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ABSTRACT Heritability is a central parameter in quantitative genetics, from both an evolutionary and a breeding perspective. For plant traits
heritability is traditionally estimated by comparing within- and between-genotype variability. This approach estimates broad-sense heritability
and does not account for different genetic relatedness. With the availability of high-density markers there is growing interest in marker-based
estimates of narrow-sense heritability, using mixed models in which genetic relatedness is estimated from genetic markers. Such estimates
have received much attention in human genetics but are rarely reported for plant traits. A major obstacle is that current methodology and
software assume a single phenotypic value per genotype, hence requiring genotypic means. An alternative that we propose here is to use
mixed models at the individual plant or plot level. Using statistical arguments, simulations, and real data we investigate the feasibility of both
approaches and how these affect genomic prediction with the best linear unbiased predictor and genome-wide association studies. Heritability
estimates obtained from genotypic means had very large standard errors and were sometimes biologically unrealistic. Mixed models at the
individual plant or plot level produced more realistic estimates, and for simulated traits standard errors were up to 13 times smaller. Genomic
prediction was also improved by using these mixed models, with up to a 49% increase in accuracy. For genome-wide association studies on
simulated traits, the use of individual plant data gave almost no increase in power. The new methodology is applicable to any complex trait
where multiple replicates of individual genotypes can be scored. This includes important agronomic crops, as well as bacteria and fungi.
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NARROW-SENSE heritability is an important parameter
in quantitative genetics, determining the response to

selection and representing the proportion of phenotypic var-
iance that is due to additive genetic effects (Jacquard 1983;
Nyquist and Baker 1991; Ritland 1996; Visscher et al. 2006,
2008; Holland et al. 2010; Sillanpaa 2011). This definition
of heritability goes back to Fisher (1918) and Wright (1920)
almost a century ago. In plant species for which replicates
of the same genotype are available (inbred lines, doubled
haploids, clones), a different form of heritability, broad-
sense heritability, is traditionally estimated by the intraclass

correlation coefficient for genotypic effects, using estimates
for within- and between-genotype variance. Broad-sense
heritability is also referred to as repeatability and gives the
proportion of phenotypic variance explained by heritable
(additive) and nonheritable (dominance, epistasis) genetic
variance.

With the arrival of high-density genotyping there is grow-
ing interest in marker-based estimation of narrow-sense
heritability (WTCCC 2007; Yang et al. 2010, 2011; Speed
et al. 2012; Vattikuti et al. 2012; Visscher and Goddard
2014). These estimates are obtained from mixed models
containing random additive genetic effects, whose covari-
ance structure is estimated from genetic markers. While
marker-based heritability estimates have received much at-
tention in human genetics, these are rarely reported for
plant traits, despite their relevance in evolutionary genetics,
in the dissection of complex traits, and in the ongoing de-
bate on missing heritability (Manolio et al. 2009; Eichler
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et al. 2010; Brachi et al. 2011; Lee et al. 2011; Zuk et al.
2012). Heritability estimates are also of great relevance to
plant breeders, as they give a measure for the breeding
potential of a trait. In addition, state-of-the-art phenotyping
platforms are making experiments more reproducible, in-
creasing the relevance of marker-based estimation of herita-
bility, as well as comparison of estimates from different
experiments.

Although marker-based heritability estimation for plant
traits can in principle be achieved within the same analytic
framework that has been developed for human traits, there
are important differences. First, heritability of human traits
is usually estimated using panels of unrelated individuals,
to avoid confounding with geographical or environmental
effects (Browning and Browning 2011). For most plant spe-
cies panels of unrelated individuals are not available, as
plant genotypes will often share ancestry or adaptation, in-
ducing dependence between genotypes. At the same time,
however, plant genotypes can be evaluated under the same
experimental conditions (e.g., common garden or growth
chamber), and the usual assumption is that this eliminates
genotype–environment correlations. Second, plant genotypes
are often phenotyped in several genetically identical repli-
cates. This is the case for all so-called immortal populations
(Keurentjes et al. 2007; Wijnen and Keurentjes 2014).
Mixed-model analysis can then be performed either on the
individual plant (or plot) data or on genotypic means. In the
literature on multi-environment trials (Smith et al. 2001,
2005; Oakey et al. 2006; Piepho and Williams 2006; Piepho
et al. 2006, 2012; Boer et al. 2007; Verbyla et al. 2007; Stich
et al. 2008; Möhring and Piepho 2009; Van Eeuwijk et al.
2010; Welham et al. 2010; Malosetti et al. 2013) these
approaches are referred to as respectively one-stage and
two-stage. These works consider mostly populations for
which a pedigree is available, typically experimental popu-
lations. In the context of genomic prediction and genome-
wide association studies (GWAS) for natural populations,
mixed-model analysis is usually performed using a two-
stage approach. The (usually tacit) assumption is that the
genotypic means and kinship coefficients contain all the rel-
evant information for estimating the genetic and residual
variance. Here we investigate the feasibility of marker-based
estimation of heritability with one- and two-stage approaches
and look at how heritability estimates affect genomic predic-
tion with the best linear unbiased predictor (G-BLUP) and
GWAS. Although our analysis of observed phenotypes fo-
cuses on the model plant Arabidopsis thaliana, the asymptotic
variances of different heritability estimators were also com-
puted for diverse panels of Zea mays (Riedelsheimer et al.
2012; Van Heerwaarden et al. 2012) and Oryza sativa (Zhao
et al. 2011).

In both published data (Atwell et al. 2010) and new
experiments, we found very large standard errors and some-
times unrealistically high estimates of heritability, which
could not be explained by varying linkage disequilibrium
(Speed et al. 2012). Much better heritability estimates were

obtained when mixed-model analysis was performed at the
individual plant level. These estimates were based on kin-
ship information as well as additional information on within-
genotype variability, and in simulations they were found to
be up to 13 times more accurate than heritability estimates
based on genotypic means. In genomic prediction, correlation
between simulated and predicted genetic effects increased in
some cases by as much as 49%. This is a substantial improve-
ment that shows the importance of accurate heritability esti-
mates in plant breeding programs.

All reported heritability estimates can be obtained using
our R-package heritability, which is freely available from
CRAN (http://cran.r-project.org/web/packages/heritability/
index.html). In contrast to existing packages such as emma
(Kang et al. 2008), rrblup (Endelman 2011), and synbreed
(Wimmer et al. 2012), it provides confidence intervals
for heritability estimates. We also present software for
GWAS: our program scan_GLS can efficiently perform GWAS
directly on the individual plant or plot-level data, as well as
on the means, incorporating a nondiagonal error covariance
structure.

Materials and Methods

We assume a natural population of n genotypes, where for
each genotype a quantitative trait is measured on a number
of genetically identical replicates of immortal lines. These
replicates can refer to either individual plants (e.g., Arabi-
dopsis) or plots in a field trial (e.g., maize). For convenience
we use the terms “replicate” and “individual plant data” as
synonyms throughout. In either case, the observations on
replicates should not be confused with having multiple obser-
vations on the same individual. We focus on inbred lines, but
apart from a few different constants, all expressions are valid
for any diploid species. We do not partition the environmen-
tal variance into different contributing factors (see, e.g.,
Visscher et al. 2008); hence the environmental variance just
equals the error variance. For simplicity we first present
marker-based estimation of heritability for a completely ran-
domized design, in the absence of additional covariates. The
expressions for more general designs are given in Appendix A,
which also provides a brief overview of the existing method-
ology for marker-based heritability estimation. Details on
G-BLUP, GWAS, and the phenotypic data are given in Appen-
dixes C, D, and E.

Genotypic data

We analyze simulated and real traits for subpopulations of
the RegMap, which contains 1307 worldwide accessions of
A. thaliana that have been genotyped at 214,051 SNP
markers (Horton et al. 2012). We considered four subpopu-
lations: 298 Swedish accessions [Swedish RegMap (Horton
et al. 2012; Long et al. 2013)], 204 French accessions
[French RegMap (Horton et al. 2012; Brachi et al. 2013)],
350 accessions from the HapMap population (Li et al. 2010),
and a subset of 250 accessions that we refer to as the
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structured RegMap (accession IDs are given in Supporting
Information, Table S1). The structured RegMap accessions
were chosen to have large differences in genetic relatedness
(i.e., variation in kinship coefficients, across pairs of acces-
sions). These differences were hence largest in the struc-
tured RegMap and smallest in the HapMap (Figure S1 and
Figure S2). For the asymptotic distributions of heritability
estimators given below, we also considered marker-based
kinship matrices for three populations of crop plants: the
panel described in Van Heerwaarden et al. (2012) (Z. mays,
400 accessions), the panel described in Riedelsheimer et al.
(2012) (Z. mays, 280 accessions), and the panel from Zhao
et al. (2011) (O. sativa, 413 accessions).

Phenotypic data

We estimated heritabilities for two traits from the literature
and four traits from new experiments. Two flowering traits
from Atwell et al. (2010) were analyzed: days to flowering
time under long day and vernalization (LDV) and days to
flowering time under long day (LD). In two new experi-
ments (Appendix E), leaf area (LA) 13 days after sowing
was measured for the Swedish RegMap and the HapMap,
using the same automated phenotyping platform. In the fi-
nal experiment, the HapMap was phenotyped for bolting
time (BT) and leaf width (LW). Trait descriptions and abbre-
viations are given in Table 1. In all experiments the individ-
ual plants were grouped into complete blocks, but due to
nongerminating seeds and dead plants, there is some un-
balance for all of the traits.

Marker-based estimation of heritability

Let K denote the genetic relatedness or kinship matrix of the
genotypes, with elements

Ki; j ¼ 1
p

Xp
l¼1

�
xi;l2 fl

��
xj;l2 fl

�
4flð12 flÞ

(1)

(see, e.g., Patterson et al. 2006 and Goddard et al. 2010). The
numbers xi,l 2 {0, 2} denote the minor allele count [because
we focus on inbred lines, there is a small difference with the
standard expression for outbreeders under Hardy–Weinberg
equilibrium, where xi,l 2 {0, 1, 2}, and the constant 4 in (1)
is replaced by 2] at marker l for genotype i, and fl 2 [0, 1] is
the minor allele frequency at marker l. The phenotypic re-
sponse of replicate j of genotype i is modeled as

Yi; j ¼ mþ Gi þ Ei; j ði ¼ 1; . . . ; n; j ¼ 1; . . . ; rÞ; (2)

where G = (G1, . . . , Gn) has a Nð0;s2
AKÞ distribution, and

the errors Ei,j have independent normal distributions with
variance s2

E. We aim to estimate the heritability

h2 ¼ s2
A

s2
A þ s2

E
;

which has been referred to as the “chip” heritability (Speed
et al. 2012) and under certain assumptions equals narrow-

sense heritability (Appendix A). In contrast to the line herita-
bility s2

A=ðs2
A þ r21s2

EÞ, the denominator contains the residual
variance for a single individual ðs2

EÞ. Given restricted maximum-
likelihood (REML) estimates ŝ2

A;r and ŝ2
E;r; h2 can be esti-

mated by

ĥ
2
r ¼ ŝ2

A;r

ŝ2
A;r þ ŝ2

E;r
; (3)

where the subscripts r stress the fact that ŝ2
A;r and ŝ2

E;r are
estimates directly obtained from the replicates. Alterna-
tively, h2 can be estimated using the genotypic means

Yi ¼ 1
r

Xr
j¼1

¼ mþ Gi þ Ei; G � N
�
0;s2

AK
�
;

Ei � N
�
0; r21s2

E
�
:

(4)

Given REML estimates ŝ2
A;m and ŝ2

E;m for model (4), we have
the heritability estimate

ĥ
2
m ¼ ŝ2

A;m

ŝ2
A;m þ ŝ2

E;m
; (5)

where the subscripts m indicate that the estimates are based
on genotypic means. We omit the letters r and m either if
these are clear from the context or when a statement holds
for both models (2) and (4). In human association studies,
r is usually 1, and ĥ

2
m and ĥ

2
r are identical.

Repeatability and broad-sense heritability

Given a completely randomized design with r replicates,
repeatability, or intraclass correlation can be estimated by

Ĥ
2 ¼ ŝ2

G

ŝ2
G þ ŝ2

Env
;with ŝ2

G ¼ MSðGÞ2MSðEnvÞ
r

;

ŝ2
Env ¼ MSðEnvÞ; (6)

where MS(G) and MS(Env) are the mean sums of squares
for genotype and residual error, obtained from analysis of
variance (ANOVA). In the case that MS(G),MS(Env), ŝ2

G is
set to zero. See Singh et al. (1993) or (in the context of sib
analysis) Lynch and Walsh (1998, p. 563). Here we stick to
the widely used notation Ĥ

2
; although repeatability equals

broad-sense heritability (H2) only under the assumption that
all differences between genotypes are indeed genetic and

Table 1 Abbreviations of the trait names

Abbreviation Trait

LDV Days to flowering time under long day and vernalization
LD Days to flowering time under long day
LA(S) Leaf area 13 days after sowing (Swedish RegMap)
LA(H) Leaf area 13 days after sowing (HapMap)
BT Bolting time (HapMap)
LW Leaf width (HapMap)

The first two traits were taken from Atwell et al. (2010).
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not due to, e.g., genotype–environment correlation. In any
case, no additional information on the genetic structure is
used here, and hence the mean sums of squares for genotype
contain all genetic effects, not only the additive ones. Con-
sequently, Ĥ

2
is an estimator of (an upper bound on) broad-

sense heritability.
It is known to have a small bias (Nyquist and Baker 1991;

Singh et al. 1993), which tends to zero when the number of
genotypes increases. Additional fixed effects can be included
in the ANOVA, which may reduce MS(Env) and give a higher
heritability estimate. In the case that the genotypes have
differing numbers of replicates, genetic variance is estimated
with ŝ2

G ¼ ðMSðGÞ2MSðEnvÞÞ=r; where

r ¼ ðn21Þ21

2
6664
Xn
i¼1

ri 2

�Pn
i¼1

r2i

�
�Pn

i¼1
ri

�
3
7775 (7)

is the effective number of replicates (Lynch and Walsh 1998,
p. 559). For a balanced design, r ¼ r:

Confidence intervals

Confidence intervals for broad-sense heritability H2 were
obtained from classical theory (e.g., Lynch and Walsh
1998, p. 563) (for easy reference see File S1). Confidence
intervals for h2 were constructed using ŝ2

A and ŝ2
E and the

inverse average-information (AI) matrix, obtained from the
AI-REML algorithm (Gilmour et al. 1995). This 2 3 2 matrix
provides an estimate of the covariance matrix of ðŝ2

A; ŝ
2
EÞ:

The delta method (see, e.g., Van der Vaart 2000) applied to
the function ðŝ2

A; ŝ
2
EÞ/ŝ2

A=ðŝ2
A þ ŝ2

EÞ then gives the asymp-
totic distribution of ĥ

2
; from which a confidence interval for

h2 is calculated. In the case that the heritability is low or
high, confidence intervals may be partly outside [0, 1]. We
set all negative values to zero and all values larger than one
equal to one. An alternative is application of the delta
method to the function ðŝ2

A; ŝ
2
EÞ/logðŝ2

A=ŝ
2
EÞ: This gives

confidence intervals for logðs2
A=s

2
EÞ; which are then back

transformed to confidence intervals for heritability. The lat-
ter intervals are referred to as “log-transformed” and the
other intervals as “standard.”

