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ABSTRACT Multiparental populations are innovative tools for fine mapping large numbers of loci. Here we explored the application of
a wheat Multiparent Advanced Generation Inter-Cross (MAGIC) population for QTL mapping. This population was created by 12 generations
of free recombination among 60 founder lines, following modification of the mating system from strict selfing to strict outcrossing using
thems1b nuclear male sterility gene. Available parents and a subset of 380 SSD lines of the resulting MAGIC population were phenotyped
for earliness and genotyped with the 9K i-Select SNP array and additional markers in candidate genes controlling heading date. We
demonstrated that 12 generations of strict outcrossing rapidly and drastically reduced linkage disequilibrium to very low levels even at short
map distances and also greatly reduced the population structure exhibited among the parents. We developed a Bayesian method, based on
allelic frequency, to estimate the contribution of each parent in the evolved population. To detect loci under selection and estimate selective
pressure, we also developed a new method comparing shifts in allelic frequency between the initial and the evolved populations due to
both selection and genetic drift with expectations under drift only. This evolutionary approach allowed us to identify 26 genomic areas
under selection. Using association tests between flowering time and polymorphisms, 6 of these genomic areas appeared to carry flowering
time QTL, 1 of which corresponds to Ppd-D1, a major gene involved in the photoperiod sensitivity. Frequency shifts at 4 of 6 areas were
consistent with earlier flowering of the evolved population relative to the initial population. The use of this new outcrossing wheat population,
mixing numerous initial parental lines through multiple generations of panmixia, is discussed in terms of power to detect genes under selection
and association mapping. Furthermore we provide new statistical methods for use in future analyses of multiparental populations.
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ALTHOUGH the recent development of genome sequenc-
ing in crop species has strongly increased capacity for

gene discovery, the accurate mapping of genes controlling
the genetic variation of complex traits (QTL) remains a key
objective. The principal mapping methods rely on the detec-
tion of statistical association between polymorphisms at mo-
lecular markers and quantitative variation of phenotypic traits

and were historically developed for progenies of biparental
crosses with parents chosen for their extreme phenotypes at
a trait of interest. These populations are powerful resources
for QTL detection, but have low precision as few effective
meioses (and thus subsequent recombinations) occur during
their development. As a result, large parental haplotype
blocks are preserved in the segregating population. In addi-
tion, the number of QTL segregating is limited by the use of
only two parents (Cavanagh et al. 2008). Association genetics
in a panel of diverse accessions can partly overcome these
limits. These have higher numbers of loci segregating and ex-
ploit numerous historical recombinations leading, in theory,
to finer mapping of multiple QTL. However, a major limit of
association mapping is the unavoidable genetic structure
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within the panel, which can lead to increased rates of false-
positive associations (Breseghello and Sorrells 2006). This
can be accounted for in statistical models (Yu et al. 2006),
but power to detect QTL that are correlated with that struc-
ture is lost.

Therefore, different kinds of multiparental populations
have been developed to obtain greater precision in fine
mapping with little or no genetic structure. One proposed
option is to combine different biparental populations, for
example, factorial crosses or diallels (Rebai and Goffinet
1993) or crosses with a common reference line (nested as-
sociation mapping, NAM; Yu et al. 2008). For complete allele
reshuffling, another option relies on optimized pyramidal or
circular crosses between 4, 8, or 16 parents (Multiparent
Advanced Generation Inter-Cross, MAGIC; Kimura and Crow
1963; Cavanagh et al. 2008; Huang et al. 2012).

When the number of parents increases, or when multiple
generations of intercrossing are added (advanced intercrosses)
to accumulate more meiosis per individual (Rockman and
Kruglyak 2008), controlled crossing becomes too onerous and
random crossing appears the best solution (see, for instance,
the Arabidopsis thalianaMAGIC population obtained with a di-
allel cross followed by panmixia; Scarcelli et al. 2007). In finite
populations, random advanced intercrosses may induce genetic
drift and selection leading to evolution of allele frequencies.
Although drift can be reduced through increasing the number
of crosses (increasing effective size) and was shown to be
limited in effect (Rockman and Kruglyak 2008), avoiding
selection is a hard task. Nevertheless, shifts in allele fre-
quency can be used to detect regions under selection and
these provide another approach to QTL identification.

Various methods have been proposed to identify regions
under selection by detecting selective sweeps (Maynard
Smith and Haigh 1974), through either (i) shifts in allele
frequency at some markers, which are large when compared
to shifts in the rest of the genome (Goldringer and Bataillon
2004; Nielsen 2005) or (ii) directional temporal shift in fre-
quency using genetic time series data (Bollback et al. 2008;
Nishino 2013; Feder et al. 2014). These methods raise a num-
ber of statistical challenges. A major complication is that the
actual population size is unknown (Feder et al. 2014).

The purpose of this study is to assess the impact of 12
generations of advanced random intercrosses on an evolved
dynamic management population of wheat (Triticum aestivum)
(Henry et al. 1991) and to demonstrate the value of this
kind of population for gene discovery, using flowering time
as an illustration. The studied population has been derived
from a dynamic management program aiming at conserving
adaptive potential of the crop through repeated cultivation
of numerous populations in contrasted locations. These pop-
ulations have three specific features: (i) a large number of
founders (60); (ii) a mating system modified from predom-
inantly selfing to strict outcrossing using genetic male ster-
ility; and (iii) a middle-term evolution with 12 generations
of open pollination. First we describe the evolution from the
parents to the evolved population of (i) a phenotypic trait

involved in climatic adaptation, flowering time, and (ii) the
genetic diversity using the 9K i-Select SNP array. Then, as
parental contributions can also evolve during the intercross
generations, we develop a Bayesian method to estimate the
parental contributions to the evolved population. Third, we
estimate the effective size of the population and search for
loci under selection using a novel method that allows detec-
tion of selection between only two temporal samples, pro-
viding both a test of significance and an estimation of the
selection coefficient. The loci we detected as under selection
were additionally tested for association with flowering time.
Finally we discuss the use of panmictic multiparental pop-
ulations to study the genetic bases of local adaptation.

