst survival rates have slightly impr
oved they have not kept pace with the rises seen in 
the normal population without CKD, with the result 
that relative survival in age-specific patients with CKD 
actually decreased between 1977 and 2007[6]. There is 
thus a need to identify if CKD is inducing an aginglike 
cellular and molecular dysfunction, and if so whether 
any novel potential therapy might be derived from an 
increased understanding of the pathways that are indu
ced by both CKD and aging. 

ESKD confers a greatly increased risk of infectious 
morbidity and mortality, whilst simultaneously being a 
chronic inflammatory state, a pattern of immune dys
function also associated with aging[7]. These abnormalities 

also seem to be reflected at a cellular level, with prefer-
ential loss of cells belonging to the lymphoid cell lineage, 
and inflammation and expansion of proinflammatory 
immune cells[8]. 

There is a high prevalence of the frailty syndrome 
amongst dialysis patients, a phenotype partly defined 
by weight loss, muscle weakness, and fatigue, which is 
associated with adverse outcomes in geriatric patients[9]. 
In the original study that developed this definition, 6.9% 
of participants ≥ 65-year-old were classified as frail; in 
a more recent study of dialysis patients 44% of those 
under 40yearold were found to be frail[10]. Cognitive 
impairment is also highly prevalent in the dialysisdepe
ndent population and occurs in comparatively young 
patients[1,11]. 

Whilst much has already been written about the 
intriguing similarities that appear to exist between the 
aging process and CKD[1,8,12,13], comparatively little 
work has been undertaken looking at the cellular and 
molecular hallmarks of aging in the context of the 
known evidence concerning uremiainduced cellular and 
molecular pathways. Therefore in this review, in order to 
try and fill this perceived gap in the literature, we have 
first briefly outlined what the main cell death pathways 
are and by what means these processes interact 
with each other, followed by an analysis of published 
research concerning the mechanisms of aging and 
uremiainduced cell death and their common molecular 
pathways and cellular characteristics. Lastly we provide 
an assessment of how this knowledge may lead to 
benefits in both nephrology and gerontology.

 

 
CELL DEATH AND SURVIVAL 
PATHWAYS
An outline of cell death 
Since the first descriptions of apoptotic cell death 
appeared more than 40 years ago[14] the study of cell 
death has become a substantial and important area. 
The main cell death pathways have been reviewed 
exhaustively in the literature and it is not the aim of this 
review to repeat this information. What is pertinent here 
is how much our understanding of cell death has changed 
and evolved in recent years. This is because cell death 
and survival pathways are now being assessed more as 
molecular processes and less as a series of morphological 
characteristics. One of the most fundamental changes 
is that each death pathway is no longer considered in 
isolation and there is an appreciation that cell death can 
no longer be considered as a choice between apoptotic, 
autophagic or necrotic death. Pathways once thought of 
as discreet have been found to be closely interconnected 
with others whilst some pathways have needed to 
be recategorized. In addition several completely 
novel pathways have been described. An example of 
reclassification is that necrosis is now subdivided into 
two distinct forms, one being programmed necrosis that 
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is usually termed necroptosis or regulated necrosis, and 
accidental or nonregulated necrosis which is more in line 
with the original concept of necrosis. Another example of 
recent developments is that apoptosis has now been split 
into four different classes whilst a total of 13 functional 
classes of regulated cell death have been described[15]. 
So whilst this review is focusing on the most established 
and described death and survival pathways they must 
not be considered as being complete. Lastly, the role of 
autophagy in cell death has been recently challenged[16,17] 
whilst its role in cell survival[18] asserted. 