When the likelihood as a function of h2 is monotonically
increasing, the confidence intervals can become numerically
unstable, alternating between [0, 1] and [1, 1]. However,
we found that using the AI matrix obtained by setting
h2 = 1 2 e, the interval was always very close to [0, 1],
for any e . 0. We therefore defined the interval to be [0, 1]
in the case of a monotonically increasing likelihood.

Simulations

Each simulated trait consists of r = 3 replicates for a subset
of 200 accessions randomly drawn from a subpopulation of
the Arabidopsis RegMap (Horton et al. 2012). We simulate
according to model (2), except that the genetic effects Gi are
not purely polygenic, but a mixture of QTL effects at a small

number of markers and a polygenic signal with genetic
structure given by the kinship matrix defined in (1). More
details are given in Appendix B. Different genetic architec-
tures were considered, but all simulated genetic effects were
additive. Hence, broad- and narrow-sense heritabilities were
equal, and Ĥ

2
; ĥ

2
r ; and ĥ

2
m were in this case different esti-

mators of the (same) simulated heritability.
For the comparison of heritability estimates we simulated

traits for the structured RegMap, the HapMap, and the
Swedish and French RegMap. For comparing one- and two-
stage association mapping and genomic prediction only the
structured RegMap and the HapMap were considered. For
genomic prediction and the comparison of heritability es-
timates we simulated three levels of heritability, for each
subpopulation: low (0.2), medium (0.5), and high (0.8). For
each heritability level, 5000 traits were simulated. For
the comparison of one- and two-stage association map-
ping, 1000 traits were simulated with heritability 0.5.
In all simulations, a completely randomized design was
assumed.

Results

Asymptotic variance

Applying general mixed-model theory (Casella and McCulloch
2006, p. 387) to model (2), it follows that the REML
estimators ðŝ2

A;r; ŝ
2
E;rÞ are asymptotically Gaussian with

covariance

Var

 
ŝ2
A;r

ŝ2
E;r

!
’ 2

�
trðPðZKZtÞPðZKZtÞÞ trðPðZKZtÞPÞ

trðPðZKZtÞPÞ trðPPÞ
�21

¼: Sŝ2
A;r;ŝ

2
E;r
;

(8)

where P ¼ V21 2V21XðXtV21XÞ21XtV21 for V ¼ s2
AZKZ

tþ
s2
EInr; X = 1nr, and Z is the nr 3 n incidence matrix assigning

plants to genotypes. The number of replicates r is considered
fixed here. The asymptotic arguments are all with respect to
n, the number of genotypes. The behavior of Varðĥ2mÞ as
a function of n, h2, and K can also be derived from approx-
imations recently proposed in Visscher and Goddard 2014,
independently from the present work. Although this is not
made explicit in the notation, Sŝ2

A;r;ŝ
2
E;r
; depends on the true

(and usually unknown) values s2
A and s2

E through P and V. If
ðs2

A;s
2
EÞ are estimated based on genotypic means following

model (4), ðŝ2
A;m; ŝ

2
E;mÞ has asymptotic covariance Sŝ2

A;m;ŝ
2
E;m
;

which is obtained if we replace in (8) ZKZt by K and X = 1nr
by X= 1n and substitute V ¼ s2

AK þ s2
Er

21In in the definition
of P. The asymptotic variance of the heritability estimators
ĥ
2
r and ĥ

2
m can now be obtained by application of the delta

method (Van der Vaart 2000) to the function
ðs2

A;s
2
EÞ/s2

A=ðs2
A þ s2

EÞ; with gradient

bs2
A;s

2
E
¼ 1�

s2
A þ s2

E
�2�s2

E;2s2
A
�t
:

382 W. Kruijer et al.

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.167916/-/DC1/genetics.114.167916-5.pdf


It then follows that given the true s2
A and s2

E;

Var
�
ĥ
2
r

	
’ bs2

A;s
2
E
Sŝ2

A;r;ŝ
2
E;r
bts2

A;s
2
E
;

Var
�
ĥ
2
m

	
’ bs2

A;s
2
E
Sŝ2

A;m;ŝ
2
E;m
bts2

A;s
2
E
:

(9)

It is easily verified that both variances do not depend on the
absolute values of s2

A and s2
E; but only on the ratio

h2 ¼ s2
A=ðs2

A þ s2
EÞ: To explore the potential gains in accu-

racy due to the use of individual plant data, we computedffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðĥ2r Þ

q
and the ratio

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðĥ2r Þ

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðĥ2mÞ

q
of the two

standard deviations, for several populations in A. thaliana,
Z. mays, and O. sativa (Table 2) and three heritability levels
(h2 = 0.2, 0.5, 0.8).

The use of individual plant data gave a substantial
improvement in accuracy for all populations, which was
largest for the Arabidopsis HapMap [81% reduction with

respect to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðĥ2mÞ

q
; for r = 4 and h2 = 0.8] and smallest

for the structured RegMap, the rice population from Zhao
et al. (2011), and the maize population from Riedelsheimer
et al. (2012) (13–15% reduction when r = 2 and h2 = 0.2).
For the maize population from Van Heerwaarden et al.
(2012) and the other Arabidopsis populations the improve-
ments were similar. The standard deviation of ĥ

2
r decreased

with increasing heritability and increasing numbers of rep-
licates. The ratio of the standard deviations of ĥ

2
r over those

of ĥ
2
m also decreased substantially with increasing heritabil-

ity, but remained similar when increasing the number of
replicates beyond 2.

It should be emphasized that the ratios in Table 2 are
asymptotic: although the expressions in (9) depend on the
kinship matrix K of a finite population, they may be good
approximations only for (very) large populations with pop-
ulation structure similar to that defined by K. Such popula-
tions could be modeled as a function of population genetic
processes such as drift and selection (Rousset 2002; Fu et al.
2003). However, for real plant populations marker informa-
tion is available for at most a few thousand genotypes and
more often several hundred. To assess variance and bias of
ĥ
2
r and ĥ

2
m in such populations we used simulated traits.

Heritability estimates for simulated data

We analyzed simulated traits for the four populations of
A. thaliana, for different genetic architectures. We also used
the simulations to compare these marker-based estimators
with the broad-sense heritability estimator Ĥ

2
; which ignores

genetic relatedness, and to investigate the quality of herita-
bility confidence intervals.

Heritability estimates for the structured RegMap and
HapMap are given in Figure 1 and Table 3. Apart from ĥ

2
m

in the HapMap, none of the estimators showed marked bias. In
particular, Ĥ

2
had negligible bias, despite the fact that it does

not account for genetic relatedness. As in the asymptotic results,
ĥ
2
r had lower variance than ĥ

2
m, the difference being largest for

the HapMap. The magnitude of the differences was larger
than expected from the asymptotic variances in Table 2, and
in the HapMap standard errors were up to 13 times larger. As
in the asymptotic framework, differences were smallest for the
structured RegMap and largest for the HapMap.

Remarkably, also Ĥ
2
was considerably more accurate than

ĥ
2
m: The additional marker information appeared to be less

important here than the loss of information on within-
genotype variability. The estimator ĥ

2
r ; which includes both

sources of information, outperformed Ĥ
2
: Differences were

largest for the structured RegMap (12.7% reduction when
h2 = 0.2, 42.6% reduction when h2 = 0.8), where the large
differences in relatedness provide more information than in
the case of the HapMap (almost no difference when h2 = 0.2
and 7% reduction when h2 = 0.8). Simulation results for the
Swedish and French RegMap are given in Figure S3 and
Table S2. In terms of standard deviations of ĥ

2
r ; ĥ

2
m; and

Ĥ
2
; these populations were somewhere in between the struc-

tured RegMap and HapMap.
For a substantial proportion of the simulated traits in

both the HapMap and the structured RegMap, we observed

Table 2 Asymptotic distribution of marker-based heritability
estimators

Population r h2 = 0.2 h2 = 0.5 h2 = 0.8

Structured RegMap 1 0.0702 (1.00) 0.0762 (1.00) 0.0497 (1.00)
Structured RegMap 2 0.0428 (0.85) 0.0406 (0.71) 0.0187 (0.49)
Structured RegMap 3 0.0337 (0.80) 0.0323 (0.66) 0.0153 (0.46)
Structured RegMap 4 0.0289 (0.77) 0.0284 (0.64) 0.0139 (0.46)
HapMap 1 0.1137 (1.00) 0.1310 (1.00) 0.1040 (1.00)
HapMap 2 0.0356 (0.46) 0.0292 (0.31) 0.0139 (0.19)
HapMap 3 0.0250 (0.40) 0.0226 (0.29) 0.0115 (0.18)
HapMap 4 0.0204 (0.37) 0.0199 (0.29) 0.0106 (0.19)
Swedish RegMap 1 0.0781 (1.00) 0.0827 (1.00) 0.0574 (1.00)
Swedish RegMap 2 0.0391 (0.73) 0.0344 (0.58) 0.0160 (0.36)
Swedish RegMap 3 0.0291 (0.67) 0.0269 (0.54) 0.0132 (0.34)
Swedish RegMap 4 0.0244 (0.64) 0.0237 (0.52) 0.0121 (0.33)
French RegMap 1 0.1141 (1.00) 0.1135 (1.00) 0.0768 (1.00)
French RegMap 2 0.0497 (0.66) 0.0416 (0.52) 0.0192 (0.33)
French RegMap 3 0.0360 (0.60) 0.0322 (0.49) 0.0158 (0.31)
French RegMap 4 0.0297 (0.58) 0.0283 (0.48) 0.0145 (0.31)
VH et al. (2012) 1 0.0680 (1.00) 0.0725 (1.00) 0.0502 (1.00)
VH et al. (2012) 2 0.0329 (0.71) 0.0290 (0.56) 0.0136 (0.37)
VH et al. (2012) 3 0.0244 (0.65) 0.0227 (0.53) 0.0113 (0.35)
VH et al. (2012) 4 0.0204 (0.62) 0.0200 (0.52) 0.0103 (0.36)
RH et al. (2012) 1 0.0698 (1.00) 0.0679 (1.00) 0.0399 (1.00)
RH et al. (2012) 2 0.0374 (0.81) 0.0346 (0.74) 0.0168 (0.60)
RH et al. (2012) 3 0.0286 (0.77) 0.0280 (0.72) 0.0141 (0.59)
RH et al. (2012) 4 0.0244 (0.76) 0.0249 (0.72) 0.0129 (0.60)
Zhao et al. (2011) 1 0.0642 (1.00) 0.0625 (1.00) 0.0329 (1.00)
Zhao et al. (2011) 2 0.0399 (0.87) 0.0351 (0.79) 0.0156 (0.65)
Zhao et al. (2011) 3 0.0311 (0.83) 0.0280 (0.76) 0.0128 (0.62)
Zhao et al. (2011) 4 0.0264 (0.81) 0.0246 (0.74) 0.0116 (0.62)

Shown are standard deviations of the estimators based on replicates and in
parentheses the ratios of the standard deviations of the estimators based on
replicates over those based on means. Asymptotic variances were obtained using
the expressions in Equation 9. Four populations of A. thaliana (containing respec-
tively 250, 350, 305, and 204 accessions), two populations of Z. mays [400 acces-
sions (Van Heerwaarden et al. 2012) and 280 accessions (Riedelsheimer et al. 2012)]
and one population of O. sativa [413 accessions (Zhao et al. 2011)] were consid-
ered. The second column gives the number of replicates (r). VH, Van Heerwaarden
et al. (2012). RH, Riedelsheimer et al. (2012).
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Figure 1 Heritability estimates for 5000 simulated traits for random samples of 200 accessions drawn from the structured RegMap (top) and the
HapMap (bottom). Twenty QTL were simulated, which explained half of the genetic variance. The simulated heritability was 0.2 (left), 0.5
(center), and 0.8 (right). Within each panel, the first row shows the ANOVA-based estimates of broad-sense heritability, the second row the
mixed-model-based estimates based on the individual plant data, and the third row the mixed-model-based estimates based on genotypic
means.
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a phenomenon that was not apparent from the asymptotic
arguments above: ĥ

2
m was close to or equal to 1, in which

case the likelihood as a function of h2 was monotonically
increasing. This behavior is most likely to occur when the
genetic relatedness matrix is close to compound symmetry
(i.e., all genotypes being equally related), in which case the
likelihood is constant in h2 (File S3). The small sample size
can then lead to monotone likelihood profiles (Figure S4).
Indeed ĥ

2
m = 1 occurred most often for the HapMap: even

for a simulated heritability of 0.5, ĥ
2
m . 0.99 for 882 of

the 5000 traits (Figure 1). For the HapMap and simulated
h2 = 0.2, we also observed ĥ

2
m = 0.

The simulations were repeated for a genetic architecture
where only 10% of the genetic variance consists of polygenic
effects and the remaining 90% is determined by a single QTL
(File S4). Even in this extreme scenario, ĥ

2
r still performed

very well, having almost negligible bias. Also the improve-
ment in standard error relative to ĥ

2
m remained similar.

Confidence intervals

For all simulated traits we calculated both standard and log-
transformed confidence intervals for narrow-sense heritabil-

ity (h2), using genotypic means as well as individual plant
data. Also confidence intervals for broad-sense heritability
(H2) were calculated. (We recall that only additive genetic
effects were simulated, and hence h2 = H2.) Coverage and
width of confidence intervals are given in Table 4 and Table
S3 (Swedish and French RegMap). The standard 95% inter-
vals obtained from the individual observations (i.e., those
associated with ĥ

2
r ) had around 95% coverage in the simu-

lations, while coverage was below 95% for the intervals
based on genotypic means. The latter intervals also had
larger width, which relates to the higher variance of ĥ

2
m in

simulations. For the HapMap average width was larger than
0.5, even at a simulated heritability of 0.2. For the simulated
traits with ĥ

2
m ¼ 1; the corresponding confidence interval

was [0, 1].