Materials and Methods

Biological material: The INRA MAGIC population

The material studied is referred to as a MAGIC population,
in its broad sense, as it incorporates both multiple parents
and advanced intercrossing. It is derived from a very diverse
composite population created between 1976 and 1980
(Trottet 1988), by crossing 60 European and worldwide
wheat breeding lines selected for their resistance to diseases
and their good agronomic values (Supporting Information,
Table S1). Each of the 59 parents was first crossed with male
sterile segregants from the 60th, the variety “Probus” (Fossati
and Ingold 1970), which is maintained as heterozygous for the
recessive nuclear sterility gene ms1b (McIntosh 1988). Among
the F1 plants (Ms1b/ms1b = fertile), some were selfed (F2)
while others were backcrossed (BC1) with the 59 parents to
reduce the proportion of Probus genome in the population. The
bulked seeds of the two progenies (F2 and BC1) were then
sown in a mixed row design, in an isolated field surrounded
by rye (Secale cereal) (Figure 1). Male-sterile individuals
(ms1b/ms1b) were tagged at flowering time, naturally wind
pollinated by fertile plants, and harvested at maturity. Due to
this open pollination, the relative contribution of F2 vs. BC1
plants was unknown, leading to uncertainty regarding the con-
tribution of Probus relative to the other parents. The progeny of
this first outcrossing cycle (G0 population) were resown in iso-
lation and male-sterile plants harvested again. Such manage-
ment stabilizes the proportion of male-sterile plants at 50% in
the field. The Probus contribution is therefore expected to
range between 50% (F2 only) and 25% (BC1 only), with
37.5% in the balanced case. Note that around the male-sterility
gene the Probus contribution is either 100% for male-sterile
(ms/ms) or 50% for male-fertile (Ms/ms) genotypes.

This population has been managed in Le Moulon (48.4�
N, 21�E) for 12 generations, as part of the French dynamic
management project (Henry et al. 1991), and has always
been grown in isolation without artificial selection. Each
generation, at least 10,000 seeds, was sown and �3000
spikes from tagged male-sterile plants were harvested and
threshed as a bulk. At the 12th generation, 1000 “S4” lines
were derived by single-seed descent (SSD) (Figure 1). Note
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that in total, these lines underwent 15 outcrossing cycles
(three for the creation of the original population, G0 pop-
ulation, plus 12 at Le Moulon).

In this study, we analyzed 56 of the 60 parental lines
including Probus (4 were no longer available; Table S1), as
well as a subset of 380 out of 1000 S4 SSD lines. The SSD lines
were chosen to represent the phenotypic diversity of the pop-
ulation on the basis of a principal component analysis (PCA) of
all phenotypic traits scored the first year. These 380 lines
(hereafter the “evolved population”) consist of all individuals
with extreme phenotypes and a random sample of intermedi-
ate scoring lines. This selected set was not significantly differ-
ent from 500 random samples of 380 individuals, both for SNP
allelic frequencies and for mean flowering time (data not
shown). In contrast, this sampling strategy increased the phe-
notypic variance and the subsequent ability to detect QTL.

Phenotyping

Flowering time was assessed in field trials at Le Moulon over
two seasons (2010–2011 and 2011–2012), with a November
sowing. Each genotype (S4 SSD lines + parents) was sown
in two single-row (20 seeds) replicates in a randomized
complete block design. For each line, flowering time was
approximated using heading date score, when 50% of the
plants had half of their main ears emerged from the flag leaf.
Heading date was transformed into the sum of the mean
temperatures per day (i.e., degree days or dd) from sowing

to heading, based on data recorded by the meteorological
station at Le Moulon.

Molecular analysis

Total DNA of each of the 436 lines (380 SSD lines + 56
parents) was extracted from 500 mg of leaf tissue. Ex-
tractions were performed using a modified procedure of
Dellaporta et al. (1983) including a carbohydrate precip-
itation described in Michaels et al. (1994). Genotyping
was performed by M. J. Hayden’s team at DPI Victoria in
Bundoora, Australia, using a 9K i-Select SNP array (Cavanagh
et al. 2013). SNP allele clustering was performed using
GenomeStudio software (http://support.illumina.com/array/
array_software/genomestudio.html). Errors in allele assigna-
tion by GenomeStudio were detected by visual inspection of
SNP allele clusters and manually corrected. Only SNPs that
could be unambiguously scored as biallelic were kept, i.e.,
SNPs exhibiting three clusters or less. Fourteen additional
polymorphisms located in candidate genes involved in the
earliness pathway (Table S2) were genotyped using the
KASPar SNP genotyping system developed by KBioscience
(http://www.kbioscience.co.uk/).

Population structure analysis

Population genetic structure was analyzed independently
for the parental and the evolved populations with a discrim-
inant analysis of principal components (DAPC; Jombart et al.
2010). The DAPC computation was made using the package
“adegenet” v. 1.3–6 (Jombart and Ahmed 2011) and the
statistical program R v. 2.15.3-1 (R Development Core Team
2013). Euclidian distance among genotypes was calculated
using the procedure dist.gene in the package “ape” (Paradis
2010). An analysis of molecular variance (AMOVA; Excoffier
et al. 1992) was performed to estimate the percentage of
genetic variance explained by structure, as determined by
the PCA k-means procedure included within the DAPC
method, using the “pegas” R-package (Paradis 2010).