Uremia induced apoptosis
Although apoptosis and uremia have been studied 
extensively both separately and together, a clear pic
ture of how uremia induces apoptosis has yet to be 
established. Instead a large number of studies using 
experimental models and human subjects have shown 
that uremia is associated with apoptosis in a wide 
range of cells and tissues such as skeletal muscle[19,20], 
myocardium[21], platelets[22,23], monocytes[24], neutro
phils[25], lymphocytes[26], leukocytes[27] and vascular 
endothelial cells[28]

. The kidney has also been shown as 
a target for apoptosis in uremia with both podocytes[29] 
and proximal tubular cells identified as having increased 
apoptotic cell death[30]. Furthermore, it has become 
known that it certain circumstances dialysis itself can 
be an activator of apoptosis[20,26]. It is unclear if the 
apoptosis seen in the kidney is the cause or the effect of 
CKD. However, it does seem probable that acute kidney 
injury (AKI) induced apoptosis can subsequently lead 
to the activation of interstitial fibroblasts via transform
ing growth factor beta (TGFβ) resulting in CKD[31,32]. In 
fact expression of TGFβ has been found to be elevated 
in nearly all human and experimental forms of CKD[33] 
and demonstrated to be directly associated with age in 
healthy human subjects[34]. 

Uremia induced necroptosis
Uremia induced necroptosis (or programmed necrosis) 
has yet to feature prominently in the literature although 
this is possibly due, at least in part to previous cell death 
descriptions not being classified correctly according to 
current definitions (see aging induced apoptosis below). 

Aging induced apoptosis and necroptosis
The induction of apoptosis in aging in most tissues 
awaits clarification. However, in skeletal muscle at least 
there is clear evidence that muscle mass decreases with 
age[3537] with apoptosis being known to be elevated in 
the skeletal muscle of aged subjects[3841]. It has been 
suggested that aging increases cell death by caspase 
independent mechanisms. There is also some evidence 
that terminal deoxynucleotidyl transferase dUTP nick 
end labeling (TUNEL) staining is greater the kidneys of 
aged in mice[42] but TUNEL staining has been shown not 
to be specific for apoptosis[43]. It seems plausible that at 
least some of the examples for age induced apoptosis in 

the literature instead reflect increases in necroptosis.

Apoptosis and necroptosis crosstalk
It is now appreciated how significantly involved the 
apoptosis machinery is in other cell death and survival 
pathways. Many of the described apoptotic death 
receptors such as tumor necrosis factor receptor 1 and 
FAS are now also known to be able to induce necropt
otic cell death[44,45]. Caspase8, a key component of 
receptor mediated apoptosis is now thought to regulate 
the activation of necroptosis[45]. Inhibitor of apoptosis 
(IAP) are endogenous caspase inhibitors and therefore 
play a role in controlling apoptosis. When IAP levels 
are reduced this leads to caspases being activated 
which results in apoptotic cell death. Another IAP, 
XChromosomelinked IAP has been shown to be red
uced in the muscle of CKD mice and in vitro in muscle 
cells treated with serum obtained from CKD mice[46].

The activation of autophagy is known to breakdown 
IAPs and lead subsequently to the induction of necr
optosis. Furthermore, in conditions where IAPs are 
suppressed or absent and caspase activity is inhibited 
can lead to the activation of necroptosis via receptor
interacting protein1 (RIP1) and its downstream kin
ase (RIPK1)[47]. It has been postulated that RIP1 
together with RIP3, cIAP, Caspase8 and cFlip act as 
essential components of the ripoptosome, a signalling 
platform that can switch modes between apoptotic and 
necroptotic cell death[48]. Recent work indicates that it 
is RIPK3 activity that determines whether cells die by 
necroptosis, or in its absence, by caspase8 mediated 
apoptosis[49] whilst another group have suggested that 
necroptosis can be induced in the absence of RIPK1 and 
without the formation of a functioning ripoptosome[50], 
the complex considered essential for necroptosis to 
occur. 

Autophagy
Autophagy is the dynamic, multistep cellular process 
wherein portions of cytoplasm, including organelles, are 
sequestered into doublemembrane vesicles (termed 
autophagosomes) and delivered to lysosomes where 
they are degraded, with eventual recycling of the res
ultant macromolecules[51]. By removing excessive and 
aberrant organelles and proteins, autophagy contributes 
to cellular homeostasis and protein quality control, 
and functions as a source of energy for the cell[52]. 
Autophagy is upregulated and has a protective function 
in the face of cellular stressors such as starvation[53] and 
ischemia[54]. 
 