Table 4 Marker-based estimation of heritability

Interval Coverage Interval width

Structured RegMap
h2 = 0.2

Broad sense 0.864 0.178
Individual level (standard) 0.926 0.201
Individual level (log-transformed) 0.957 0.203
Means (standard) 0.912 0.314
Means (log-transformed) 0.965 0.322

h2 = 0.5
Broad sense 0.735 0.160
Individual level (standard) 0.948 0.196
Individual level (log-transformed) 0.956 0.194
Means (standard) 0.909 0.460
Means (log-transformed) 0.961 0.433

h2 = 0.8
Broad sense 0.671 0.086
Individual level (standard) 0.941 0.094
Individual level (log-transformed) 0.941 0.094
Means (standard) 0.923 0.422
Means (log-transformed) 0.946 0.492

HapMap
h2 = 0.2

Broad sense 0.948 0.178
Individual level (standard) 0.945 0.181
Individual level (log-transformed) 0.969 0.182
Means (standard) 0.835 0.538
Means (log-transformed) 0.916 0.678

h2 = 0.5
Broad sense 0.935 0.160
Individual level (standard) 0.948 0.164
Individual level (log-transformed) 0.952 0.163
Means (standard) 0.861 0.806
Means (log-transformed) 0.984 0.832

h2 = 0.8
Broad sense 0.924 0.084
Individual level (standard) 0.948 0.085
Individual level (log-transformed) 0.950 0.085
Means (standard) 0.892 0.882
Means (log-transformed) 0.914 0.915

Shown are width and coverage confidence intervals obtained from the individual
plant data and the genotypic means. Results for broad-sense heritability intervals are
reported for comparison. We simulated 5000 traits, for random samples of 200
accessions drawn from the structured RegMap (top) and HapMap (bottom). Twenty
unlinked QTL were simulated, which explained 50% of the genetic variance. The
simulated heritability was 0.2, 0.5, and 0.8.

Table 3 Comparison of the marker-based heritability estimators
^

h2
r

and
^

h2
m for simulated data

Estimator Bias
Standard
error

Relative
standard
error

Structured RegMap
h2 = 0.2

Broad sense (H2) 20.00314 0.06079 0.70120
Individual level (h2r ) 20.00268 0.05306 0.61204
Means (h2m) 0.00475 0.08670 1.00000

h2 = 0.5

Broad sense (H2) 20.00938 0.07193 0.56365
Individual level (h2r ) 20.00400 0.05093 0.39915
Means (h2m) 20.00164 0.12761 1.00000

h2 = 0.8

Broad sense (H2) 20.00825 0.04309 0.36087
Individual level (h2r ) 20.00138 0.02473 0.20712
Means (h2m) 20.00388 0.11940 1.00000

HapMap
h2 = 0.2

Broad sense (H2) 20.00128 0.04663 0.19404
Individual level (h2r ) 20.00154 0.04642 0.19317
Means (h2m) 0.05328 0.24033 1.00000

h2 = 0.5

Broad sense (H2) 20.00288 0.04280 0.13754
Individual level (h2r ) 20.00295 0.04120 0.13242
Means (h2m) 0.04400 0.31115 1.00000

h2 = 0.8

Broad sense (H2) 20.00282 0.02385 0.08263
Individual level (h2r ) 20.00231 0.02214 0.07672
Means (h2m) 20.06137 0.28863 1.00000

We simulated 5000 traits, for random samples of 200 accessions drawn from the
structured RegMap and HapMap. Twenty unlinked QTL were simulated, which
explained 50% of the genetic variance. The simulated heritability was 0.2, 0.5, and
0.8. Standard errors are given relative to those of ĥ

2

m:
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Differences between the log-transformed and the stan-
dard intervals were small for ĥ

2
r : For ĥ

2
m the use of the log-

transformed intervals gave bigger improvements, although
coverage was still below 95%. Also the confidence intervals
for broad-sense heritability had insufficient coverage. This is
due to model misspecification: the analysis of variance does
not incorporate the genetic structure, and uncertainty in the
estimates is therefore underestimated. Coverage was still
around 93% for the HapMap, whereas for the structured
RegMap it decreased to 67.6% for h2 = 0.8.

Heritability estimates for real data

The heritability estimates ĥ
2
r ; ĥ

2
m; and Ĥ

2
were calculated for

the six traits. Genotypic means were calculated as the best
linear unbiased estimators (BLUEs) for the genetic effects,
in a linear model containing fixed effects for both genotype
and additional design effects (Appendix A). In the calcula-
tion of ĥ

2
m the nondiagonal covariance structure of the

BLUEs was taken into account. In the case of ĥ
2
r and Ĥ

2
;

design effects were directly included in the mixed model.
For the flowering traits from Atwell et al. (2010), our

estimates of broad-sense heritability were 0.858 for LDV
and 0.966 for LD (Table 5). For several reasons (File S2),
these values were lower than those reported in supplemen-
tary table 7 of Atwell et al. (2010): 0.94 for LDV and 0.99 for
LD. For both traits, marker-based heritability estimates
based on individual plant data (ĥ

2
r ) were substantially lower,

but still high (0.80 for LDV and 0.93 for LD). Marker-based
heritability estimates obtained from genotypic means (ĥ

2
m)

were very different: much lower in case of LDV (0.51) and 1
for LD. (Table 5 and Figure 2). In the latter case, the likeli-
hood as a function of h2 was monotonically increasing, just
as we observed for some of the simulated traits. The esti-
mate of residual variance (not reported) was virtually zero
in this case, and the confidence interval was equal to the
whole unit interval. Also in the leaf area experiments there
were substantial differences between ĥ

2
r and ĥ

2
m; especially

for the Swedish RegMap (ĥ
2
r ¼ 0:21 vs. ĥ

2
m     ¼     0:09). Her-

itability estimates were larger for the HapMap (ĥ
2
r ¼ 0:38 vs.

ĥ
2
m     ¼     0:34), which has greater genetic diversity. Again,

confidence intervals associated with ĥ
2
m were wider than

those associated with ĥ
2
r : In the final experiment, heritability

estimates for bolting time (BT) were very similar to those for
LD: ĥ

2
m = 1, and ĥ

2
r and Ĥ

2
were close to 1. For LW we found

ĥ
2
m ¼ 0:16; much lower than ĥ

2
r ¼ 0:55: The latter was

slightly larger than the broad-sense heritability esti-
mate Ĥ

2 ¼ 0:53; but the confidence intervals largely overlap.

Genomic prediction with G-BLUP

The G-BLUP depends on the estimated genetic and residual
variance and hence on the estimated heritability (Hender-
son 1975; Robinson 1991). Therefore genomic prediction
with G-BLUP could potentially be improved when individual
plant data are used, instead of genotypic means. We com-
pared G-BLUP based on genotypic means and individual
plant data using simulated traits, each including a training
set of n = 200 genotypes and a validation set of m = 50
genotypes, for which only marker information was available.
For both sets of genotypes, we obtained the G-BLUP (Ĝ)
predicting the true (simulated) genetic effects G and calcu-
lated the prediction accuracy in terms of the correlation (r)
between Ĝ and G.

For the training and validation sets, accuracy decreased
when the estimated heritability was too far from the sim-
ulated heritability (Figure 3, Figure 4, and Table S5). For the
validation sets there were larger differences in accuracy
across simulations, because of the additional randomness
in the selection of the validation genotypes, creating varying

Table 5 Heritability estimates and confidence intervals for two
flowering traits from Atwell et al. (2010) (LDV and LD) and four
traits from new experiments

Trait
^

h2
r

^

h2
m

^

H2

LDV 0.801 (0.756,0.840) 0.510 (0.303,0.714) 0.858 (0.826,0.886)
LD 0.933 (0.917,0.947) 1.000 (0.000,1.000) 0.966 (0.957,0.973)
LA(S) 0.209 (0.141,0.298) 0.088 (0.028,0.244) 0.235 (0.167,0.306)
LA(H) 0.378 (0.315,0.444) 0.339 (0.134,0.631) 0.388 (0.327,0.451)
BT 0.941 (0.929,0.950) 1.000 (0.000,1.000) 0.956 (0.947,0.963)
LW 0.553 (0.491,0.614) 0.155 (0.028,0.538) 0.530 (0.468,0.589)

Three estimators were used: the marker-based estimator using individual plant data
(ĥ

2

r ), the marker-based estimator using genotypic means (ĥ
2

m), and the ANOVA-based
estimator of broad-sense heritability (Ĥ

2
). Horizontal lines separate traits measured in

different experiments. Trait abbreviations are given in Table 1.

Figure 2 Heritability estimates and confidence intervals for two flowering
traits from Atwell et al. (2010) (LDV and LD) and four traits from new
experiments. Three estimators were used: the ANOVA-based estimator of
broad-sense heritability (Ĥ

2
; green), the marker-based estimator using in-

dividual plant data (ĥ
2

r ; blue) and the marker-based estimator using geno-
typic means (ĥ

2

m; brown). Traits from different experiments are separated by
the black horizontal lines. Trait abbreviations are given in Table 1. Confi-
dence intervals associated with the marker-based estimates are constructed
using the logarithmic transformation described in Materials and Methods.
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degrees of connectedness with the training sets. When using
individual plant data, heritability estimates were never far
from the simulated heritability, and prediction accuracy was
close to a constant, depending on the simulated heritability.
Using only genotypic means, heritability was often severely
over- or underestimated, in which case accuracy decreased
substantially. This decrease was largest when heritability was
underestimated, which follows from the mathematical ex-
pressions for G-BLUP (Materials and Methods and File S5).

In the HapMap population with simulated heritability
0.8, the estimate ĥ

2
r was between 0.7 and 0.9 for 4998 of the

5000 simulated traits, and accuracy (r) averaged over these
simulations was 0.431 (Table 6). The heritability estimate
based on means (ĥ

2
m) was, however, between 0.1 and 0.3 for

8.4% of the simulated traits, and for 2.6% of them it was
even below 0.1. Averaged over the latter group of traits,
accuracy was only 0.289. Consequently, for these traits an

improvement in accuracy of 49% could be realized by geno-
mic prediction based on individual plant data instead of geno-
typic means. Averaged over all simulated traits, the prediction
accuracy obtained from genotypic means was not much lower,
because of the large “safe zone” where the approaches per-
formed similarly: accuracy was at least 0.4 once the estimated
heritability was above 0.5. It is impossible, however, to deter-
mine whether a given trait is within this zone, using genotypic
means only. When individual plant data are available, the
heritability estimates ĥ

2
r and ĥ

2
m could be compared, and the

G-BLUP based on genotypic means could be used if ĥ
2
r and ĥ

2
m

were similar.
Similar results were obtained for prediction accuracy ob-

served in cross-validations on the six observed traits (Figure
5). Averaged over 500 validation sets, prediction accuracies
obtained with individual plant data and means were almost
the same for LDV, LD, and BT (respectively 0.77, 0.82, and

Figure 3 Prediction accuracy (r) of G-BLUP on training
sets of 200 accessions, for 5000 simulated traits, for
the structured RegMap (left) and HapMap (right).
Within both populations, each trait was simulated
for a randomly drawn training set of 200 accessions.
Genetic effects were predicted using G-BLUP, based
on a mixed model either for the individual plants (blue)
or for the genotypic means (orange). Twenty QTL were
simulated, which explained 50% of the genetic vari-
ance. The simulated heritability was 0.2 (top), 0.5
(middle), and 0.8 (bottom).
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0.67). For leaf area 13 days after sowing (Swedish RegMap)
[LA(S)], leaf area 13 days after sowing (HapMap) [LA(H)],
and LW, average accuracies were respectively 0.22, 0.27,
and 0.04 when using genotypic means and 0.23, 0.28, and
0.11 when using individual plant data. For LDV, the herita-
bility estimates obtained using genotypic means followed a
bimodal pattern, which was largely due to accession 8233,
for which only a single observation was available and geno-
typically is an outlier (Figure S6). Despite the fact that
the standard errors and correlations among the genotypic
means were taken into account, training sets including this
accession produced much lower heritability estimates than
in cases where it was assigned to the validation set. This,
however, did not lead to lower prediction accuracy. More
generally, the relation between low prediction accuracy
and underestimating heritability was less clear than in Fig-
ure 4, which may be due to the additional uncertainty in the
estimation of fixed effects and the fact that this concerns a
subsampling of observed traits, rather than simulated traits.

Nonetheless, genomic prediction based on individual plant
data again performed at least as well as the standard ap-
proach based on means and much better in the case of LW.

GWAS

Many state-of-the-art methods for GWAS (Kang et al. 2010;
Lippert et al. 2011; Lipka et al. 2012; Zhou and Stephens
2012) use the same mixed model as in marker-based esti-
mation of heritability, apart from the additional marker ef-
fect (Appendix D). When testing the significance of this
marker effect, the estimated genetic and residual variances
(and hence the heritability) determine the correction for
population structure or genetic effects elsewhere in the ge-
nome. This suggests that poor estimation of the variance
components s2

A and s2
E may also affect association mapping,

especially when these are estimated in a model without
marker effects and then kept fixed when calculating gener-
alized least-squares (GLS) estimates of marker effects (Kang
et al. 2010). The GLS estimate of the fixed effects (including

Figure 4 Prediction accuracy (r) of G-BLUP on valida-
tion sets of 50 accessions, for 5000 simulated traits, for
the structured RegMap (left) and HapMap (right).
Within both populations, each trait was simulated for
a randomly drawn training set of 200 accessions. Ge-
netic effects for a randomly drawn validation set of 50
accessions were predicted using G-BLUP, based on a
mixed model either for the individual plants (blue) or
for the genotypic means (orange). Twenty QTL were
simulated, which explained 50% of the genetic vari-
ance. The simulated heritability was 0.2 (top), 0.5 (mid-
dle), and 0.8 (bottom).
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the marker effect) b̂ ¼ ðXtV21XÞ21XtV21Y is unbiased since
the expectation of Y is Xb. Hence Eðb̂Þ ¼ b; even condition-
ally on a poor estimate of V ¼ ŝ2

AZKZ
t þ ŝ2

EIN : However,
P-values for the significance of marker effects will be more
sensitive to poor estimates of ðs2

A;s
2
EÞ than the effect esti-

mates themselves. We investigated this with GWAS on sim-
ulated traits for the HapMap and RegMap populations,
which were performed on genotypic means (two-stage)
and individual plant data (one-stage). Rank correlations be-
tween one- and two-stage 2log10 P-values were almost
1 when ĥ

2
m was close to the simulated heritability and de-

creased when ĥ
2
m under- or overestimated heritability (Fig-

ure S7). However, even then correlations were still high, and
the resulting loss in power appeared to be limited (Figure
6). For the RegMap (results not shown) differences between
receiver operating characteristic curves were even smaller.
In contrast to the accuracy of genomic prediction, these
differences remained small when restricting the set of sim-
ulated traits to those for which ĥ

2
m underestimated the

simulated heritability (curves not shown). This may be ex-
plained by the fact that the correlation between b̂ and
ðŝ2

A; ŝ
2
EÞ tends to zero for large numbers of genotypes (Casella

and McCulloch 2006).

Software

In most of our analyses and simulations we used the com-
mercial R package asreml (Butler et al. 2009), which con-
tains a fast implementation of the AI algorithm. We also
made our own implementation of the AI algorithm, together
with functions for estimating heritability. These are con-
tained in the R package heritability, which is freely available
online. In contrast to other packages such as emma and
synbreed, it provides confidence intervals for heritability.