Estimation of parental contributions

As the contribution of parental lines to the evolved popula-
tion is unknown due to the generations of open pollination,
we developed a Bayesian approach for its estimation. We
considered the SSD lines to be a finite sample of a theoretical
infinite population (i.e., no genetic drift but sampling stochas-
ticity) resulting from many cycles of free recombination of
a set of 56 parental lines without selection pressure, muta-
tion, migration, or linkage disequilibrium among markers.
Under these assumptions, the likelihood of an observed data
set is

L ¼
YL
l

�
3803 2

nl

�
pnl
l ð12plÞ380322nl ;

with pl the allelic frequency of allele A at the locus l in the
evolved population, nl the total count of allele A at locus l
over all the sampled SSD lines, and L the total number of

Figure 1 INRA MAGIC population creation scheme. Intensity of shading
represents the proportion of Probus in the population.
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loci (the complete Bayesian model is fully described in the
Appendix). This model is very similar to that used in the
Structure software (Pritchard et al. 2000) when population
of origin is known (i.e., the case with learning) except that
we have focused on the origin of the whole population and
not on individual assignments. Similarly we have assumed
that loci were in Hardy–Weinberg equilibrium within the
population. Thus we have assumed that allelic frequencies
were fixed after the first round of random mating.

The probability pl depends on the expected contribution
of each parental line k, P(Par = k), and on the frequency of
allele A at locus l in each parental line k, f(A)lk,

pjl ¼
XK
k

f ðAÞlk PðPar ¼ kÞ;

with K the total number of parental lines. Genetic informa-
tion is assumed to be available for all putative parental lines
K; thus

PK
k PðPar ¼ kÞ ¼ 1: Furthermore P(Par = k) is as-

sumed to be the same for any part of the genome (no selec-
tion, no LD) and, therefore, the same for all loci studied.

We considered that no previous information is available
on the putative contribution of each parental line k (even for
Probus); thus, we chose a noninformative prior distribution
using a flat Dirichlet distribution (i.e., an even contribution
of all parental lines).

Bayesian estimations of the posterior distributions of P(Par
= k) were performed considering the whole set of markers,
Pgw(Par= k), or at the chromosome level considering subsets
of markers for each chromosome c, Pc(Par= k). The posterior
distributions were estimated for each of the 56 available pa-
rental wheat lines with a MCMC method using the Gibbs
sampler (i.e., a particular case of the Metropolis–Hastings
algorithm) implemented in JAGS (Plummer 2003). Note that
the four unavailable parental lines were ignored since no
genetic information was available. We used the 5590 markers
polymorphic in the parental populations for the genome-wide
estimations and the 5056 markers mapped for the chromo-
some level estimations. Three independent Markov chains
ran for five million iterations for genome-wide estimates
(56 parental lines 3 3 chains 3 5.106 iterations) and ran
for 1 million iterations for estimates at the chromosome level
[56 parental lines 3 21 chromosomes (for bread wheat) 3 3
chains 3 106 iterations]. To reduce temporal correlation be-
tween successive elements within the Markov chain only one
element over five was kept. Chain convergence was checked
using a Gelman and Rubin (1992) test. Analyses were con-
ducted using R (R Development Core Team 2013) and the
“CODA” package (Plummer et al. 2006).

The 56 genome-wide estimates of parental contributions
were considered as good proxies for the genetic composition
of the initial population. Indeed, global variation in parental
contributions can occur only in the very early intercrosses, as
the high level of recombination accumulated over subsequent
generations makes global selection against one parent very
unlikely on a genome-wide scale. A theoretical initial popula-

tion was therefore designed, composed of the 56 parental
multilocus genotypes, weighted according to their contribu-
tions estimated on genome-wide data. This population will be
referred hereafter as the “initial population.”

To validate this method we simulated a set of 50 SSD
lines derived from the random mating of six parental geno-
types. Full random reshuffling of 30 biallelic and independent
SNP markers was simulated, using variable initial parental
contributions including even contributions (100 simulated data
sets for three scenarios). In all cases, the mean and the mode of
the posterior distribution of P(Par= k)were always close to the
real simulated contributions, which were all included in the
highest posterior density interval (HPD).

To test the robustness of this method to the assumption
of linkage equilibrium, we compared estimates using all the
markers on chromosome 1A (442 markers) with estimates
after removing markers in linkage disequilibrium, i.e., by
removing marker pairs with a correlation above a 0.06
threshold (130 independent markers). Estimates of parental
contributions with the two sets of markers differed on aver-
age only by 0.004 (max 0.02) showing the low impact of
linked loci on estimates.

Finally we tested the robustness of the model to missing
information, as four parental lines were missing from our
panel of 60. Using the chromosome 1A data described
above, we removed four randomly chosen parental lines
from the analysis and recomputed the relative contributions
of the 52 remaining parents. Probus was always retained in
the selected set. We repeated these computations 12 times
with three parallel chains each for five million iterations. We
then compared the percentage of information lost (the sum of
the contributions, from the analysis of all parents, of the four
excluded parents) to the mean absolute error (estimated
from the difference between estimates from all parents and
from censured data). We found a near-perfect linear positive
relationship between the percentage of information lost and
the mean absolute error (Figure S1). Except for Probus, the
observed and expected contributions difference of each pa-
rental line is �1% (from an expected contribution of 37.5%
for Probus and a balanced contribution of the remaining
parents). Thus the four missing parents should lead to a mean
absolute error of �0.16% (Figure S1). This is very small and
thus should not dramatically influence our analyses.