Autophagy and apoptosis crosstalk 
It is perhaps not surprising that autophagy and apoptosis 
exhibit crosstalk as both pathways play such significant 
roles in development, homeostasis and pathology[55]. 
Evidence of this crosstalk has been plentiful[5660] and 
indicates that the pathways can interact in an additive or 
antagonistic fashion and that the molecular machinery 

21 February 6, 2015|Volume 4|Issue 1|WJN|www.wjgnet.com

White WE et al . Aging and uremia crossover



22 February 6, 2015|Volume 4|Issue 1|WJN|www.wjgnet.com

fasting induced conversion of microtubuleassociated 
protein light chain 3 (LC3) Ⅰ to Ⅱ (as detected by western 
blot as increased quantities of the latter, and signifying 
autophagosome formation) in healthy subjects. mRNA 
levels of autophagyrelated gene 5 (Atg5) and beclin1 
also increased in fasted healthy subjects but not in CKD 
patients. Interestingly there was no difference between 
CKD patients receiving or not receiving hemodialysis. 
Furthermore, a negative association was found between 
LC3Ⅱ and left atrium size, Atg5 transcription and 
left ventricular enddiastolic diameter, and beclin1 
transcription and mitral inflow E- and A-wave sizes. The 
authors conclude that autophagic activation is impaired in 
CKD patients and is not reversed with hemodialysis, and 
that this impairment is related to cardiac abnormalities.

Siedlecki et al[68] assessed the effect of rapamycin 
administration in a murine model of normotensive uremic 
cardiomyopathy. Treatment of surgically induced renal 
injury mice with rapamycin blocked the development of 
cardiac hypertrophy and fibrosis when compared with 
vehicletreated animals. The experimenters suggest that 
this protective effect is mediated by the extracellular 
signalregulated kinase and mammalian target of 
rapamycin (mTOR) pathways. They do not speculate on 
the possible involvement of autophagy, but rapamycin 
is known to stimulate autophagy via mTOR, and has 
been shown to have antiaging effects in mammals[69]. 
The authors raise the interesting question of whether 
renal transplant recipients taking rapamycin as an 
immunosuppressant exhibit reversal of uremiainduced 
cardiac changes beyond that associated with successful 
transplantation.

In summary, the principle cell death and survival 
molecular pathways consisting of apoptosis, necroptosis 
and autophagy are strongly interrelated and crossover 
at many points. Whilst our current knowledge on how 
these interacting pathways are controlled and regulated 
is far from complete our appreciation of how similar 
many of the molecular signalling induced by uremia and 
aging appears to be growing pathways. 

SHARED CELLULAR CHARACTERISTICS 
OF AGING AND UREMIA
Cell senescence, telomere shortening and stem cell 
exhaustion
Cellular senescence can be defined as stable arrest of 
the cell cycle coupled to classic phenotypic changes[70]. 
This was originally described by Hayflick et al[71] in 
serially passaged human fibroblasts, which undergo a 
certain number of divisions before entering a senescent 
phase (the “Hayflick limit”). This phenomenon was 
subsequently shown to be due to telomere shortening[72], 
but can be triggered by nontelomeric agingassociated 
stimuli such as DNA damage and excessive mitogenic 
signaling[3]. 

Senescent cells accumulate in aged organisms, 
although senescence per se does not cause aging, 

for both can combine via p27[56], p38[57], p53[58] and 
beclin1[59,60]. It is likely that these overlapping pathways 
are involved in uremia and aging induced dysfunction. 
For example in autophagydeficient mice the onset of 
ischemia/reperfusion injury resulted in greater proximal 
tubular apoptotic injury with significantly elevations 
in serum urea and creatinine compared to wild type 
animals. This indicates that autophagy maintains proximal 
tubular homeostasis and protects against ischemic 
injury[61]. In another study using a dietary adenine
induced chronic renal failure model a high phosphate 
diet was found to increase apoptosis in vascular smooth 
muscle cells (VSMC) and that this rise could be reduced 
by autophagy inhibition. However, reducing autophagy 
was associated with an increase in calcium deposition in 
VSMC. The study concluded that autophagy might be an 
endogenous protective mechanism against phosphate
induced vascular calcification[62]. 