For GWAS on simulated traits we developed the command-
line program scan_GLS, which is available on request.
scan_GLS performs generalized least-squares calculations
conditional on variance components estimated in a model
without markers, as proposed by Kang et al. (2010), and can
efficiently handle genetically identical individuals. State-of-
the-art association mapping software can perform association
mapping on genetically identical individuals only when these
are given different identifiers, i.e., as if they were differ-
ent genotypes. This leads to large genotypic data files and

increases computation time. The GLS calculations in
scan_GLS are more efficient since they use the fact that
ZKZt and K have the same rank. This has been proposed in
Lippert et al. (2011) (supplement), but to our knowledge this
has not been implemented in the Fast-LMM software. Al-
though we did not find one-stage GWAS to be more powerful
in the present study, the ability to perform fast association
mapping for genetically identical individuals is useful in the
context of a compressed kinship matrix (Bradbury et al. 2007;
Zhang et al. 2010; Lipka et al. 2012). scan_GLS also includes
a function to perform GLS calculations with nondiagonal re-
sidual variance structure, allowing association mapping with
extra (possibly nongenetic) random effects.

Discussion

We have presented new methodology for marker-based
estimation of heritability for plant traits, which accounts
for genetic relatedness and includes information on within-
genotype variability, available from replicates. Our approach
offers an alternative to mixed-model analysis based on
genotypic means, which is the current practice in GWAS
and genomic prediction with G-BLUP. Although mixed
models can indeed estimate heritability from only kinship
coefficients and genotypic means, we observed very large
standard errors and sometimes unrealistic estimates of
heritability, in both published data and new experiments.
Using simulations and statistical arguments we showed that
marker-based estimation of heritability based on genotypic
means has indeed severe limitations when applied to
commonly used association panels in A. thaliana. The main
reason for this is the lack of information on within-genotype
variability: heritability estimates are exclusively based on
the (usually small) differences between genotypes. This is
feasible in human cohorts with many thousands of individ-
uals, but gives insufficient information in plant populations
with only several hundred different genotypes, even if stan-
dard errors of genotypic means are taken into account.
Much more accurate heritability estimates were obtained
with mixed-model analysis at the individual plant or plot
level. The resulting heritability estimates had accuracies
similar to those reported for human diseases (see e.g., Speed
et al. 2012). In our simulations with 200 genotypes, the

Table 6 Prediction accuracy (r) of G-BLUP for 5000 simulated traits, for the HapMap population

Interval
^

h2
r (%)

^

h2
m (%) r (replicates) training set r (means) training set r (replicates) validation set r (means) validation set

[0, 0.1) 0.00 2.58 0.890 0.289
[0.1, 0.3) 0.00 8.34 0.937 0.373
[0.3, 0.5) 0.00 12.34 0.954 0.409
[0.5, 0.7) 0.04 15.90 0.942 0.959 0.208 0.423
[0.7, 0.9) 99.96 15.62 0.961 0.961 0.431 0.443
[0.9, 1] 0.00 45.22 0.961 0.448
[0, 1] 100 100 0.961 0.956 0.431 0.428

Each trait was simulated for a randomly drawn training set (200 accessions) and validation set (50 accessions). Genetic effects were predicted using G-BLUP, based on
a mixed model either for the individual plants (replicates) or for the genotypic means. The second and third columns contain the percentage of the 5000 traits for which the
corresponding heritability estimates (ĥ

2

r and ĥ
2

m) were contained in the intervals in the first column. The remaining columns show the correlation (r) between simulated and
predicted genetic effects, averaged over these traits. The simulated heritability was 0.8; 20 QTL were simulated, which explained 50% of the genetic variance.
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difference in accuracy relative to that of estimates obtained
from genotypic means was larger than what was expected
from the asymptotic variances. The reason for this larger dif-
ference appeared to be the monotone likelihood profile
occurring in a substantial part of the simulations, giving her-
itability estimates of zero or one. However, even without this
phenomenon, heritability estimations using individual plant
data are more precise, and the asymptotic approximations
appear to provide a lower bound on the gain in accuracy.

Mixed-model analysis at the individual plant level can
also improve accuracy of G-BLUP, in particular when the
actual heritability is underestimated. Too much shrinkage
then leads to lower prediction accuracy. In GWAS, where the
interest is in the estimated marker effects rather than the
variance components, inclusion of the individual plant gave
almost no increase in power. However, the possibility to
include covariates observed at the individual plant level may
be an important practical advantage. While two-stage pro-
cedures are usually considered preferable in complex multi-
experiment settings (Welham et al. 2010; Piepho et al.
2012), a one-stage approach may give a more convenient
and less error-prone analysis of a single experiment with
a simple design.

State-of-the-art phenotyping platforms can measure plant
traits with increasing accuracy and throughput. Compared
to human traits, the key advantages are that phenotyping is
performed under experimental conditions and can include
different individuals of the same genotype. Our findings
suggest that to fully exploit these advantages, statistical
analysis at the individual plant level is necessary. Obviously,
this requires the availability of the individual plant data, as
well as covariates. For many studies in the literature this
information is, however, not available, since most online
resources store only genotypic means. More specifically, our
results are relevant in the light of the missing heritability
debate. Although the aim here was not to propose specific
explanations for missing heritability, any such explanation
clearly requires an accurate estimate of heritability in the
first place. Standard errors for heritability are commonly
reported for human traits, but usually absent in the A. thali-
ana literature. We demonstrated that these standard errors
can be extremely large when using mixed models at a geno-
typic means level. Explaining missing heritability based on
such estimates then becomes an unreasonable goal.

For two flowering traits, from both a published and a new
experiment, ĥ

2
m = 1. In these cases, also ĥ

2
r and the broad-

sense heritability estimates (Ĥ
2
) were very high. This can

partly be explained by the discrete scale (in whole days) on
which the traits were measured. Some genotypes therefore
had exactly equal phenotypic values in all or many of the
replicates. The heritability estimates for LD were also af-
fected by the fact that in the Atwell et al. (2010) data, all
nonflowering plants were given a phenotypic value of 200.
However, the estimates ĥ

2
m = 1 also occurred for some of our

simulated (Gaussian) traits and have a more fundamental
reason: the small number of genotypes (compared to human
studies) leads to monotone likelihood profiles and very large
standard errors, making it hard to make any statement
about heritability.

Recently, Speed et al. (2012) showed that heritability
estimates may become biased when linkage disequilibrium
(LD) is not constant over the genome and proposed LD-
adjusted kinship (LDAK) matrices to correct for this. To
assess the effect on ĥ

2
r and ĥ

2
m we recalculated these herita-

bility estimates, using an LD-adjusted kinship matrix (Figure
S5 and Table S4). For all traits the estimates ĥ

2
r were very

close to the values obtained using the unadjusted kinship
matrix. The estimates ĥ

2
m on the other hand were quite dif-

ferent for several traits. Nevertheless, the same problems
occurred: very large confidence intervals and estimates that
appear biologically unrealistic. We conclude that ĥ

2
m is more

sensitive to the choice of kinship matrix than ĥ
2
r and that the

different behavior of ĥ
2
r and ĥ

2
m cannot be explained by LD

being different over the genome.
The mixed-models analysis at the individual plant level

proposed here can be extended in several ways, for example
by partitioning the genetic variance into different chromo-
somal contributions, as in Yang et al. (2011), or by including
epistatic effects. The latter has been proposed for experimental

Figure 5 Prediction accuracy (r) of G-BLUP in 500 cross-validations, for six
traits observed on A. thaliana. In each cross-validation, the accessions are
randomly partitioned into a training set of 80% and a validation set of
20% of the accessions. Predictions for the individual plant data for the
accessions in the validation set were obtained from Equation C6 in Ap-
pendix C. The genetic effects in (C6) were estimated either using individ-
ual plant data (blue) or using genotypic means (orange).
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populations with known pedigrees (Oakey et al. 2007), but
marker-based estimation of epistatic effects for natural pop-
ulations appears possible only with more advanced statistical
methodology, for example semiparametric mixed models and
reproducing kernel Hilbert spaces (Gianola and Van Kaam
2008; Howard et al. 2014). Another direction for future re-
search is the estimation of heritability in the presence of
additional random effects, which would increase the applica-
bility to agricultural field trials (where the raw data are usu-
ally at plot rather than individual plant level). Although our
approach allows for missing values, it does assume that all
design effects can be modeled as fixed. Field trials are often
laid out in incomplete blocks, containing only a small number
of the genotypes under study. Differences between such
blocks are usually best modeled using random block effects.
The definition of heritability in such contexts is, however, far
from obvious: Oakey et al. (2007) proposed generalized her-
itability, but for natural populations this definition is not
equivalent to the classical definition of heritability (Oakey
et al. 2007, p. 813). In this case the ratio of the estimated
genetic variance over the total phenotypic variance could be
used as a lower bound on heritability. Nevertheless, we have
demonstrated that mixed-model analysis at the individual
plant or plot level offers important advantages over mixed
models for genotypic means.
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Appendix A

Marker-Based Estimation of Heritability

We start with a brief summary of existing methodology and the required assumptions and then define marker-based
heritability estimates given genetically identical replicates measured in an unbalanced design.

Marker-based estimation of heritability given a single observation per genotype
Phenotypic variance can be partitioned as

s2
Pheno ¼ s2

G þ s2
Env ¼ s2

A þ s2
D þ s2

I þ s2
Env;

where the genetic variance s2
G is decomposed into additive, dominance, and interaction effects (Falconer and Mackay 1996),

the dominance effect being absent for inbred lines. Heritability in the broad sense is defined as H2 ¼ s2
G=s

2
Pheno; while the

narrow-sense heritability h2 ¼ s2
A=s

2
Pheno takes into account only the additive genetic effects, which determine breeding

values and the selection response. Defining the residual variance s2
E to be the sum of the environmental and nonadditive

genetic variance terms (s2
D þ s2

I þ s2
Env), we can write

h2 ¼ s2
A

s2
A þ s2

E
: (A1)

Marker-based estimates of narrow-sense heritability can be obtained using mixed models with random genetic effects. The
covariances between these effects are modeled by a genetic relatedness matrix (GRM) estimated from markers, with
elements given by (1). Given a single observation per genotype, the standard infinitesimal model is

Yi ¼ mþ xibþ Gi þ Ei ði ¼ 1; . . . ; nÞ; (A2)

where m is the intercept, G = (G1, . . ., Gn) has a Nð0;s2
AKÞ distribution, and the errors Ei have independent normal

distributions with variance s2
E: The optional term xib ¼ xð1Þi b1 þ . . .þ xðkÞi bk models the effect of k additional covariates.

Under model (A2), heritability can be estimated by

h2 ¼ ŝ2
A

ŝ2
A þ ŝ2

E
; (A3)

where ŝ2
A and ŝ2

E are REML estimates of additive genetic and residual variance (Yang et al. 2011; Speed et al. 2012).
It has been noted (e.g., Hayes et al. 2009) that using model (A2) with genetic relatedness matrix (1) is equivalent to

assuming that the effects of the standardized marker scores are drawn independently from Gaussian distributions with
variance s2

A=p: Consequently, the model can account only for additive genetic effects, and nonadditive effects will get into the
residual variance. This is why ĥ

2
is an estimate of narrow-sense heritability. The preceding argument also highlights the fact

that ĥ
2
is a marker-based estimate, which requires the (frequently made) assumptions that every causal locus is tagged by

one of the markers, and that LD is constant across the genome (Speed et al. 2012). For the case that LD is not constant over
the genome, Speed et al. (2012) proposed LD-adjusted kinship matrices.

The parameter s2
A can be interpreted as additive genetic variance only if K is scaled appropriately. For the kinship matrix

used here this is the case, but for different types of kinship matrix (e.g., identity by state), it is necessary to divide each
coefficient by tr(PKP)/(n 2 1), for P = In 2 119/n. Under the condition that tr(PKP) = (n 2 1),

E

"
1

n2 1

Xn
i¼1

ðGi2GÞ2
#
¼ E

�
1

n2 1
GtPtPG

�
¼ 1

n2 1
E
�
GtPG

�

¼ s2
A

n21
tr½PKP� ¼ s2

A:

(A4)

Marker-based estimation of heritability given genetically identical replicates, for unbalanced designs
When for each genotype a number of genetically identical individuals are observed, (A2) generalizes to

Yi;j ¼ mþ xi; jbþ Gi þ Ei; j ði ¼ 1; . . . ; n; j ¼ 1; . . . ; riÞ; (A5)

where Yi,j is the phenotypic response of replicate j of genotype i, xi,j is a vector of fixed effects, G = (G1, . . . , Gn) has
a Nð0;s2

AKÞ distribution, and the errors Ei,j have independent normal distributions with variance s2
E: Equation A5 is similar
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to Equation 2 apart from the additional covariates and the generally unbalanced design. Analogous to the case of balanced
designs, we use the estimator ĥ

2
r defined in (3) for REML estimates ŝ2

A and ŝ2
E obtained for model (A5).

Heritability estimates based on genotypic means can be constructed as in Equations 4 and 5, except that these genotypic
means are no longer equal to the arithmetic averages Yi: We fit the linear model

Y ¼ XG   gþ XCbþ E; (A6)

where Y ¼ ðY1;1; . . . ; Y1;r1 ; . . . ; Yn;1; . . . ; Yn;rnÞt is the vector of phenotypic observations, ri is the number of replicates of
genotype i, XC is the design matrix of the extra fixed effects, and E ¼ ðE1;1; . . . ; En;rnÞt is the vector of independent Gaussian
errors with variance s2

E: This model is identical to (A5), apart from the factor genotype now being fixed instead of random.
The intercept is included in the incidence matrix XG, which has dimension N 3 n, for N ¼Pn

i¼1ri:
We obtain least-squares estimates ĝ ¼ ðĝ1; . . . ; ĝnÞt for the genotypic effects in model (A6), which form the basis for the

subsequent analysis. In mixed-model terminology, this is the BLUE for g. In (A6) the only random term is E, i.e., we consider
an ordinary linear model, as the additional covariates are all assumed to be fixed. The least-squares estimator ðĝ; b̂Þ is given
by

�
ĝ
b̂

�
¼ �XtX

�21  XtY ¼
�
Xt
GXG Xt

GXC
Xt
CXG Xt

CXC

�21� Xt
G

Xt
C

�
Y ; (A7)

where X = [XG XC]. This vector has covariance matrix

Var
�
ĝ
b̂

�
¼ �XtX

�21
s2
E ¼

�
Xt
GXG Xt

GXC
Xt
CXG Xt

CXC

�21

s2
E: (A8)

Consequently, the covariance matrix of ĝ is

VarðĝÞ ¼
�
Xt
GXG2Xt

GXC
�
Xt
CXC

�21Xt
CXG

	21
s2
E ¼ Rs2

E:

The mixed model (4), used for the estimation of heritability, now naturally generalizes to

Yi ¼ mþ Gi þ Ei; G � N
�
0;s2

AK
�
; E � N

�
0;s2

ER
�
; (A9)

where, to avoid having twice the letter g in the same equation, we abused the notation by writing Yi instead of ĝi: Hence the
matrix r21In in (4) is replaced by R. Given REML estimates ŝ2

A and ŝ2
E for this model, we use ĥ

2
m in (5) as heritability estimate.