Comparison between chromosomal and genome-wide
contribution estimates

The contributions of parental lines to the evolved population
were computed genome-wide, PgwðPar ¼ kÞ; and at the chro-
mosome level, PcðPar ¼ kÞ: In absence of evolutionary forces,
contributions of parental line k at both levels should be sim-
ilar. An upward or downward deviation of the contribution of
a parental line at the single chromosome level relative to the
genome-wide estimate, indicating that this contributor was
favored or depreciated over the others, can result from selec-
tion acting on genes located within this chromosome. We
defined a test based on the following statistic:
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Dkc ¼ PcðPar ¼ kÞ2 PgwðPar ¼ kÞ:

In the absence of selection and genetic drift the whole
genome must behave similarly leading to Dkc ¼ 0 (i.e., the
null hypothesis), whereas it should differ significantly from
0 (positively or negatively) if parental line k is respectively
over- or underrepresented in chromosome c relative to its
genome-wide contribution (i.e., the alternative hypothesis).
Pc ðPar ¼ kÞ and Pgw ðPar ¼ kÞ differed in their statistical
power to estimate the contribution of parental lines due to
differences in the number of markers considered. Further-
more the number of iterations used to reach the conver-
gence of Markov chains also differed. Thus to test if Dkc

differed from 0 we estimated its posterior distribution with
10,000 values of Dkc computed by randomly drawing within
posterior distributions of Pc ðPar ¼ kÞ and Pgw ðPar ¼ kÞ;
respectively. This allowed nonsymmetric and/or multimodal
posterior distributions of Pc ðPar ¼ kÞ and Pgw ðPar ¼ kÞ, in
contrast to simple tests of mean difference based on sum-
mary statistics (e.g., Student’s t-test). Significance was
tested by computing ICaðDkcÞ; the credible interval of the
posterior distribution of Dkc at the ð12aÞ level. If
0 2 ICaðDkcÞ the null hypothesis was accepted, whereas if
0;ICaðDkcÞ it was rejected with a risk a and Dkc was judged
to differ significantly from 0. We computed this test for all
combinations of each parental line k and each chromosome
c. Because of multiple comparisons, to keep an overall
a ¼ 0:05 level we applied a conservative adjustment to akc

for each single test with a Bonferroni correction resulting in
akc ¼ a=ðK3CÞ ¼ 0:05=ð563 22Þ ¼ 4:063 1025:

Temporal genetic evolution

To monitor the evolution of genetic diversity, we estimated
the average minor allele frequencies (MAF), the average
expected heterozygosity (He, Nei diversity), and the ob-
served heterozygosity for the 56 parents, the initial and
the evolved populations.

We estimated linkage disequilibrium as the square of the
Pearson correlation coefficient (r2) between all pairs of loci
(R Development Core Team 2013). The decay of LD with
genetic distance was compared between the initial and the
evolved populations using the map of the 9K i-Select SNPs
(Cavanagh et al. 2013).

Temporal variance of allelic frequencies (Fc) was com-
puted by the standardized variance at each biallelic locus
(Nei and Tajima 1981),

Fc l ¼
ðFil2FelÞ2�

Fil þ Fel
��

22 Fil 3 Fel
;

where Filand Fel are the frequency at locus l in the initial and
the evolved populations, respectively.

The multilocus Fc was calculated as the average of the
single locus Fc lestimated over all markers. Effective popula-
tion size (Ne), assumed constant over time, was then esti-
mated by the temporal Waples (1989) method,

Ne ¼ Dt
2Fc2 1=2S02 1=2St

;

where Δt is the number of generations of recombination
between the theoretical “initial population” and the evolved
populations (15 in our case), S0 is the sample size of the
initial population and St that of the population at generation
t (respectively 56 and 380). Due to the high inbreeding
level, the numbers of independent alleles sampled (2S0
and 2St) could be approximated by the number of individ-
uals (S0 and St).

The demographic population size (Ned) was estimated as
the harmonic mean of the minimum true number of plants of
each gender grown in the population (.5000 male plants and
3000 harvested female plants per generation) (Charlesworth
2009).

Detection of traces of selection

To determine whether changes in SNP allele frequencies
were possibly driven by selection and drift (as opposed to
drift alone), we used a maximum-likelihood approach.
Considering one of the alleles at a given SNP, let X0 be the
number of copies of this allele in the population at genera-
tion 0, and X15 be the number of allele copies at generation
15. Let Ne be the effective population size. Here, Ne is as-
sumed to be known. Finally, let s be the coefficient of selec-
tion of the allele, such that the fitness of the genotypes aa,
aA, and AA is 1, 1 + s, and 1 + 2s, respectively (with s$ 0).
Here, A is the positively selected allele at the SNP ðs$ 0Þ.
Assuming these parameters are known, one can compute
PrðX15jX0; s; NeÞ; the probability that the allele copy num-
ber at generation 15 is X15, given that the allele copy num-
ber at generation 0 was X0, with a selection coefficient s and
an effective population size Ne. This probability was com-
puted numerically by iterating a standard formulation of
a Wright–Fisher model with genetic drift and selection, as
described, for example, in Neuhauser (2004).

The effect of sampling of genotyped individuals was
taken into account by setting Ne = n in the last generation
when iterating the Wright-Fisher model, where n is the size
of the sample of individuals genotyped at generation 15
(here n = 380). A similar sampling effect could also affect
the estimate of initial allelic frequencies, but in our case we
considered that the founders were extensively represented
in the initial population.

Now, for a given locus, we know ðX0;X15;NeÞ, so the only
parameter of the model is s, and LðsÞ ¼ PrðX15jX0; s;NeÞ
gives the likelihood of the model. In practice, L(s) was max-
imized numerically for positive values of s ranging from 0 to
1, and for “negative” values by symmetry. Negative selection
was then implemented as

PrðX15jX0; s;NeÞ ¼ Prð2N2X15j2Ne 2X0;2 s;NeÞ for s, 0 :

Now, for fX0;X15g, let s* be the value of s that maximizes L
(s). A likelihood-ratio test (LRT) was computed as

Selection in a Wheat Population 613



LRTðX0;X15Þ ¼2 2 ln
�
Lðs ¼ 0Þ
Lðs ¼ s*Þ

�
:

The significance of the test was assessed by assuming that the
LRT follows a x2 distribution with one degree of freedom (Wilks’
theorem) under the null hypothesis of absence of selection (i.e.,
if s ¼ s* ¼ 0). As we performed multiple tests, estimated P-
values were transformed into Q-values, which are measures of
significance in terms of false discovery rate (FDR) rather than
the false-positive rate (Storey and Tibshirani 2003), using the
“qvalue” R-package (Dabney and Storey 2004). Markers were
tested with a threshold of 0.05 after a FDR correction.