Autophagy and necroptosis
In addition to necroptosis crosstalking with apoptosis 
via IAP (see apoptosis and necroptosis crosstalk) 
there is also evidence of autophagy and necroptosis 
crosstalk in a similar fashion. Using a novel chalcone 
derivative as an anticancer agent it was found that 
Jun Nterminal kinasesmediated autophagy was able 
to cause IAP degradation followed by necroptosis[63]. 
It seems likely therefore that there is a therapeutic 
potential for autophagy to be exploited by anticancer 
agents to provoke cancer cell death. However, it should 
be noted that the molecular interactions between 
the two processes is still largely unknown and indeed 
there is evidence that autophagy activation can block 
necroptosis in several cell lines[64,65].
 
Autophagy in aging
Beyond its function at a cellular and organ level, au
tophagy has been heavily implicated in the aging pro
cess and the determination of life span. Normal and 
pathological aging are associated with failing proteostasis 
and reduced autophagic activity[3], and genetic inhibition 
of autophagy produces degenerative changes in 
mammalian tissue resembling those seen in aging. 
Caloric restriction, which has been shown to promote 
longevity in model organisms, stimulates autophagy, 
as do some pharmacological interventions and genetic 
manipulations that increase life span in model organisms, 
and inhibiting autophagy attenuates this effect[66]. 

Autophagy in uremia
Much work has been published describing the role of 
autophagy in the pathophysiology of AKI and CKD, but 
very little has been published looking at the effects of 
uremia on autophagy in other tissues. Chen et al[67] 
assessed autophagy activation in leukocytes isolated 
from peripheral blood samples, which had been taken 
from stage 5 CKD patients and healthy controls after 
overnight fasting and 2 h after breakfast. Overnight 
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having a protective effect by preventing the propagation 
and causing the removal of damaged and potentially 
oncogenic cells from tissues. A failure to clear senescent 
cells and replace these with new ones may, however lead 
to their accumulation[3]. Senescent cells are known to 
possess large amounts of proinflammatory cytokines 
and matrix metalloproteinases (the “senescenceasso
ciated secretory phenotype”) which may in themselves 
contribute to aging[73]. 

Senescent cells have a flattened and enlarged mor-
phology, and express a different set of genes such as 
p16, p21, p53, and retinoblastoma protein (pRb)[74]. 

Senescenceassociated βgalactosidase (SAβgal) is 
a frequently used biomarker of cell senescence in vivo 
and in vitro[75]. 

Jimenez et al[76] looked at markers of senescence in 
circulating immune cells in uremic predialysis, hemo
dialysisdependent and transplanted patients. Abnormal 
telomere shortening was seen in a subpopulation of 
lymphocytes in predialysis patients. In hemodialysis 
patients who dialyzed with cellulosic membranes, a 
subset of mononuclear cells demonstrated telomere shor
tening and exhibited increased levels of intracytoplasmic 
proinflammatory cytokines, which were released in 
response to substimulatory doses of lipopolysaccharide 
and bacterial DNA in vitro. The authors postulate that 
these senescent mononuclear cells both result from and 
contribute to chronic inflammation in such patients. A 
subpopulation of lymphocytes with shortened telomeres 
was also found in transplant patients with near normal 
renal function. It was suggested that these resulted 
from chronic activation due to major histocompatibility 
complex incompatibility and immunosuppressive therapy. 

Tsirpanlis et al[77] measured the activity of telomerase 
(the enzyme that preserves telomere length and 
structure and thus prevents senescence[78]) in peripheral 
blood mononuclear cells in hemodialysisdependent 
patients and nonrenal failure subjects. Telomerase 
activity was reduced in hemodialysis patients compared 
to healthy controls, and was lower in longterm than in 
short-term dialysis patients. These findings indicate that 
defence against senescence is reduced in this cell type 
and associated with chronicity in hemodialysis patients.