As in the case of a completely randomized design, ĥ
2
m is a so-called two-stage estimator. The fact that genotype is taken as

a fixed effect in the first stage (A6) and as random in the subsequent mixed-model analysis may appear inelegant, but is
common in two-stage analyses and necessary to avoid shrinking twice.

In the case of a completely randomized design with ri replicates without further covariates, ĝi ¼
Pni

j¼1Yi;j=ni and

R ¼ �Xt
GXG

�21 ¼ diag
�
r21
1 ; . . . ; r21

n
�
:

Note that in contrast to the estimator of broad-sense heritability described below, it is not necessary to define an average
number of replicates. In the case of a randomized complete block design with r replicates, XC is the nr 3 (r 2 1) design
matrix for the factor block, and Xt

GXCðXt
CXCÞ21  Xt

CXG is the n 3 n matrix with elements (r 2 1)/n. Hence, R is not diagonal,
even though the design is balanced. The off-diagonal elements are equal in this case and small (provided n is sufficiently
large). With n = 200 and r = 3 for example, the diagonal elements of R are 0.336667 and the off-diagonal elements are
0.003333. For unbalanced designs, some of the off-diagonal elements may be larger and more influential.

Appendix B

Simulations

Data for genotypes i = 1, . . . , n with replicates j = 1, . . . , r were simulated following the model

yi;j ¼ mþPq
m¼1xi;mam þ gi þ ei;j;

g ¼ ðg1; . . . ; gnÞt � N
�
0;s2

aK
�
;

e ¼ �e1;1; . . . ; en;r�t � N
�
0;s2

e Inr
�
;

(B1)
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where K was scaled such that tr(PKP) = n 2 1, for P = In 2 119/n (see Equation A4).
We assumed q QTL located at marker positions, with effect sizes am (m = 1, . . . , q) and minor allele frequencies fm (m =

1, . . . , q); i.e., genotypes AA and aa occur with frequencies fm and (12 fm), am being the effect of a single allele. Let xi,m 2 {0,
1, 2} denote the marker score at QTL m for genotype i. In the case of A. thaliana inbred lines, xi,m 2 {0, 2} and

h2 ¼ s2
a þ 4

Pq
m¼1fmð12 fmÞa2

m

s2
a þ 4

Pq
m¼1fmð12 fmÞa2

m þ s2
e
¼ s2

A
s2
A þ s2

e
; (B2)

where

s2
A ¼ s2

a þ 4
Xq
m¼1

fmð12 fmÞa2
m

is the total (additive) genetic variance. For outbreeding species under Hardy–Weinberg equilibrium, the constant 4 is
replaced by a 2. In (B2) we assume linkage equilibrium between the QTL.

For each simulated trait, QTL locations were sampled randomly from all available markers whose minor allele frequency
.10%. To enforce linkage equilibrium between the sampled QTL, the sampled locations were discarded and drawn again if
the difference between v1 ¼ 4

Pq
m¼1fmð12 fmÞa2

m and v2 = 4(a1, . . . , aq)S(a1, . . . , aq)9 was too large, S being the sample
covariance matrix of the marker scores at QTL positions. It was required that min(v1, v2)/max(v1, v2) . 0.97.

Let

g ¼ 4
s2
A

Xq
m¼1

fmð12 fmÞa2
m (B3)

denote the proportion of the genetic variance explained by the QTL. In our main set of simulations we choose s2
e ¼ 1; g =

0.5, q= 20 QTL. For the comparison of one- and two-stage association mapping, we choose g = 0.75, q= 10. To achieve the
desired level of heritability (for given g and s2

e ¼ 1), we set s2
A ¼ h2ðn21Þ=ðð12 h2ÞnÞ and s2

a ¼ ð12 gÞs2
A; and a1, . . . , aq

were chosen equally large, such that 4qfmð12 fmÞa2
m ¼ gs2

A for each m. The QTL effects were given random signs. In File S4
we repeat the simulations for g = 0.1 and q = 1.

For the purpose of genomic prediction, 50 additional genotypes were drawn randomly from the same subpopulation of
the RegMap. These were assigned only genotypic values, defined as the sum of QTL effects

Pq
m¼1xi;mam and polygenic effects

gi (i = 201, . . . , 250). The polygenic effects were simulated such that ðg1; . . . ; g250Þt � Nð0;s2
aKtotalÞ; Ktotal being the kinship

matrix of the training and validation sets combined.

Appendix C

Genomic Prediction with G-BLUP

Genomic prediction with G-BLUP relies on the same models used for marker-based estimation of heritability and can be
based on individual plant data (one-stage) or genotypic means (two-stage). We now provide the expressions for one- and
two-stage G-BLUP, which are based on models (A5) and (A9) in Appendix A.

One- and two-stage G-BLUP for the training and validation sets
First we consider the G-BLUP for the training set, for which phenotypic observations are available. Including the intercept in
the design matrix, model (A5) can be rewritten as

Y ¼ Xbþ ZGþ E; (C1)

where N is the total number of individuals and Z is the N 3 n incidence matrix assigning individuals to genotypes. The BLUP
of G = (G1, . . . , Gn)t and the BLUE of b are given by

Ĝ ¼ d̂KZt
�
d̂ZKZt þ IN

	21�
Y 2Xb̂

	
; b̂ ¼

�
Xt
�
d̂ZKZt þ IN

	21
X
�21

Xt
�
d̂ZKZt þ IN

	21
Y ; (C2)

where N is the total number of individuals, Z is the N 3 n incidence matrix assigning individuals to genotypes, and
d̂ ¼ ŝ2

A=ŝ
2
E: Numerically Ĝ and b̂ can be more conveniently obtained by solving the mixed-model equations (see, e.g.,

396 W. Kruijer et al.

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.167916/-/DC1/genetics.114.167916-9.pdf


Henderson 1975 or Robinson 1991). Similar expressions hold for predictions based on the genotypic means following model
(A9),

Ĝ ¼ d̂K
�
d̂K þ R

	21ðY 2 1nm̂Þ; m̂ ¼
�
1tn
�
d̂K þ R

	21
1n

�21

1tn
�
d̂K þ R

	21
Y ; (C3)

where, as in (A9), Y denotes the vector of genotypic means obtained from preliminary linear model analysis (not necessarily
the arithmetic averages). Since we assume that all covariates have been accounted for already in this preliminary analysis,
the only fixed effect in (C3) is an intercept, with design matrix X = 1n.

Assuming the one-stage model (C1) and b̂ given by (C2), the genetic effects Gpred = (Gn+1, . . . , Gn+m)t of m unobserved
(but genotyped) genotypes can be predicted by the conditional means

Ĝ
ð1Þ
pred :¼ E

�
Gpred



Y� ¼ d̂Kpred:obsZ
t
�
d̂ZKZt þ IN

	21�
Y 2Xb̂

	
; (C4)

where Kpred.obs is the m3 n matrix of kinship coefficients for the unobserved vs. observed genotypes. Assuming the two-stage
model (A9) and m̂ given by (C3), the predictor is given by

Ĝ
ð2Þ
pred ¼ d̂Kpred:obs

�
d̂K þ R

	21ðY 2 1nm̂Þ: (C5)

Prediction of new observations and cross-validation
For new observations Ypred at the individual plant level, we have the one-stage predictor

Ŷ
ð1Þ
pred ¼ Xpredb̂þ ZpredĜ

ð1Þ
pred; (C6)

where Xpred and Zpred are the corresponding design matrices. For predictions with genotypic means, we replace Ĝ
ð1Þ
pred by Ĝ

ð2Þ
pred

and b by the estimate obtained within the linear model (A6) in the preliminary stage.

Appendix D

Genome-Wide Association Studies

In mixed-model-based GWAS (Kang et al. 2010; Lippert et al. 2011; Lipka et al. 2012; Zhou and Stephens 2012) the
phenotype of genotype i is modeled as

Yi ¼ mþ xig þ Gi þ Ei; (D1)

where xi is the marker score, g is the marker effect, and the genotypic effects G = (G1, . . . , Gn) follow a Nð0;s2
AKÞ distri-

bution. This model assumes a single observation per genotype. If observations on genetically identical individuals are
available, the Yi’s can be replaced by genotypic means ĝi; as in (A7)–(A9). Model (D1) then generalizes to

ĝi ¼ mþ xig þ Gi þ Ei; G � N
�
0;s2

AK
�
; E � N

�
0;s2

ER
�
: (D2)

This amounts to a two-stage approach: first the genotypic means are calculated using (A7), and next association mapping is
performed following (D2). In practice a GWAS is often performed on the arithmetic averages Yi; which implicitly assumes
a balanced completely randomized design, without any missing values or replicate effects. Here we use the more general
model (D2). Apart from the additional marker effect, this is the same model we used in (A9) to construct the heritability es-
timate ĥ

2
m:

Alternatively, association mapping can be based on the one-stage model

Yi;j ¼ mþ xig þ ðXCÞi;j  bþ Gi þ Ei;j; (D3)

where the term (XC)i, jbmodels additional covariates, as in (A7). In the two-stage GWAS, this information is accounted for in
the genotypic means ĝi: In models (D2) and (D3) we test the hypothesis g = 0 using the F-test, conditional on estimates of
the variance components obtained from a model without markers (Kang et al. 2010). When marker effects are small, these
estimates are a good approximation of the exact estimates, obtained when genetic and residual variances are reestimated for
each marker.
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Appendix E

Phenotypic Data

Collection of phenotypic data
For the two flowering traits from Atwell et al. (2010) (LDV and LD), details can be found in the original publication. In the
case of LD, all plants that had not flowered by the end of the experiment were given a phenotypic value of 200 days. The leaf
area trait [LA(S)/LA(H)] was measured in two separate experiments on the Swedish RegMap and the HapMap, using the
same phenotyping platform. The plants were imaged top down for projected leaf area every day. The images were taken
using near-infrared light (790 nm) to not influence the photoperiod during the night measurements. In our final experiment,
BT and LW were measured for the HapMap. BT was noted as the number of days after vernalization on which the plant
started to bolt. LW was measured on photographs taken from the longest leaf 2 weeks after flowering.

Plant growth conditions
In the leaf area experiments, seeds from the Arabidopsis Swedish RegMap (298 accessions) and the Arabidopsis HapMap
(350 accessions) were stratified at 4� for 4 days and sown on Rockwool blocks that had been covered with a black foamed
PVC sheet to prevent algal growth and provide a uniform background for automated image analysis. The growth conditions
were a light intensity of 200 mmol�m22�sec21, 10-hr short day, 20�/18� day/night cycle, and 70% relative humidity (RH). In
the experiment measuring BT and LW on the HapMap, seeds were sown on filter paper with demi water and stratified at 4� in
dark conditions for 5 days. Following stratification, seeds were transferred to a culture room (16-hr LD, 24�) to induce seed
germination for 42 hr. Germinating seeds were then transplanted to wet Rockwool blocks of 4 3 4 cm in a climate chamber
with a light intensity of 125 mmol�m22�sec21 16-hr LD, 20�/18� day/ night cycle, and 70% RH. All plants were watered every
morning for 5 min at 9 AM with 1/1000 Hyponex solution (Hyponex, Osaka, Japan). Nineteen days after germination, all
plants were vernalized for 6 weeks in a cold room (12 hr light, 4�). After the 6-week vernalization period plants were
transferred back to the same climate chamber in the same order, but given more space to grow.

Genotypic means
All experiments were laid out as randomized complete block designs, apart from the final HapMap experiment (BT and LW),
where the same randomization was used within each replicate. In all experiments we included a replicate (complete block)
effect. The numbers of replicates in the different experiments were six (LD and LDV), four [LA(S)/LA(H)], and three (BT and
LW). Due to nongerminating seeds and dead plants, some accessions had lower numbers of replicates. For the leaf area
experiments [LA(S)/LA(H)] we additionally included a row and column effect to model the within-image position of each
plant (x = 1, 2, 3 and y = 1, 2, 3, 4). These factors correct for technical artifacts, which are known to be consistent across
replicates.
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File S1: confidence intervals for broad-sense heritability

Confidence intervals for the broad-sense heritability estimates obtain from the ANOVA mean sums of squares
are traditionally obtained from the ratio F = MS(G)/MS(E) and the quantiles of the F-distribution with the
corresponding degrees of freedom. Given n genotypes with r1, . . . , rn replicates, the intervals are given by

F/Fdf1,df2,0.95 − 1

F/Fdf1,df2,0.95 + r̄ − 1
< H2 <

F/Fdf1,df2,0.05 − 1

F/Fdf1,df2,0.05 + r̄ − 1
,

where df1 = n− 1, df2 =
∑

(ri− 1) and r̄ = (n− 1)−1(
∑
ri− (

∑
r2i )/(

∑
ri)). In case of a balanced design with

ri = r replicates, this reduces to r̄ = r and df2 = n(r − 1). See [1] (p.563) or [2].
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File S2: analysis of flowering traits of [3]

Our broad-sense heritability estimates differ from those reported in Supplementary table 7 of [3], for the following
three reasons. First, the broad-sense heritability estimates in [3] were calculated using the formula

MS(G)

MS(G) +MS(E)
. (1)

Although this quantity may be an adequate criterion to compare heritabilities of traits within the same experi-
ment (as long as they have the same number of replicates), this is a biased estimator of broad-sense-heritability.
Since the expectation of MS(G) is rσ2

G +σ2
E , MS(G)/(MS(G)+MS(E)) will tend to overestimate heritability.

The usual estimator defined in the materials and methods section is also biased, but this bias is usually small,
and (in contrast to (1)) tends to zero when the number of genotypes increases ([4], [2]).

Second, broad-sense heritability estimates in [3] were based on more accessions: 189 for LDV and 186 for
LD. To allow a direct comparison with mixed model analysis we restricted our analysis to genotyped accessions,
excluding 21 accessions for LDV and for 19 LD. This had little impact on heritability estimates.

Third, the analysis of variance in [3] did not include a replicate effect. In our analysis, the mean sums
of squares for replicates removes some environmental variance, therefore giving higher estimates than in an
analysis without a replicate effect. This however did not compensate for the use of (1); hence our heritability
estimates are lower than those reported in [3].
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File S3: the likelihood is constant for a kinship matrix with compound
symmetry structure

Mixed model based estimation of heritability using genotypic means may become problematic when the sample
size is small and the kinship matrix is close to compound symmetry, i.e. the structure where all off-diagonal
elements are equal. Here we show that in the case the kinship matrix is exactly compound symmetry, the
likelihood is constant in η = σ2

E/σ
2
A. We use the notation η to avoid confusion with δ = σ2

A/σ
2
E , used in our

results on genomic prediction. We write 1n for the n × 1 column vector of ones, and In for the n-dimensional
identity matrix. Finally, let Jn be the n× n matrix of ones.