When testing for selection in the MAGIC population, X15
corresponded to the number of alleles observed in the
evolved population (.380 individuals maximum), while
X0 was considered as a large gametic pool, where alleles
were sampled according to their inferred frequencies (pa-
rental contributions) to produce a G1 of size Ne.

Phenotypic analysis, differentiation, and
association tests

Broad-sense heritabilities of earliness traits in the evolved
population were assessed for each year using an ANOVA
model including only a replicate and a genotype effect.
Heritability across years was estimated on adjusted replicate
means data using an ANOVA including year and genotype
effects. Experimental factor effects were then tested using
the following linear model,

Yijk ¼ mþ yj þ rðyÞjk þ Gi þ ðG3 yÞij þ eijk;

where Gi is the effect of the genotype i, yj is the effect of the
year j (2010–2011 or 2011–2012), r(y)jk is the effect of
replicate k in year j, (G3 y)ij is the interaction between year
and genotype, and eijk is the residual error term. Genotype
and genotype-by-year interaction effects were both declared
as random effects. We estimated adjusted means over rep-
licate and year effects for each genotype of the evolved
population. Each marker’s association with flowering time
was then tested successively, using adjusted means.

Results

Molecular diversity

The genotyping of the 436 wheat lines (56 parents + 380
SSD lines) with the 9K i-Select SNP assay provided a data set of
8632 SNPs. After removing SNPs failing to generate clear
genotype clustering, 7270 (84.2%) high-quality SNPs were kept.
Among these, 6476 (75.0% of the total) were polymorphic. This
polymorphism rate is reasonably high, compared to the 100%
rate observed with a worldwide panel on the same SNP array
(Cavanagh et al. 2013). After removing monomorphic markers
and pairs of cosegregating markers over the 436 wheat lines,
the final data set consisted in 5621 unique polymorphic SNPs
(65.1%) for the parental and the evolved populations.

Structure analyses

The first two axes of the PCA on the parental lines explained
17.1% of genetic variance. K-means clustering on principal
components axes (the first step of the DAPC analysis) re-
vealed that the optimal genetic structure of parental lines
consisted of two groups, mainly separating European wheat
lines (France, Bulgaria, Germany, Great Britain, Netherlands,
Poland, and Switzerland), from non-European (United States,
South America, Russia, Ukraine, Australia, Japan, and Brazil).
This is in agreement with the clear division found between
lines of European and Asian origin in a diverse collection of
worldwide wheat varieties (Balfourier et al. 2007). This struc-
ture was confirmed by the assignment probabilities provided
by the DAPC (Figure 2). AMOVA showed that these two groups
explained 15% of the parental genetic diversity. Increasing the
number of groups led to identification of six groups of lines
related by pedigree, most notably a group of U.S. lines and
another group related to the pre-breeding line VPM.

Both AMOVA and DAPC results showed very low structure
in the evolved population. The K-means clustering on PCA
axes revealed two groups that explained only 4.2% of the
variation according to an AMOVA and the first two axes of
PCA explained only 5.09% of the genetic variance.

These results demonstrated that the population structure
observed in the parents has been nearly completely eroded
after 12 panmictic generations, leading to very low structure
in the evolved population.

Parental contributions estimation

To infer the contribution of each parent to the evolved
population, Bayesian estimates were conducted both at
genome-wide and at chromosome levels (see Materials and
Methods). The genome-wide estimates were precise, with
a 95% credible interval of 0.1% around the mean, but varied
widely between parents. The Probus parental line had the
highest contribution (35%), followed by Talent and TJB 240
lines, with contributions close to 6%. The other parents had
much lower contributions, ranging from 0.008 to 3.8% (Figure
3), with five lines contributing ,0.01% (Condor, Marquillo,
Redhart, Redon M4, and Toropi). The high contribution of
Probus is in accordance with its weight in the initial crossing
scheme, duringms1b sterility introduction, and confirms a bal-
anced contribution between the selfed and backcrossed F1’s
(Figure 1) for which we expected a 37.5% contribution to the
initial population.

Estimates of contribution at the single chromosome level
showed little difference from the genome-wide ones, with
a mean average difference of 1.4% (Figure S2). However,
�40% of these slight variations were significantly different
(Bonferroni correction, Table S3). However, as some esti-
mated contributions were very low, significant variation
can be due to very small differences. In these cases, the
differences are most likely artifacts. D genome chromo-
somes exhibited a lower number of significant tests (18%
of the comparisons, Table S3) despite their higher absolute
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differences. This apparent discrepancy reflects the lower
precision of contribution estimates (i.e., larger credible inter-
vals) due to the lower number of markers on the D genome:
chromosomes covered with higher marker densities (1B, 2A,
2B, 3A, and 4B) exhibited more numerous significant differ-
ences between genome-wide and chromosome-level estimates
(in 30–40 parental lines out of 56). The genome-wide results
will be used in the following analyses.

Evolution between the initial and the
evolved populations

Estimates of parental contributions allowed us to infer the
allelic frequencies in the theoretical initial population. As
expected, genetic diversities of initial and evolved popula-
tion were very similar and lower than those found in the
panel of the 56 parents (average MAF, 0.18, 0.17, 0.25 and
He, 0.25, 0.24, 0.34). Furthermore 129 markers turned out
to be monomorphic in the evolved population, this loss be-
ing due either to nondetection in the sample or to fixation.
Conversely, 31 markers were polymorphic in the evolved
population but not among the parents. This could be
explained by (i) alleles specific of the four lines missing from
our parental panel, (ii) alleles lost for some parental lines
during the management procedure in genebanks (regenera-
tion through selfing cycles; Esquinas-Alcazar 2005), as they
could have presented initial residual heterozygosity, (iii)
contamination (migration) despite the isolation of plots
(Hucl and Matus-Cadiz 2001), and (iv) mutation, as found
for SSR markers in another wheat experimental population
(Raquin et al. 2008). The observed heterozygosity in the
evolved population was 3.2%. This is significantly higher
than predicted after four selfing generations starting from
an initial He of 0.24 (1.6%). A possible explanation to this
difference could be a fitness advantage of heterozygote indi-
viduals (heterosis). The Ne estimated from Fc between the
initial and the evolved populations was 310.97, much lower
than the demographic population size (Ned = 7500).