Several groups have looked at the role of sene
scence in the endothelial dysfunction associated with 
cardiovascular disease in uremia. Adijiang et al[79] 

administered indoxyl sulphate, a uremic toxin, to hyper
tensive and normotensive rats, and examined their 
aorta for histological and immunohistochemical evidence 
of senescence. The indoxyl sulphatetreated animals 
showed significantly increased aortic calcification and 
wall thickness, and significantly increased expression 
of SAβgal, p16, p21, p53 and pRb in cells embedded 
in the calcification area. The same group went on to 
demonstrate that indoxyl sulphate stimulated sene
scence of cultured human aortic smooth muscle cells 
via an oxidative stress mechanism[74]. 

Carracedo et al[80] evaluated the effects of uremia 
on lowdensity lipoprotein (LDL) carbamylation and the 
effect of carbamylated LDL (cLDL) and oxidized LDL on 
the number, function, and genomic stability of endothelial 
progenitor cells (EPCs) obtained from healthy volunteers. 
EPCs were exposed to cLDL generated after incubation of 
native LDL (nLDL) with uremic serum from patients with 
CKD stages 24. Compared with cLDL, nLDL induced 
an increase in oxidative stress, depolarization and 
senescence in EPCs, and a decrease in EPC proliferation 
and angiogenesis. The authors hypothesize that cLDL 
triggers genomic damage in EPCs resulting in premature 
senescence, and that this contributes to atherosclerotic 
disease in uremia.

Klinkhammer et al[81] demonstrated that bone mar
row mesenchymal stem cells (MSCs) isolated from 
uremic rats (both surgically induced and adenine diet) 
showed signs of premature senescence, and failed to 
accelerate healing of glomerular lesions when injected 
into the left renal artery of rats with acute antiThy1.1
nephritis when compared to MSCs obtained from 
control rats. The authors conclude that CKD leads to 
a sustained loss of in vitro and in vivo functionality in 
MSCs, possibly due to premature senescence. Stem 
cell exhaustion and the resultant decline in tissue re
generative potential has been noted as one of the 
hallmarks of aging[3]. 

In summary, aging and uremia share many impor
tant cellular characteristics such as increases in cell 
senescence, telomere shortening and exhaustion of 
stem cells. This provides further evidence that supports 
the contention that uremia can be considered as a form 
of accelerated aging[1]. 

Klotho 
The klotho gene was originally identified as being inv
olved in the suppression of aging in transgenic mouse 
studies[82]. Defective klotho expression resulted in mice 
having a premature aging phenotype, which had striking 
similarities to that of CKD patients, including reduced 
life span, arteriosclerosis, hyperphosphataemia and high 
concentrations of plasma fibroblast growth factor23 
{FGF23, a bone derived hormone that promotes renal 
phosphate excretion and reduces serum levels of 
1,25dihydroxyvitamin D3 [1,25(OH)2VD3][83]}. This 
observation, coupled with the fact that, although found 
in multiple tissues, klotho expression is highest in the 
kidney (predominantly in the distal convoluted tub
ules[84]), suggested that CKD might be a state of klotho 
deficiency, and this might contribute to the accelerated 
aging phenotype of uremia[85].

Through alternative splicing klotho exists in mem
braneanchored and soluble, secreted forms, the latter 
being found in mammalian cerebrospinal fluid, blood and 
urine[84]. These forms have distinct functions. Membrane 
klotho forms a complex with FGF receptors and functions 
as a coreceptor for FGF23.

 Soluble klotho functions 
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as an endocrine factor, and has a role in a number 
of processes including modulation of ion transport[86] 
and counteraction of the reninangiotensin system[87]. 
Klotho suppresses 1αhydroxylase in the kidney to 
regulate calcium metabolism[88], and participates in in 
the regulation of parathyroid hormone synthesis in the 
parathyroid gland by FGF23[84,89]

.
 