Suppose that K = In + aJn, for some a > 0. The key observation is that the covariance matrix of the data
can be written as

Σ = σ2
AK + σ2

EIn = σ̃2
AK̃ + σ̃2

EIn = σ̃2
A(K̃ + η̃In),

where σ̃2
A = σ2

A, σ̃2
E = σ2

A + σ2
E , K̃ = aJn = a1n1tn and η̃ = (σ2

A + σ2
E)/σ2

A > 0. We can then directly apply the
results in section 3 of [5], with (in their notation) k = 1, d = 1 and X = 1n (we only include an intercept, and
no marker effect), and replacing σ2

A, σ2
E , η and K by respectively σ̃2

A, σ̃2
E , η̃ and K̃. In particular, we have the

spectral decomposition

K̃ = USU t = [U1, U2]

[
S1 0
0 S2

]
[U1, U2]t

=

 n−
1
2 0 . . . 0

...
...

...

n−
1
2 0 . . . 0




na 0 . . . 0
0 0 . . . 0
...

. . .
...

0 . . . . . . 0


 n−

1
2 . . . n−

1
2

0 . . . 0
0 . . . 0

 ,

i.e. the only non-zero eigenvalue of K̃ is an, with eigenvector (n−
1
2 , . . . , n−

1
2 ).

For this choice of X and K̃, the expressions for the (RE)ML estimates of β and σ̃2
A given in sections 3.2 and

4 of [5] greatly simplify: β̂ = ȳ and the REML-estimate of σ̃2
A is

∑n
i=1(yi − ȳ)2/(η̃(n− 1)). The extra terms

1

2

(
d log(2πσ̃2

A) + log |XtX| − log |Xt(K̃ + η̃In)−1X|
)

in the REML-log-likelihood (see the first equation in section 4 of [5]), now equal

1

2

(
d log(2πσ̃2

A) + log n− log

(
n

na+ η̃

))
.

Combining this with their equation (3.7), it follows that the REML-log-likelihood is constant in η̃ = (σ2
A +

σ2
E)/σ2

A > 0, and hence also constant in η = η̃ − 1 = σ2
E/σ

2
A.
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File S4: Simulation results for a different genetic architecture.

Table 1: Comparison of the marker-based estimators heritability estimators h2r and h2m for simu-
lated data. We simulated 5000 traits, for random samples of 200 accessions drawn from the Structured regmap
and Hapmap. A single QTL was simulated, which explained 90 percent of the genetic variance. The simulated
heritability was 0.2, 0.5 and 0.8. Standard errors are given relative to those of the broad sense heritability
estimator (H2).

bias standard error relative standard error
Structured regmap

h2 = 0.2
broad-sense (H2) -0.00127 0.04787 1.00000
replicates (h2r) -0.00066 0.05102 1.06585
means (h2m) 0.00782 0.08626 1.80191

h2 = 0.5
broad-sense (H2) -0.00279 0.04500 1.00000
replicates (h2r) -0.00571 0.07001 1.55569
means (h2m) 0.01295 0.16461 3.65791

h2 = 0.8
broad-sense (H2) -0.00257 0.02458 1.00000
replicates (h2r) -0.01163 0.05404 2.19850
means (h2m) 0.00337 0.20855 8.48496
Hapmap

h2 = 0.2
broad-sense (H2) -0.00110 0.04344 1.00000
replicates (h2r) -0.00098 0.04320 0.99453
means (h2m) 0.06629 0.26168 6.02448

h2 = 0.5
broad-sense (H2) -0.00123 0.03437 1.00000
replicates (h2r) -0.00187 0.03736 1.08695
means (h2m) 0.03062 0.33527 9.75477

h2 = 0.8
broad-sense (H2) -0.00027 0.01633 1.00000
replicates (h2r) -0.00106 0.02029 1.24235
means (h2m) -0.07852 0.33486 20.50621
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Table 2: Marker-based estimation of heritability: width and coverage confidence intervals obtained
from the individual plant data and the genotypic means. Results for broad sense heritability intervals
are reported for comparison. We simulated 5000 traits, for random samples of 200 accessions drawn from the
structured regmap (top) and Hapmap (bottom). A single QTL was simulated, which explained 90 percent of
the genetic variance. The simulated heritability was 0.2, 0.5 and 0.8.

coverage interval width
Structured regmap

h2 = 0.2
broad-sense 0.940 0.178
replicates (standard) 0.945 0.201
replicates (log-transformed) 0.962 0.202
means (standard) 0.911 0.315
means (log-transformed) 0.960 0.321

h2 = 0.5
broad-sense 0.926 0.160
replicates (standard) 0.837 0.194
replicates (log-transformed) 0.847 0.192
means (standard) 0.814 0.446
means (log-transformed) 0.886 0.427

h2 = 0.8
broad-sense 0.914 0.084
replicates (standard) 0.674 0.097
replicates (log-transformed) 0.666 0.097
means (standard) 0.714 0.437
means (log-transformed) 0.840 0.547
Hapmap

h2 = 0.2
broad-sense 0.961 0.178
replicates (standard) 0.961 0.181
replicates (log-transformed) 0.972 0.182
means (standard) 0.807 0.537
means (log-transformed) 0.899 0.675

h2 = 0.5
broad-sense 0.979 0.160
replicates (standard) 0.971 0.164
replicates (log-transformed) 0.975 0.163
means (standard) 0.800 0.766
means (log-transformed) 0.967 0.819

h2 = 0.8
broad-sense 0.990 0.084
replicates (standard) 0.963 0.085
replicates (log-transformed) 0.964 0.085
means (standard) 0.820 0.840
means (log-transformed) 0.849 0.903
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Figure 1: Heritability estimates for 5000 simulated traits for random samples of 200 accessions
drawn from the Structured regmap (top panel) and the Hapmap (bottom panel). 1 QTL was
simulated, which explained 90% of the genetic variance. The simulated heritability was 0.2 (left column), 0.5
(middle column) and 0.8 (right column). Within each panel, the first row shows the ANOVA-based estimates
of broad-sense heritability, the second row the mixed model based estimates based on the individual data, and
the third row the mixed model based estimates based on genotypic means.
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File S5: prediction error variance in the training- and validation set.

We assume a balanced and completely random design, with n genotypes and r replicates. Given the model
yi,j = µ + Gi + Ei,j , the best linear unbiased predictor (BLUP) of G = (G1, . . . , Gn)t and the best linear
unbiased estimator (BLUE) of µ are given by

Ĝ = δKZt(δZKZt + IN )−1(y − µ̂1N ), µ̂ =
1tN (δZKZt + IN )−1y

1tN (δZKZt + IN )−11N
, (2)

where δ = σ2
A/σ

2
E is the shrinkage parameter, N is the total number of individuals and Z is the N ×n incidence

matrix assigning individuals to genotypes. See e.g. [6] or [7], or equation (23) in the present work (Appendix
C). The parameter δ = h2/(1 − h2) is a function of the heritability, and determines the extent to which the
phenotypic data y are ’shrunk’ towards zero. When the heritability is high, δ is large, and there is little shrinkage,
i.e. Ĝ will be close to the observed phenotypic observations y. For low heritability, δ is small, and y will be
shrunk towards the vector of zeros. When BLUPs are based on the genotypic means the same expressions hold,
with N = n and Z = In, and Ĝ = δrK(δrK + In)−1((ȳ1, . . . , ȳn)t − µ̂1n). Since the noise level is reduced from
σ2
E to r−1σ2

E , the shrinkage parameter δ becomes σ2
A/(r

−1σ2
E).

The preceding expressions assume the shrinkage parameter to be known, while it is usually estimated from
the data. As a consequence, the standard error of µ̂ and prediction error variance of Ĝ obtained by setting
δ = δ̂ = ĥ2/(1 − ĥ2) in (2) are larger than what would be obtained when δ is known ([8], [9]). Before we give
examples of too much or too little shrinkage (section ), we first give expressions for the prediction error variance

for the training and validation set, for the case when heritability is known (δ̂ = δ). These can be derived as a
special case of the more general expressions in e.g. [6] or [7].

Prediction error variance when δ = δ̂

First we consider the genetic effects G = (G1, . . . , Gn)t of the genotypes in the training sample. If we assume
that G ∼ N(0, σ2

AK) (i.e. in equation (21) in the main text (Appendix B), γ and the QTL-effects αm are zero),
the prediction error variance is given by the diagonal elements of

E(Ĝ−G)(Ĝ−G)t = (ZtZ + δ−1K−1 − Jn)−1, (3)

where Z is the N × n incidence matrix assigning plants to genotypes, and Jn is the n× n matrix with identical
elements 1/n. In case the phenotypic data consists of genotypic means, N = n. For efficient computation, see
[10] [11].

The genetic effects Gpred = (Gn+1, . . . , Gn+m)t of m unobserved (but genotyped) genotypes can be predicted
with the conditional mean

Ĝpred := E[Gpred|y] = δ̂Kpred.obsZ
t(δ̂ZKZt + IN )−1(y − µ̂1N ), (4)

where Kpred.obs is the m×n matrix of kinship coefficients for the unobserved versus observed genotypes. To give

expressions for the prediction error variance E(Ĝpred −Gpred)2i′ (i′ = 1, . . . ,m) we assume again that γ = 0, all
genetic signal being polygenic. Writing Kpred.pred for the m×m kinship matrix of the unobserved genotypes, it
is assumed that the kinship matrix is the (n+m)× (n+m) block matrix with K and Kpred.pred on the diagonal
and off-diagonal blocks Kpred.obs and Kt

pred.obs. Then the conditional distribution of Gpred|G is

Gpred|G ∼ N
(
Kpred.obsK

−1G, σ2
A

(
Kpred.pred −Kpred.obsK

−1Kt
pred.obs

))
.

Since Ĝpred = Kpred.obsK
−1Ĝ (by comparing (2) and (4)), it follows that

(Ĝpred −Gpred)|(Ĝ−G) = Kpred.obsK
−1(Ĝ−G)− Y,

where Y ∼ N
(
0, σ2

A(Kpred.pred −Kpred.obsK
−1Kt

pred.obs)
)
.

Consequently, the prediction error variances E(Ĝpred −Gpred)2i are the diagonal elements of

E(Ĝpred −Gpred)(Ĝpred −Gpred)t = E
[
E(Ĝpred −Gpred)(Ĝpred −Gpred)t | (Ĝ−G)

]
= (Kpred.obsK

−1)
[
E(Ĝ−G)(Ĝ−G)t

]
K−1Kt

pred.obs

+ σ2
A(Kpred.pred −Kpred.obsK

−1Kt
pred.obs).

(5)

Hence, the prediction error variance for the validation set contains a term depending on δ−1 = σ2
E/σ

2
A (see (3)),

as well as a term which depends only on the genetic variance σA.
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Prediction error variance with incorrect shrinkage (δ 6= δ̂)

For the case that the amount of shrinkage is not chosen correctly (δ̂ 6= δ = σ2
A/(r

−1σ2
E)), we now give an

expression for the prediction error variance for the training set based on genotypic means, under the additional
assumption that µ is known to be zero. The BLUP for G then simplifies to

Ĝ = δ̂K(δ̂K + In)−1ȳ, (6)

where we recall that we still assume a balanced and completely random design. Hence ȳi = Gi + Ēi, with
Ēi ∼ N(0, r−1σ2

E) and G = (G1, . . . , Gn)t ∼ N(0, σ2
AK). Since ȳ = (ȳ1, . . . , ȳn)t ∼ N(0, σ2

AK + r−1σ2
EIn) =

N(0, σ2
E(δK + r−1In), the variance-covariance matrix of Ĝ−G equals

Var(Ĝ−G) = σ2
AK − 2δ̂K(δ̂K + In)−1σ2

AK + δ̂K(δ̂K + In)−1(δK + r−1In)(δ̂K + In)−1δ̂Kσ2
E ,

where we used that (by the independence of G and E)

Cov(G, Ĝ) = Cov(G, δ̂K(δ̂K + In)−1G) = δ̂K(δ̂K + In)−1σ2
AK

and that (using ȳ ∼ N(0, σ2
E(δK + r−1In) and the symmetry of K and In)

Ĝ = δ̂K(δ̂K + In)−1ȳ ∼ N(0, δ̂K(δ̂K + In)−1(δK + r−1In)(δ̂K + In)−1δ̂Kσ2
E).

In particular, when δ̂ =∞ (i.e. ĥ2 = 1), there is no shrinkage, and Ĝ = ȳ. The prediction error variance is
then completely determined by the residual variance, since Ĝ−G = ȳ −G = Ē, and

E(Ĝ−G)(Ĝ−G)t = r−1σ2
EIn.

On the other hand, when δ̂ = 0 (i.e. ĥ2 = 0), there is ’total’ shrinkage towards zero, i.e. Ĝ = 0, and

E(Ĝ−G)(Ĝ−G)t = E(GGt) = σ2
AK.

This explains the asymmetry in the observed accuracy in our simulations, in particular when h2 = 0.5: when the
number of replicates r is sufficiently large, overestimating the heritability will have less impact on the prediction
error variance (and hence accuracy) than underestimating it.
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Figure S1: histograms of the off-diagonal kinship coefficients, for 4
sub-populations of the regmap.
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Figure S1 : Off-diagonal coefficients of the genetic relatedness matrix (equation (1) in the main
text), for 4 sub-populations of the regmap.
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Figure S2: histograms of the off-diagonal identity-by-state coeffi-
cients, for 4 sub-populations of the regmap.
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Figure S2 : Off-diagonal identity-by-state kinship coefficients, for 4 sub-populations of the regmap.
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Figure S3

Swedish regmap
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French regmap
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Figure S3 : Heritability estimates for 5000 simulated traits for random samples of 200 accessions
drawn from the Swedish regmap (top panel) and the French regmap (bottom panel). 20 QTLs were
simulated, which explained half of the genetic variance. The simulated heritability was 0.2 (left column), 0.5
(middle column) and 0.8 (right column). Within each panel, the first row shows the ANOVA-based estimates
of broad-sense heritability, the second row the mixed model based estimates based on the individual data, and
the third row the mixed model based estimates based on genotypic means.
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Figure S4: Monotone likelihood
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Figure S4 : Log-likelihood as function of the heritability, for one of the 5000 simulated traits from
Figure 1 (in the main text), for accessions drawn from the HapMap and a simulated heritability

of 0.5 Here we choose one of the 882 traits (17.6%) for which the heritability estimate based on means (ĥ2m)

was larger than 0.99. For these traits, the heritability estimate based on replicates (ĥ2r) was on average 0.502.