The evolved population presented a globally low linkage
disequilibrium (LD) with a long-distance LD (between in-
dependent markers or between chromosomes) almost null

(r2 = 0.003, Figure 4). Short-distance LD peaked at 0.4 for
completely linked loci and decreased with genetic distance to
reach a plateau at a distance of �50 cM. LD was much higher
at medium/long distances for the initial population (Figure S3).

Detection of traces of selection

Among 5635 markers (5621 SNPs from the 9K i-Select array
+ 14 KASPar SNPs), 57 markers representing 26 indepen-
dent genomic areas were detected as significantly under
selection (i.e., behaving nonneutrally), with a likelihood ra-
tio .12.45 (Table S4). The selection coefficients ranged
from 0.07 to 0.7 (Table S4). The selected markers were lo-
cated on multiple chromosomes (1A, 1B, 2A, 2B, 2D, 3A, 3B,
3D, 4A, 4B, 5A, 5B, 5D, 6A, 6B), but mainly on 2B, 4B, 5A,
and 6B (Figure 5). Among the 14 KASPar markers located in
flowering-time candidate genes, a single one matched with
a genomic area under selection (Ppd-D1, Figure 5).

Association of markers with heading date

Heading date was highly heritable, at 0.95 and 0.96,
respectively in the 2 years of experimentation and at 0.91
across years. Heading date variability was larger among the
parents than in the evolved population, while mean heading
date was 128 dd earlier in the evolved population (Figure 6).

The markers detected as significantly under selection
were tested for their association with heading date. Seven
markers, located on chromosomes 2D (two markers), 4A and
5A (three markers), were associated with heading date
with a P-value ,0.05. Two markers located on chromosome
2D were strongly associated with heading date: Ppd-D1
(P-value = 5.10270), and wsnp_CAP11_c3842_1829821
(P-value = 3.5 3 10211) (Figure 5 and Figure 6). Ppd-D1
explained 56% of the phenotypic variation in a single marker
model (Figure 6). The frequency of the allele associated with
earlier flowering at this locus (the photoperiod insensitive
allele) increased from 0.19 to 0.77 between the initial and
the evolved populations. With a 117 dd difference between
the two Ppd-D1 alleles (Figure 6), this allelic frequency var-
iation accounted for 53% of the total phenotypic evolution
ð½0:58 3117 dd�=128 ddÞ. wsnp_CAP11_c3842_1829821

Figure 2 Left: Estimated population structure
in parental lines. Each individual is represented
by a vertical line, which is partitioned into two
colored segments that represent the individual’s
estimated membership fractions in two clusters.
Black vertical line separates European lines
(mainly green) from non-European lines (mainly
red). Right: Projection of individuals onto dis-
criminant axes with groups represented by dif-
ferent colors: six groups related by pedigree.
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explained 12% of phenotypic variation and its insensitive
photoperiod allele frequency increased from 0.73 to 0.94 be-
tween the initial and the evolved populations. The difference
between the effects of the two alleles being 103 dd, allelic
frequency variation at this marker accounted for 17% of the
total phenotypic evolution ð½0:21 3 103 dd�=128 ddÞ. How-
ever, a global model including both markers showed that the
effect of wsnp_CAP11_c3842_1829821 was due only to its
small but significant LD with Ppd-D1 (LD = 0.18, P-value =
0.002). Hence, Ppd-D1 is probably the only selected gene in
this region.

Discussion

We analyzed an evolved population derived from an exper-
imental population with a very broad genetic basis (60
diverse parents, Table S1). To our knowledge, this is the first
long-term use of nuclear male sterility to modify a plant’s
reproductive biology, i.e., turning wheat from selfing to out-
crossing during 12 generations (even if genetic male sterility
has often been used in recurrent selection programs to facil-
itate recombination; see, for example, Mackay and Gibson
1993 and Kannenberg and Falk 1995). The specific character-
istics of the population and of its history led us to develop
various methods to describe its evolution and the genetic
basis of this evolution.

To assess selection and drift effects, we first performed
a Bayesian inference of parental contributions to the putative
ancestral population, using parental genotypes and observed
allelic frequencies in the evolved population. Estimates high-
lighted the strong contribution of Probus, with a more balanced
contribution from the remaining parents, in good agreement

with the known crossing scheme. This confirmed the robust-
ness and accuracy of our method of estimation as suitable to
infer the allelic frequencies in our theoretical initial population.
Note that methods based on haplotype reconstruction can be
used to infer parental contributions (Huang et al. 2012), but
would necessitate much higher marker density than currently
available in this highly recombined population. A future com-
parison of these two approaches should bring additional infor-
mation about which is most suitable in studies with differing
crossing schemes and objectives, given tradeoffs in precision,
robustness, and computing time.

To test for selection, we used the estimated parental
contributions to infer the initial allelic frequencies, thus
allowing the estimation of the effective population size for
use in a likelihood-ratio selection test.