Both physiological aging and CKD are associated 
with reduced klotho levels. Lower renal klotho protein 
expression has been shown in aging rodents compared 
to young ones[90], and plasma klotho concentrations 
were found to be twofold higher in normal children 
than in adults[91]. Renal klotho RNA has been shown to 
be reduced in CKD kidneys[92], as have urinary klotho 
levels[85]. Klotho concentrations in plasma, urine and 
kidney were found to be decreased in parallel in a 
rodent CKD model[85]. 

Klotho may influence cell death and survival path-
ways via its antisenescence and oxidation effects. 
Liu et al[93] analysed various tissues and organs from 
klotho/ mice and demonstrated a decrease in stem cell 
number and an increase in progenitor cell senescence. 
Tissues from klotho-deficient animals showed evidence 
of increased Wnt signalling. In vivo and in vitro Wnt 
exposure triggered by the absence of klotho accelerated 
cellular senescence. The authors conclude that klotho 
might act as a secreted Wnt antagonist and that a 
decrease in klotho concentration leads to an increase in 
Wnt signalling and this may play a role in aging. 

de Oliveira et al[94] generated a klothoknockdown 
human fibroblast, in which premature senescence was 
seen alongside an increase in p21 expression. p53 
knockdown in klotho attenuated cells restored normal 
growth and replicative potential. These results suggest 
that klotho regulates cell senescence by suppressing 
the p53/p21 pathway. Ikushima et al[95] demonstrated 
that purified recombinant klotho protein could attenuate 
apoptosis and senescence in human umbilical vein 
endothelial cells. The same group went on to show 
that this occurred via mitogenactivated kinase and 
extracellular signalrelated kinase pathways[96]

. 
Klotho may exert an antiaging effect by suppressing 

the inflammatory effect of substances secreted by 
senescent cells. Liu et al[97] have shown that cellular 
klotho interacts with retinoic acidinducible geneⅠ (RIG
Ⅰ) and that this interaction inhibits the RIGⅠ induced 
expression of interleukin 6 (IL6) and IL8 both in vivo 
and in vitro. 

Thus the deficiency in klotho seen in uremia and 
aging might underpin the enhanced cell senescence, 
apoptosis and stem cell depletion common to both 
states[81]. Given that tissue klotho expression is greatest 
in the kidneys a common mechanism is perhaps to be 
expected. Indeed recent data indicate that kidney tissue 
klotho expression greatly effects systemic concentrations 
and they concluded that the kidney is the prime mediator 
of klotho function[98]. Therefore klotho, a recognised anti
aging factor, is under the control of the kidney and thus 

lends further support to there being a molecular basis 
for the observed shared phenotype between uremia and 
aging. 

Post-translational protein modification
Spontaneous posttranslational protein modifications 
result from the nonenzymatic attachment of reactive 
molecules to protein functional groups. This process 
occurs in healthy individuals with aging, but is increased 
in certain disease states. Alterations to protein stru
cture may result in functional changes, which can be 
pathogenetic[99]. Carbamylation is one form of post
translational protein modification specifically associated 
with CKD and uremia. Cyanate, a dissociation product of 
urea, binds to proteins and free amino acids, resulting 
in abnormal cellular responses that may contribute to 
inflammation and atherosclerosis. As carbamylation 
results from a direct product of uremia it may serve 
as a quantitative biomarker of timeaveraged urea 
concentrations in addition to its potential use in risk 
assessment[99].

One of the most widely studied and publicised forms 
of posttranslational protein modification is glycation. 
Advanced glycation end products (AGEs) are formed 
by the nonenzymatic modification of tissue proteins 
by physiologic sugars. AGEs accumulate in tissues as 
a function of increased production (e.g., in diabetes 
mellitus), decreased renal removal of AGE precursors (e.g., 
in advanced CKD) and time (as occurs in physiological 
aging)[100]. Covalent crosslinking occurs in affected 
proteins, leading to increased stiffness of the protein 
matrix, thus impeding function, and increased resistance 
to proteolytic removal, thus affecting tissue remodeling[101]. 
This contributes, for instance, to the histological and 
functional changes seen in diabetic glomerulosclerosis 
and atherosclerosis[102]. AGE accumulation also stimu
lates cytokine and reactive oxygen species (ROS) 
production through AGEspecific receptors, modifies 
intracellular proteins[100], and has been shown to promote 
senescence[103] and apoptosis[104] in the cells of affected 
tissues, contributing to cell death and tissue dysfunction. 