For the trait shown here, ĥ2m = 0.5087 (left) and ĥ2m = 0.9999 (right).
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Figure S5

Heritability
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Figure S5 : Heritability estimates and confidence intervals for two flowering traits from [3] (LDV
and LD), and 4 traits from new experiments. Three estimators were used: the ANOVA-based estimator of

broad-sense heritability (Ĥ2, green), the marker-based estimator using individual plant data (ĥ2r, blue) and the

marker-based estimator using genotypic means (ĥ2m, brown). Traits from different experiments are separated by
the black horizontal lines. Trait abbreviations are given in Table 1 of the main text. The LD-adjusted kinship
matrix was computed using version 2.0 of the LDAK-software [12].We used sections of 1000 SNPs, with a buffer
of 200. The maximum distance considered for LD was 250kb; the ’halflife’ parameter (modeling LD-decay) was
set to 20kb.
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Figure S6
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Figure S6 : The first two principal component of the genetic markers for the panel of [3], restricted
for the 168 accessions for which the trait LDV was measured. On the very right are the accessions
with ecotype ID’s 8233, 7526 and 7515.
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Figure S7
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Figure S7 : Rank correlation (Spearman ρ2) between effect-size estimates obtained with a one-
and two-stage approach, versus the heritability estimates obtained in the two-stage approach
(ĥ2m). 1000 traits were simulated for the Structured RegMap (first row) and the HapMap (second row), with
a simulated heritability of 0.5. 10 QTLs were simulated, which explained 75% of the genetic variance. Left
column: rank correlation between LOD-scores of all SNPs. Middle column: rank correlation between effect-size
estimates for all SNPs. Right column: rank correlation between effect-size estimates for the 10 simulated QTLs.
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Table S1: ecotype-IDs of the structured regmap.

Accession information was taken from the Bergelson lab
(http://bergelson.uchicago.edu/Members/mhorton/resources/snps/accession_coordinates.xls). The
following table contains geographic information for 242 of the 250 accessions from our structured regmap.
Geographic information was not available for eight accessions: 6909, 8428, 5712, 6143, 5708, 5730, 5829 and
8254. Accessions were selected based on the variance of the off-diagonal kinship coefficients of each row: the
accessions corresponding to the rows with the 250 highest variances were chosen.

country number of accessions
Czech Republic 7
Finland 2
France 2
Ireland 2
Sweden 83
Tajikistan 3
United Kingdom 40
United States of America 103
unknown 8

ecotype-id country latitude longitude population native-name
1716 United States of America 42.405 -85.398 Americas KBS-Mac-8
1718 United States of America 42.405 -85.398 Americas KBS-Mac-15
1719 United States of America 42.405 -85.398 Americas KBS-Mac-16
1722 United States of America 42.405 -85.398 Americas KBS-Mac-23
1724 United States of America 42.405 -85.398 Americas KBS-Mac-28
1726 United States of America 42.405 -85.398 Americas KBS-Mac-33
1729 United States of America 42.405 -85.398 Americas KBS-Mac-41
1730 United States of America 42.405 -85.398 Americas KBS-Mac-43
1733 United States of America 42.405 -85.398 Americas KBS-Mac-53
1736 United States of America 42.405 -85.398 Americas KBS-Mac-58
1738 United States of America 42.405 -85.398 Americas KBS-Mac-64
1740 United States of America 42.405 -85.398 Americas KBS-Mac-72
1743 United States of America 42.405 -85.398 Americas KBS-Mac-75
1744 United States of America 42.405 -85.398 Americas KBS-Mac-76
1745 United States of America 42.405 -85.398 Americas KBS-Mac-78
1749 United States of America 42.405 -85.398 Americas KBS-Mac-88
1750 United States of America 42.405 -85.398 Americas KBS-Mac-89
1751 United States of America 42.405 -85.398 Americas KBS-Mac-91
1752 United States of America 42.405 -85.398 Americas KBS-Mac-95
1753 United States of America 42.405 -85.398 Americas KBS-Mac-96
1782 United States of America 42.184 -86.358 Americas Ker-38
1829 United States of America 42.051 -86.509 Americas Mdn-1
1850 United States of America 43.595 -86.2657 Americas MNF-Pot-8
1853 United States of America 43.595 -86.2657 Americas MNF-Pot-21
1858 United States of America 43.595 -86.2657 Americas MNF-Pot-47
1864 United States of America 43.595 -86.2657 Americas MNF-Pot-60
1871 United States of America 43.595 -86.2657 Americas MNF-Pot-76
1872 United States of America 43.595 -86.2657 Americas MNF-Pot-75
1873 United States of America 43.595 -86.2657 Americas MNF-Pot-79
1874 United States of America 43.595 -86.2657 Americas MNF-Pot-80
1938 United States of America 43.5251 -86.1843 Americas MNF-Che-41
1941 United States of America 43.5251 -86.1843 Americas MNF-Che-45
1948 United States of America 43.5251 -86.1843 Americas MNF-Che-58
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1960 United States of America 43.5187 -86.1739 Americas MNF-Jac-22
1963 United States of America 43.5187 -86.1739 Americas MNF-Jac-26
2057 United States of America 42.166 -86.412 Americas Map-42
2148 United States of America 42.148 -86.431 Americas Paw-1
2150 United States of America 42.148 -86.431 Americas Paw-3
2157 United States of America 42.148 -86.431 Americas Paw-11
2160 United States of America 42.148 -86.431 Americas Paw-14
2180 United States of America 42.148 -86.431 Americas Paw-40
2201 United States of America 43.7623 -86.3929 Americas Pent-22
2204 United States of America 43.7623 -86.3929 Americas Pent-30
2214 United States of America 43.7623 -86.3929 Americas Pent-49
2274 United States of America 43.665 -86.496 Americas SLSP-30
2280 United States of America 43.665 -86.496 Americas SLSP-58
2294 United States of America 42.03 -86.514 Americas Ste-9
2300 United States of America 42.03 -86.514 Americas Ste-15
6927 United States of America 41.2816 -86.621 Americas Kno-10
6983 United States of America 37.45 -119.35 Americas Yo-0
7033 United States of America 41.3599 -122.755 Americas Buckhorn Pass
7515 United States of America 41.5609 -86.4251 Americas RRS-10
7523 United States of America 42.0945 -86.3253 Americas Pna-17
7524 United States of America 42.036 -86.511 Americas Rmx-A02
7525 United States of America 42.036 -86.511 Americas Rmx-A180
7526 United States of America 42.0945 -86.3253 Americas Pna-10
7566 United States of America 42.093 -86.359 Americas 627ME-13Y1
7578 United States of America 42.0945 -86.3253 Americas 627PNA-1Y1
7580 United States of America 42.0945 -86.3253 Americas 627PNA-2B3
7584 United States of America 42.0945 -86.3253 Americas 627PNA-3M4
7787 United States of America 41.273 -86.625 Americas KNO2.77
7837 United States of America 42.093 -86.359 Americas ME3.41
7847 United States of America 42.093 -86.359 Americas ME3.51
7867 United States of America 42.093 -86.359 Americas ME4.20
8122 United States of America 42.036 -86.511 Americas RMX3.11
8233 United States of America 41.1876 -87.1923 Americas Dem-4
8557 United States of America 42.093 -86.359 Americas 328ME032
8612 United States of America 42.093 -86.359 Americas 11ME1.34
8616 United States of America 42.093 -86.359 Americas 11ME1.41
8619 United States of America 42.093 -86.359 Americas 11ME1.44
8629 United States of America 42.093 -86.359 Americas 11ME2.10
8673 United States of America 42.0945 -86.3253 Americas 328PNA032
8724 United States of America 42.0945 -86.3253 Americas 11PNA1.15
8725 United States of America 42.0945 -86.3253 Americas 11PNA1.4
8727 United States of America 42.0945 -86.3253 Americas 11PNA1.6
8730 United States of America 42.0945 -86.3253 Americas 11PNA1.9
8760 United States of America 42.0945 -86.3253 Americas 11PNA3.19
8770 United States of America 42.0945 -86.3253 Americas 11PNA3.65
8777 United States of America 42.0945 -86.3253 Americas 11PNA3.75
8787 United States of America 42.0945 -86.3253 Americas 11PNA3.86
8796 United States of America 42.0945 -86.3253 Americas 11PNA4.101
8824 United States of America 42.0945 -86.3253 Americas 11PNA4.129
8954 United States of America 42.036 -86.511 Americas RMX413.1
8961 United States of America 42.036 -86.511 Americas RMX413.16
8965 United States of America 42.036 -86.511 Americas RMX413.2
8966 United States of America 42.036 -86.511 Americas RMX413.20
8967 United States of America 42.036 -86.511 Americas RMX413.21
8969 United States of America 42.036 -86.511 Americas RMX413.24
8970 United States of America 42.036 -86.511 Americas RMX413.25
8973 United States of America 42.036 -86.511 Americas RMX413.29
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8975 United States of America 42.036 -86.511 Americas RMX413.30
8976 United States of America 42.036 -86.511 Americas RMX413.31
8977 United States of America 42.036 -86.511 Americas RMX413.32
8992 United States of America 42.036 -86.511 Americas RMX413.48
8996 United States of America 42.036 -86.511 Americas RMX413.51
9001 United States of America 42.036 -86.511 Americas RMX413.57
9004 United States of America 42.036 -86.511 Americas RMX413.6
9006 United States of America 42.036 -86.511 Americas RMX413.62
9007 United States of America 42.036 -86.511 Americas RMX413.63
9012 United States of America 42.036 -86.511 Americas RMX413.7
9041 United States of America 42.039 -86.5154 Americas RMXF413.10
9045 United States of America 42.039 -86.5154 Americas RMXF413.15
9053 United States of America 42.039 -86.5154 Americas RMXF413.6
5991 Czech Republic 49.4112 16.2815 Austria-Hungary DraIV 6-20
5997 Czech Republic 49.4112 16.2815 Austria-Hungary DraIV 6-27
6427 Czech Republic 49.3853 16.2544 Austria-Hungary ZdrI 2-1
6435 Czech Republic 49.3853 16.2544 Austria-Hungary ZdrI 2-10
6444 Czech Republic 49.3853 16.2544 Austria-Hungary ZdrI 2-20
6903 Czech Republic 49.4013 16.2326 Austria-Hungary Bor-4
7461 Czech Republic 49 15 Austria-Hungary H55
4632 United Kingdom 50.4 -4.7 British-Isles UKSW06-025
4675 United Kingdom 50.4 -4.7 British-Isles UKSW06-070
4862 United Kingdom 50.3 -4.9 British-Isles UKSW06-262
5106 United Kingdom 51.3 0.5 British-Isles UKSE06-254
5133 United Kingdom 52.2 -1.7 British-Isles UKSE06-302
5207 United Kingdom 51.3 0.4 British-Isles UKSE06-429
5232 United Kingdom 51.2 0.4 British-Isles UKSE06-466
5292 United Kingdom 51.3 1.1 British-Isles UKSE06-556
5331 United Kingdom 51.1 0.4 British-Isles UKSE06-618
5341 United Kingdom 51.1 0.4 British-Isles UKSE06-628
5380 United Kingdom 54.4 -3 British-Isles UKNW06-059
5381 United Kingdom 54.4 -3 British-Isles UKNW06-060
5385 United Kingdom 54.4 -3 British-Isles UKNW06-078
5469 United Kingdom 54.4 -3 British-Isles UKNW06-210
5582 United Kingdom 54.7 -3.4 British-Isles UKNW06-410
5678 United Kingdom 54.6 -3.1 British-Isles UKNW99-025
5709 United Kingdom 54.6 -2.6 British-Isles UKID2
5719 Ireland 54.1335 -6.1667 British-Isles Bur-0
5720 United Kingdom 53.3 -1.6 British-Isles Cal-2
5723 United Kingdom 51.3 1 British-Isles Chr-1
5724 United Kingdom 51.4 0.1 British-Isles UKID17
5731 United Kingdom 54.9 -2.9 British-Isles Crl-1
5732 United Kingdom 54.9 -2.9 British-Isles UKID25
5737 United Kingdom 51.3 0.1 British-Isles UKID32
5758 United Kingdom 50.3 -5.2 British-Isles UKID53
5774 United Kingdom 51.1 0.6 British-Isles Sis-1
5780 United Kingdom 53.1 -1 British-Isles UKID75
5788 United Kingdom 50.8 -2 British-Isles UKID83
5792 United Kingdom 50.8 -0.7 British-Isles UKID87
5793 United Kingdom 51.3 0.6 British-Isles UKID88
5798 United Kingdom 53.1 -3.3 British-Isles UKID93
5804 United Kingdom 50.8 -1.1 British-Isles UKID100
5807 United Kingdom 51.8 -0.5 British-Isles UKID103
6905 Ireland 54.1 -6.2 British-Isles Bur-0
6923 United Kingdom 51.4083 -0.6383 British-Isles HR-10
6924 United Kingdom 51.4083 -0.6383 British-Isles HR-5
6944 United Kingdom 51.4083 -0.6383 British-Isles NFA-8
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7064 United Kingdom 51.3 1.1 British-Isles Cnt-1
7109 United Kingdom 51.3 0.5 British-Isles Ema-1
7483 United Kingdom 51.2878 0.0565 British-Isles PHW-14
9490 United Kingdom 55.9218 -3.17108 British-Isles 02B6
9504 United Kingdom 55.8877 -3.16377 British-Isles 12A1
6929 Tajikistan 38.48 68.49 Eastern-Range Kondara
6962 Tajikistan 38.35 68.48 Eastern-Range Shahdara
7168 Tajikistan 38.48 68.49 Eastern-Range Hodja-Obi-Garm
1247 Sweden 59.4333 17.0167 Fennoscandia Tos-31-374
1254 Sweden 59.4333 17.0167 Fennoscandia Tos-82-387
1409 Sweden 62.8 18.2 Fennoscandia Rd-38
1416 Sweden 62.8 18.2 Fennoscandia Rd-45
1435 Sweden 62.8 18.2 Fennoscandia Rd-17-319
1552 Sweden 63.0833 18.3667 Fennoscandia Sku-30
5835 Sweden 63.324 18.484 Fennoscandia Bil-3
5856 Sweden 63.0167 17.4914 Fennoscandia Dr-10
5860 Sweden 62.6814 18.0165 Fennoscandia Dra-3
6009 Sweden 62.877 18.177 Fennoscandia Eden-1
6010 Sweden 62.877 18.177 Fennoscandia Eden-5
6011 Sweden 62.877 18.177 Fennoscandia Eden-6
6012 Sweden 62.877 18.177 Fennoscandia Eden-7
6013 Sweden 62.877 18.177 Fennoscandia Eden-9
6016 Sweden 62.9 18.4 Fennoscandia Eds-1
6017 Sweden 62.9 18.4 Fennoscandia Eds-9
6024 Sweden 55.7509 13.3712 Fennoscandia Fly2-2
6025 Sweden 62.6437 17.7339 Fennoscandia Gro-3
6030 Sweden 62.806 18.1896 Fennoscandia Grn-5
6043 Sweden 62.801 18.079 Fennoscandia Lv-1
6046 Sweden 62.801 18.079 Fennoscandia Lv-5
6064 Sweden 62.9513 18.2763 Fennoscandia Nyl-2
6069 Sweden 62.9513 18.2763 Fennoscandia Nyl-7
6071 Sweden 62.9308 18.3448 Fennoscandia Omn-5
6077 Sweden 55.6942 13.4504 Fennoscandia Rev-3
6091 Sweden 55.6525 13.215 Fennoscandia T1010
6104 Sweden 55.7 13.2 Fennoscandia T1160
6118 Sweden 55.7 13.2 Fennoscandia T610
6154 Sweden 62.6422 17.7406 Fennoscandia TAA 04
6163 Sweden 62.6425 17.7356 Fennoscandia TAA 14
6166 Sweden 62.6425 17.7372 Fennoscandia TAA 17
6169 Sweden 62.8714 18.3447 Fennoscandia TD 01
6170 Sweden 62.8717 18.3442 Fennoscandia TD 02
6171 Sweden 62.8717 18.3444 Fennoscandia TD 03
6172 Sweden 62.8717 18.3436 Fennoscandia TD 04
6173 Sweden 62.8717 18.3419 Fennoscandia TD 05
6174 Sweden 62.8719 18.3422 Fennoscandia TD 06
6177 Sweden 62.6322 17.69 Fennoscandia TL 03
6180 Sweden 62.6322 17.6906 Fennoscandia TL 07
6184 Sweden 62.8892 18.4522 Fennoscandia TB 01
6209 Sweden 62.8836 18.1842 Fennoscandia TEDEN 02
6210 Sweden 62.8839 18.1836 Fennoscandia TEDEN 03
6212 Sweden 63.0175 18.3239 Fennoscandia TF 02
6214 Sweden 63.0175 18.3281 Fennoscandia TF 04
6215 Sweden 63.0172 18.3281 Fennoscandia TF 05
6216 Sweden 63.0167 18.3283 Fennoscandia TF 06
6217 Sweden 63.0169 18.3283 Fennoscandia TF 07
6218 Sweden 63.0172 18.3283 Fennoscandia TF 08
6220 Sweden 62.806 18.1896 Fennoscandia TGR 01
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6221 Sweden 62.806 18.1896 Fennoscandia TGR 02
6226 Sweden 62.7994 17.9033 Fennoscandia TH 08
6231 Sweden 62.96 18.2844 Fennoscandia TNY 04
6235 Sweden 62.9611 18.3589 Fennoscandia TOM 01
6236 Sweden 62.9617 18.36 Fennoscandia TOM 02
6237 Sweden 62.9619 18.35 Fennoscandia TOM 03
6238 Sweden 62.9619 18.35 Fennoscandia TOM 04
6240 Sweden 62.9622 18.35 Fennoscandia TOM 06
6241 Sweden 62.9614 18.3608 Fennoscandia TOM 07
6244 Sweden 62.9169 18.4728 Fennoscandia TR 01
6900 Sweden 63.324 18.484 Fennoscandia Bil-5
6901 Sweden 63.324 18.484 Fennoscandia Bil-7
6913 Sweden 62.877 18.177 Fennoscandia Eden-2
6917 Sweden 63.0165 18.3174 Fennoscandia Fb-2
6918 Sweden 63.0165 18.3174 Fennoscandia Fb-4
6968 Finland 60 23.5 Fennoscandia Tamm-2
6969 Finland 60 23.5 Fennoscandia Tamm-27
8218 Sweden 62.877 18.177 Fennoscandia Eden-4
8227 Sweden 62.7989 17.9103 Fennoscandia TH 03
8335 Sweden 55.71 13.2 Fennoscandia Lund
8376 Sweden 62.69 18 Fennoscandia Sanna-2
9321 Sweden 62.8622 18.336 Fennoscandia dal 1
9323 Sweden 62.8622 18.336 Fennoscandia dal 3
9332 Sweden 62.8698 18.381 Fennoscandia Bar 1
9354 Sweden 62.8762 18.1746 Fennoscandia Eden 15
9355 Sweden 62.8762 18.1746 Fennoscandia Eden 16
9356 Sweden 62.8762 18.1746 Fennoscandia Eden 17
9363 Sweden 62.9147 18.4045 Fennoscandia EdJ 2
9371 Sweden 63.016 18.3175 Fennoscandia FL 1
9378 Sweden 63.0165 18.3174 Fennoscandia FU 4
9386 Sweden 62.806 18.1896 Fennoscandia Grn 12
9388 Sweden 62.806 18.1896 Fennoscandia Grn 14
9427 Sweden 62.8815 18.4055 Fennoscandia Ns 2
9433 Sweden 62.9513 18.2763 Fennoscandia Nyl 13
9434 Sweden 62.8959 18.3659 Fennoscandia de 2
9471 Sweden 56.0648 13.9707 Fennoscandia UllA 1
171 France 47.3833 5.31667 France MIB-20
228 France 47.3833 5.31667 France MIB-9
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Table S2