The estimated effective size of the population (Ne = 311)
was very low compared to its demographic size (Ned=7500).
The ratio Ne/Ned = 0.04 is low, but not far from the 1/10
ratio commonly found in other studies (Frankham 1995;
Luikart et al. 2010). Note that this value is similar to that
estimated by Goldringer et al. (2001) for selfing populations
in dynamic management (Ne/Ned = 0.03, with Ne ranging
from 40 to 150). Higher Ne for an outcrossing population is
expected, with a theoretical twofold difference due to the
uncorrelated segregation of the two alleles present in each
open-pollinated individual, as well as to the lower trans-
mission of reproductive success to a recombinant progeny
(Austerlitz and Heyer 1998). Despite uncertainty about initial
allelic frequencies, the striking gap observed between genetic
and demographic sizes is an indication of selective pressures
on dynamic management populations even though they are
managed to avoid bottlenecks. However, other factors can

Figure 3 Genome-wide estimates of contribution for each parent. Max-
imum credible interval 0.002. Above bars represent the contribution
higher than the median contribution while below bars correspond to
contributions lower than the median. Parents with the highest contribu-
tion are in red and those with the lowest in green.

Figure 4 LD decay (mean and standard deviation every 5 cM) in the
evolved population as a function of genetic distance. Interchromosome
mean LD is set at an arbitrary distance of 320 cM.
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explain the low Ne/Ned ratio; for example, the variance in out-
put of male and female gametes per plant is probably higher
than the theoretical Poisson distribution (Caballero 1994).

Based on this inferred effective size, we implemented
a method determining the likelihood of observed allelic
frequency shifts in the absence of selection, as well as
estimating the most likely selection coefficient, thus allowing
us to build a likelihood ratio test. Ne is thus a key parameter
and, as expected, in our test, the likelihood ratio increases
with Ne: the lower the genetic drift, the higher the power to
detect selection (simulations not shown). As reviewed by
Feder et al. (2014), its estimation represents a major statisti-
cal challenge. Various methods to detect selection without
estimating Ne have been developed , but none were appro-
priate to the present study as they require more than two
samplings in a time series (Bollback et al. 2008; Feder et al.
2014). Our test for nonneutral temporal variations in SNP
allele frequencies detected 26 genomic areas, mainly located
on chromosomes 2B, 4B, 5A, and 6B (Figure 5). We checked
that the detected SNPs also yielded the lowest P-values with
the method developed in Goldringer and Bataillon (2004)
and therefore would also have been identified as the best
candidates. Note that chromosomes 2B and 4B were among
those for which many parental contributions estimated at the
chromosome level diverged from their genome-wide estima-
tions (Table S4). This highlights the complex interaction be-
tween parental contribution estimates and the selection test:
strong selection might bias parental estimates and thus de-
crease the power of the selection detection test itself. Effec-
tively, parental contribution estimates are those best fitting
the allele frequencies in the evolved population, and there-
fore they minimize the genetic divergence between the initial
and the evolved populations. This should minimize the appar-
ent impact of selection on allele frequencies. The test for se-
lection is therefore conservative. In our study, there is no global
correlation (cor = 20.09, P-value = 0.69) over the 21 wheat
chromosomes between the number of areas in which selection
is detected and divergence in genome-wide vs. chromosomal-

parental contribution estimates. This might be related to the
low LD of the population, explaining that selection affects only
small chromosomal areas and, reciprocally, that selection on
a given area has little effect on the estimation of parental
contribution at the chromosome level and even less at the
genome-wide level. However, for chromosome 5A, the pres-
ence of strong selection with a hitchhiking effect on numerous
SNPs resulted in a link between selection and local variations
in estimates of parental contributions.

Within the 57 SNPs under selection, the highest P-value
corresponded to Ppd-D1, which is a known candidate gene
involved in photoperiod sensitivity (Beales et al. 2007) and
a key earliness QTL in many genetic studies (Hanocq et al.
2007; Le Gouis et al. 2012). Using association tests on the
evolved population, we confirmed the strong impact of this
QTL on flowering time. In addition to Ppd-D1, five other
markers were associated with heading date (two markers
with P-value ,0.05 and three markers with P-value ,0.1,
Table S4). Most were located on chromosome 5A. Assuming
that allelic effects are additive, these five markers explained
only 1% of the phenotypic shift in heading date. Hence,
heading-date evolution is mainly explained by one gene
(Ppd-D1) with the remainder due to numerous loci either
with a strong effect on flowering time and a low allelic
frequency shift or with a significant allelic frequency evolu-
tion and a low effect (Kremer and Le Corre 2012). One area
was detected as under selection and associated with heading
date (P-value, 0.1, Table S4) at the end of chromosome 4B
(Figure 5). This area could match with the location of
Vrn2B, a known gene involved in an integrative pathway
of vernalization requirement and photoperiod sensitivity
but not located in the available map. Three areas, one on
chromosome 4A and two on chromosome 5A, could also
match previously detected QTL for heading date (Hanocq
et al. 2007; Le Gouis et al. 2012). Finally one additional area
on chromosome 5A did not correspond to any reported QTL.

In the selfing populations of the dynamic management
experiment (Rhoné et al. 2008, 2010), not only Ppd-D1

Figure 5 Manhattan plot of the –log10(P-value) of selection tests. The horizontal line represents the significance threshold (FDR correction = 4.2e-4).
Markers under significant selection and associated with heading date are represented by triangles. Ppd-D1 is represented with a triangle on chromo-
some 2D (P-value , 1e-13).
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showed a strong effect on earliness, but a significant associ-
ation was also found for candidate genes with major effects
on flowering time, such as Vrn1, which were not detected
here. Vrn1 is known for its epistatic control of vernalization
(Rousset et al. 2011) and in these selfing populations differ-
ent combinations of alleles made with each of the three
copies of Vrn1 (Vrn-A1, Vrn-B1, and Vrn-D1) have been
selected. One hypothesis explaining why Vrn1 is detected
as under selection in these selfing populations but not here
might be that in outcrossing populations, selection is less
efficient in maintaining epistatic combinations, because they
can be readily broken by recombination.