Significantly elevated serum levels of AGEs are 
present in ESKD, with no differences between patients 
with and without diabetes[105], and uremic patients 
are known to be exposed to high levels of oxidative 
stress[106]. Taki et al[107] demonstrated that plasma levels 
of pentosidine, an AGE, was correlated and independently 
associated with coronary artery calcification score in 
hemodialysis patients. Pentosidine formation is acc
elerated by oxidative stress[108], and in this study was cor
related with indoxyl sulphate. The authors thus conclude 
that indoxyl sulphate may enhance oxidative stress, 
which in turn enhances AGE generation. 

Increased oxidative stress and AGE generation are 
known to play a role in the pathophysiology of aging[100], 
and both of these events are present in patients with 
CKD[105,106] and therefore represent two further potential 
crossovers between uremia and the aging process.
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Mitochondrial dysfunction
According to the mitochondrial free radical theory of aging, 
progressive, agerelated mitochondrial dysfunction results 
in increased production of ROS, which causes further 
mitochondrial deterioration and cellular damage[109]. 
Recent data have questioned the idea that ROS have an 
entirely deleterious effect in aging, suggesting that they 
represent a stressinduced survival signal which acts to 
activate homeostatic responses to cellular stress and 
damage. As these accumulate with aging ROS eventually 
pass a threshold and aggravate the damage[110]. 

Dysfunctional mitochondria can contribute to aging 
independently of ROS[3]. Damaged mitochondria have an 
increased tendency to permeabilize in response to stress, 
leading to apoptotic cell death[111] and inflammation[112]. 
Aging associated mitochondrial dysfunction arises via 
several mechanisms[3]. For example, mitochondrial dec
line occurs as a consequence of telomere attrition in 
telomerase-deficient mice with subsequent p53-mediated 
repression of peroxisome proliferatoractivated receptor 
gamma, coactivator 1 alpha (PCC1a) and PGC1b[113], 
and can be partially reversed in wildtype mice by 
telomerase activation[114]. Sirtuins, a group of nicotinamide 
adenine dinucleotidedependent protein deacetylases[115], 
also play a role in controlling mitochondrial function. 
Silent information regulator two protein 1 modulates 
mitochondrial biogenesis via the transcriptional coactivator 
PGC1a[116] and the removal of damaged mitochondria 
by autophagy[117]. SIRT3 targets many enzymes involved 
in energy metabolism[118], and may directly control ROS 
production by deacetylating manganese superoxide 
dismutase, a mitochondrial antioxidant enzyme[119]. 

Mutations and deletions in mitochondrial DNA are 
known to accumulate with aging[3]. One of the most 
common and abundant mitochondrial DNA mutations is 
a 4977 base pair deletion between nucleotide positions 
8470 to 13,477 (mtDNA4977)[120], which is known to 
accumulate in a variety of human tissues with age and 
has been demonstrated to be associated with several 
neurodegenerative diseases (including Alzheimer’s) 
and atherosclerosis[121,122]. Defective quality control by 

mitophagy (organelle-specific autophagy that targets 
abnormal or worn out mitochondria for degradation) 
leads to reduced clearance and turnover of ineffective 
and toxic mitochondria[123]. The net result of these pro
cesses is that there is a reduction in the formation of 
healthy mitochondria, an increased incidence of mito
chondrial damage, and a failure to clear and recycle 
abnormal organelles, with consequently increasing bio
inefficiency, inflammation and cell death with aging.