Table S2 : Comparison of the marker-based estimators heritability estimators h2r and h2m for
simulated data. We simulated 5000 traits, for random samples of 200 accessions drawn from Swedish and
French regmap. 20 unlinked QTLs were simulated, which explained 50 percent of the genetic variance. The
simulated heritability was 0.2, 0.5 and 0.8. Standard errors are given relative to those of the broad sense
heritability estimator (H2).

bias standard error relative standard error
Swedish regmap

h2 = 0.2
broad-sense (H2) -0.00162 0.05227 1.00000
replicates (h2r) -0.00109 0.04991 0.95498
means (h2m) 0.01302 0.11018 2.10798

h2 = 0.5
broad-sense (H2) -0.00403 0.05373 1.00000
replicates (h2r) -0.00173 0.04506 0.83860
means (h2m) 0.01494 0.16662 3.10123

h2 = 0.8
broad-sense (H2) -0.00458 0.03130 1.00000
replicates (h2r) -0.00180 0.02319 0.74095
means (h2m) -0.00104 0.16227 5.18435
French regmap

h2 = 0.2
broad-sense (H2) -0.00183 0.04958 1.00000
replicates (h2r) -0.00196 0.04780 0.96421
means (h2m) 0.01306 0.12049 2.43043

h2 = 0.5
broad-sense (H2) -0.00396 0.04930 1.00000
replicates (h2r) -0.00396 0.04409 0.89431
means (h2m) 0.01952 0.17547 3.55941

h2 = 0.8
broad-sense (H2) -0.00341 0.02808 1.00000
replicates (h2r) -0.00236 0.02246 0.79988
means (h2m) 0.00202 0.16461 5.86175
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Table S3

Table S3: : Marker-based estimation of heritability: width and coverage confidence intervals
obtained from the individual plant data and the genotypic means. Results for broad sense heritability
intervals are reported for comparison. We simulated 5000 traits, for random samples of 200 accessions drawn
from the Swedish regmap (top) and French (bottom). 20 unlinked QTLs were simulated, which explained 50
percent of the genetic variance. The simulated heritability was 0.2, 0.5 and 0.8.

coverage interval width
Swedish regmap

h2 = 0.2
broad-sense 0.912 0.178
replicates (standard) 0.933 0.188
replicates (log-transformed) 0.961 0.189
means (standard) 0.899 0.381
means (log-transformed) 0.968 0.405

h2 = 0.5
broad-sense 0.864 0.160
replicates (standard) 0.946 0.176
replicates (log-transformed) 0.950 0.175
means (standard) 0.921 0.594
means (log-transformed) 0.970 0.560

h2 = 0.8
broad-sense 0.823 0.085
replicates (standard) 0.945 0.088
replicates (log-transformed) 0.947 0.088
means (standard) 0.960 0.635
means (log-transformed) 0.938 0.748
French regmap

h2 = 0.2
broad-sense 0.929 0.178
replicates (standard) 0.941 0.184
replicates (log-transformed) 0.962 0.185
means (standard) 0.898 0.396
means (log-transformed) 0.960 0.431

h2 = 0.5
broad-sense 0.898 0.160
replicates (standard) 0.953 0.173
replicates (log-transformed) 0.956 0.171
means (standard) 0.927 0.619
means (log-transformed) 0.976 0.585

h2 = 0.8
broad-sense 0.866 0.084
replicates (standard) 0.947 0.088
replicates (log-transformed) 0.947 0.088
means (standard) 0.966 0.652
means (log-transformed) 0.948 0.767
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Table S4

Table S4: : Heritability estimates and confidence intervals, for two flowering traits from [3] and
four traits measured in new experiments (trait abbreviations given in Table 1 of the main text).

trait replicates means broad-sense
LDV 0.829 (0.791,0.861) 0.631 (0.199,0.922) 0.858 (0.827,0.885)

LD 0.946 (0.933,0.957) 1.000 (0.000,1.000) 0.966 (0.958,0.973)
LA(S) 0.216 (0.153,0.297) 0.150 (0.040,0.424) 0.235 (0.167,0.306)
LA(H) 0.380 (0.319,0.445) 0.340 (0.090,0.729) 0.388 (0.327,0.451)

BT 0.948 (0.937,0.956) 1.000 (0.000,1.000) 0.956 (0.947,0.963)
LW 0.535 (0.473,0.596) 0.202 (0.029,0.682) 0.530 (0.468,0.589)

Three estimators were used: mixed model based on replicates (ĥ2r), mixed model based on genotypic means

(ĥ2m), and the usual ANOVA-based broad-sense heritability estimator (Ĥ2). An LD-adjusted kinship matrix

was used in the mixed model for ĥ2r and ĥ2m.

The LD-adjusted kinship matrix was computed using version 2.0 of the LDAK-software [12], available at
http://dougspeed.com/ldak/. We used sections of 1000 SNPs, with a buffer of 200. The maximum distance
considered for LD was 250kb; the ’halflife’ parameter (modeling LD-decay) was set to 20kb.
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Table S5

In the following tables, the second and third column contain the percentage of the 5000 traits for which the
corresponding heritability estimates (ĥ2r and ĥ2m) were contained in the intervals in the first column. The
remaining columns show the correlation (r) between simulated and predicted genetic effects, averaged over
these traits. 20 QTLs were simulated, which explained 50 percent of the genetic variance. Each trait was
simulated for a randomly drawn training (200 accessions) and validation set (50 accessions). Genetic effects
were predicted using G-BLUP, based on either a mixed model for the individual plants (replicates) or for the
genotypic means.

Table S5(a) : Prediction accuracy (r) of G-BLUP for 5000 simulated traits, for the structured
regmap population, and a simulated heritability of 0.2.

interval ĥ2r ĥ2m r (replicates) r (means) r (replicates) r (means)
Training set Training set Validation set Validation set

[0, 0.1) 3.08 % 9.88 % 0.637 0.654 0.216 0.218
[0.1, 0.3) 93.96 % 76.38 % 0.770 0.770 0.280 0.279
[0.3, 0.5) 2.96 % 13.52 % 0.816 0.803 0.325 0.313
[0.5, 0.7) 0 % 0.22 % 0.782 0.287
[0.7, 0.9) 0 % 0 %
[0.9, 1] 0 % 0 %
[0, 1] 100 % 100 % 0.767 0.763 0.279 0.278

Table S5(b) : Prediction accuracy (r) of G-BLUP for 5000 simulated traits, for the structured
regmap population and a simulated heritability of 0.5.

interval ĥ2r ĥ2m r (replicates) r (means) r (replicates) r (means)
Training set Training set Validation set Validation set

[0, 0.1) 0 % 0.04 % 0.709 0.328
[0.1, 0.3) 0 % 5.24 % 0.836 0.269
[0.3, 0.5) 51.42 % 46.54 % 0.886 0.887 0.302 0.300
[0.5, 0.7) 48.58 % 42.12 % 0.905 0.903 0.333 0.337
[0.7, 0.9) 0 % 5.84 % 0.905 0.343
[0.9, 1] 0 % 0.22 % 0.888 0.386
[0, 1] 100 % 100 % 0.895 0.892 0.317 0.317

Table S5(c) : Prediction accuracy (r) of G-BLUP for 5000 simulated traits, for the structured
regmap population and a simulated heritability of 0.8.

interval ĥ2r ĥ2m r (replicates) r (means) r (replicates) r (means)
Training set Training set Validation set Validation set

[0, 0.1) 0 % 0 %
[0.1, 0.3) 0 % 0.02 % 0.877 0.299
[0.3, 0.5) 0 % 1.42 % 0.930 0.283
[0.5, 0.7) 0.04 % 19.26 % 0.953 0.955 0.400 0.318
[0.7, 0.9) 99.96 % 59.26 % 0.964 0.964 0.343 0.344
[0.9, 1] 0 % 20.04 % 0.965 0.365
[0, 1] 100 % 100 % 0.964 0.962 0.343 0.343
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Table S5(d) : Prediction accuracy (r) of G-BLUP for 5000 simulated traits, for the HapMap
population and a simulated heritability of 0.2.

interval ĥ2r ĥ2m r (replicates) r (means) r (replicates) r (means)
Training set Training set Validation set Validation set

[0, 0.1) 1.74 % 28.64 % 0.616 0.632 0.259 0.273
[0.1, 0.3) 96.7 % 40.7 % 0.673 0.674 0.341 0.348
[0.3, 0.5) 1.56 % 17.8 % 0.711 0.684 0.364 0.382
[0.5, 0.7) 0 % 5.8 % 0.681 0.366
[0.7, 0.9) 0 % 2.84 % 0.675 0.370
[0.9, 1] 0 % 4.22 % 0.669 0.357
[0, 1] 100 % 100 % 0.672 0.664 0.340 0.335

Table S5(e) : Prediction accuracy (r) of G-BLUP for 5000 simulated traits, for the HapMap
population and a simulated heritability of 0.5.

interval ĥ2r ĥ2m r (replicates) r (means) r (replicates) r (means)
Training set Training set Validation set Validation set

[0, 0.1) 0 % 6 % 0.811 0.285
[0.1, 0.3) 0 % 21.02 % 0.851 0.366
[0.3, 0.5) 51.78 % 22.56 % 0.862 0.867 0.395 0.413
[0.5, 0.7) 48.22 % 17.5 % 0.877 0.871 0.416 0.428
[0.7, 0.9) 0 % 10.86 % 0.873 0.426
[0.9, 1] 0 % 22.06 % 0.871 0.422
[0, 1] 100 % 100 % 0.869 0.863 0.405 0.401

Table S5(f) (given as Table 6 in the main text) : Prediction accuracy (r) of G-BLUP for 5000 simulated
traits, for the HapMap population and a simulated heritability of 0.8.

interval ĥ2r ĥ2m r (replicates) r (means) r (replicates) r (means)
Training set Training set Validation set Validation set

[0, 0.1) 0 % 2.58 % 0.890 0.289
[0.1, 0.3) 0 % 8.34 % 0.937 0.373
[0.3, 0.5) 0 % 12.34 % 0.954 0.409
[0.5, 0.7) 0.04 % 15.9 % 0.942 0.959 0.208 0.423
[0.7, 0.9) 99.96 % 15.62 % 0.961 0.961 0.431 0.443
[0.9, 1] 0 % 45.22 % 0.961 0.448
[0, 1] 100 % 100 % 0.961 0.956 0.431 0.428
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