Patients with advanced uremia are recognised to have 
low body temperatures, reduced stamina and low basal 
energy expenditure, suggesting a hypometabolic state[124]. 
Thompson et al[125] examined the forearm muscles 
of patients with ESKD using 31Pmagnetic resonance 
spectroscopy. They noted increased phosphocreatine 
depletion and increased glycolytic ATP production during 
exercise, suggesting mitochondrial dysfunction due to 
either limitation of oxygen supply, reduced mitochondrial 
content or an intrinsic mitochondrial defect. Exercise
related abnormalities remained despite anemia correction 
with erythropoietin[125].

Lim et al[126] demonstrated a high frequency of 
mtDNA4977 in the skeletal muscle of chronically uremic 
patients, and that this correlated with enhanced oxidative 
damage to DNA, lipids and proteins of mitochondria 
compared to healthy controls. Liu et al[127] found that 
the incidence and proportion of mtDNA4977 in hair 
follicles was significantly higher amongst hemodialysis 
patients compared to age matched controls. Therefore 
mitochondrial abnormalities, contributing and consequent 
to high levels of oxidative stress in uremia, are strongly 
suspected to play a role in the causation of pathological 
aging in CKD, acting as a nexus for several processes, 
including defective bioenergetics, telomere attrition, DNA 
mutations, autophagy, inflammation and cell death. 
Mitochondrial abnormalities therefore represent a further 
crossover point between aging and the uremia.

DISCUSSION
In this review we have sought to draw the reader’s 
attention not just to the morphological similarities be
tween advanced aging and uremia, but also to their 
shared characteristics at a cellular and molecular level 
(see Table 1). Experimental evidence has been provided 
to suggest common involvement of established cell death 
and survival pathways (apoptosis, necrosis, necroptosis 
and autophagy), and the presence of several of the 
recognised cellular and molecular features of the aging 
process in patients with ESRD and in experimental 
models of uremia. These include mitochondrial dys
function, damage to genetic material, telomere shor
tening, impaired proteostasis, cell senescence, stem 
cell loss, oxidative stress, AGE accumulation, and klotho 
deficiency. Based on this evidence it could be posited that 
the physical resemblance between advanced age and 
uremia is underpinned by shared cellular and molecular 

Table 1  Events common to aging and uremia covered by this 
review

Aging Uremia

TGF-β ↑ TGF-β ↑
Autophagy ↓ Autophagy ↓
Apoptosis ↑ (muscle) Apoptosis ↑
Senescence ↑ Senescence ↑
Telomere shortening ↑ Telomere shortening ↑
Stem cell exhaustion ↑ Stem cell exhaustion ↑
Klotho ↓ Klotho ↓
AGEs ↑ AGEs ↑
Mitochondrial dysfunction ↑ Mitochondrial dysfunction ↑

TGF-β: Transforming growth factor beta; AGEs: Advanced glycation end 
products.
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“abnormalities”. These observations also reinforce the 
idea of the “uremic syndrome”, in which dysfunctions in 
multiple body systems arise due to a pervasive defect at 
a cellular level.

Information gathered by research into aging pathways 
and “antiaging therapies” might inform interventions 
to avoid, slow the progression of or even reverse some 
of the pathological changes seen in uremia. Given that 
these pathways are seen throughout most tissues and 
cell types it is also possible that a single intervention 
might treat several pathologies. However, the aging 
process remains incompletely understood in healthy 
individuals, and those pathways that are known are 
complex and heavily interconnected. Disentangling these 
in the uremic syndrome, in which multiple coexisting 
and interdependent metabolic abnormalities arise, will be 
a challenge. Additionally, many of these pathways have 
known (and possibly unknown) protective mechanisms 
(against malignant transformation, for example), thus 
blocking them may have unwanted and deleterious 
effects. What could be more immediately practicable 
would be employing some of the therapies known to be 
effective in improving the health of elderly patients, such 
as exercise.

The concept of accelerated aging in uremia is an 
intriguing and complex one that may yield important 
therapeutic targets and strategies to improve health 
outcomes in patients with CKD. Much work, however, 
remains to be done in understanding its cellular and 
molecular basis before any potential benefits can be 
realised.
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