In agreement with previous studies (Allard 1988; Le Boulc’h
et al. 1994; Goldringer et al. 2006), we found that earliness is
a major target trait for selection, the evolved population flower-
ing earlier than the initial one. A fast response to selection is
expected given the large initial genetic variability and high
heritability of earliness. Here, this clear phenologic evolution
was used as a model when analyzing genomic areas under
positive selection. The selective pressures might have at least
three origins. First, the viability of pollen might decrease in late
flowering plants (higher summer temperatures; Welsh and
Klatt 1971). Second, earlier male flowering plants have a selec-
tive advantage as few females are already fertilized (Gérard
et al. 2006), leading to less competition and higher reproduc-
tive success. Third, there might be a bias during the male sterile
plants tagging phase, with a higher tagging intensity at the
beginning of the season (sterile spikes are easier to identify).

Here, we checked only association with earliness and
found it significant for 24% of the genomic areas detected
under selection (six different areas, Table S4). The other
markers found under selection but not associated with ear-
liness could still be involved in its regulation, as they could
have reached near fixation in the evolved population in re-
sponse to selection and therefore escape detection in an
association test (Luo 1998). Alternatively they could be in-
volved in the regulation of other adaptive traits such as
disease resistance and plant height.

One area under selection, on the short arm of chromo-
some 4B, corresponds to the location of the sterility gene
ms1b (Driscoll 1975). In this area, one marker exhibited an
allelic frequency change from 0.37 in the initial population
(allele present in five parents including Probus, which con-
tributed to 34% of the initial population) to 0.02 in the
evolved population. In this area of chromosome 4B, the
frequency of the Probus allele decreased dramatically for
four markers, in contrast with markers in adjacent regions
(mean of allelic frequency differences between the initial
and the evolved populations: 0.37 vs. 0.04, data not shown).
This is in full agreement with the expected evolution of
male-sterility genems1b, which was under stabilizing selection
during population evolution (75% of sterile allele; Doggett and
Eberhart 1968) and then selected against during fixation gen-
erations as ms1b/ms1b genotypes are sterile.

The introduction of the nuclear male-sterility gene, ms1b,
transformed the wheat self-pollinating habit to outcrossing.

Figure 6 Distributions of head-
ing date (in degree days) esti-
mated by the Bayesian method.
Top: Initial population. Bottom:
Evolved population. Proportion of
individuals in each class: shaded
bars indicate photoperiod-insensitive
allele (Ppd-D1a) and open bars in-
dicate photoperiod-sensitive allele
(Ppd-D1b).
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The 12 generations of panmixia broke both the initial pop-
ulation structure and long distance LD, resulting in a very
low level of LD in the evolved population (r2 = 0.003 at 100
cM). This is to be compared to a r2 of 0.04 between inde-
pendent markers in a 19-parent MAGIC population of A.
thaliana (Kover et al. 2009) or of 0.004 in a four-parent
MAGIC population of wheat (Huang et al. 2012). The LD
in the INRA MAGIC experimental population is the lowest
described so far for a wheat population, with r2 = 0.28 at
a 2.5-cM distance (Figure 4). As a comparison, r2 was 0.8 at
5 cM for a four-parent MAGIC population (Huang et al.
2012), or between 0.25 and 0.5 at 5 cM for an association
mapping panel (Cavanagh et al. 2013). The low value of
short distance LD in the INRA MAGIC population is due
mostly to the low initial LD within the set of 56 parents
(r2 = 0.3 at 2.5 cM). The importance of parental diversity
at very short distances (close to 0 cM) is well illustrated in
the 4-parent and 19-parent MAGIC populations, with LD
values of 1.0 and 0.2, respectively (Kover et al. 2009; Huang
et al. 2012). Thus the overall very low LD of the INRA
MAGIC population is the result of both low initial LD due
to the high number of parents (and their relatively low re-
latedness) and a high number of recombinations, breaking
LD at medium to long genetic distances. This low LD, com-
bined with the absence of structure and a large diversity,
make this population of great value for fine mapping.

The INRA MAGIC population is similar in concept to other
advanced intercross populations such as the mouse Collabora-
tive Cross (Churchill et al. 2004), the Arabidopsis 19-parent
MAGIC lines (Kover et al. 2009), the Arabidopsis multiple par-
ent recombinant inbred lines (AMPRIL with eight parent lines;
Huang et al. 2011), the Drosophila Synthetic Population Re-
source (DSPR) (King et al. 2012a), the rice eight-parent MAGIC
lines (Bandillo et al. 2013), and the yeast four-parent MAGIC
lines (Cubillos et al. 2013) (see Rakshit et al. 2012 for a com-
plete review on multiparent intercross populations). Neverthe-
less, these designs differ by the number of combined parental
genomes per individual. The power to detect QTL was found to
be higher in multiparental than in biparental populations, and
it increased with the number of combined parental genomes
per individual (Klasen et al. 2012). This factor allows a finer
mapping since the number of recombination breakpoints is in-
creased. Moreover, all of these populations resulted from many
generations of intercrossing, which allowed more precise de-
tection of QTL. They were mainly analyzed using traditional
association mapping methods directly on the phenotype and
genotype of lines (Huang et al. 2011; Cubillos et al. 2013) or
on reconstructed parental haplotypes (Kover et al. 2009; King
et al. 2012b). Only Cubillos et al. (2013) complemented stan-
dard association mapping with an evolutionary approach, i.e.,
detection of temporal allelic shifts corresponding to population
adaptation, which allowed them to detect and map precisely
a gene involved in heat stress resistance.

With such an evolutionary approach, studying both at
phenotypic and genetic levels, we successfully identified 26
genomic areas under selection. Among them, 6 were associated

with earliness: one major gene, four areas already detected in
previous QTL studies, and one new genomic area. As the
population exhibited quite fast evolution in one environment,
growing such diversified gene pools in different divergent
environments could give access to more genetic areas associ-
ated with local adaptation. In dynamic management, experi-
ments so far have been performed without gene flow between
populations, although appropriate gene flowwould add genetic
variability and could strengthen the detection of selected areas,
as it is expected to homogenize neutral genomic areas. In
addition, the genetic basis of local adaptation could be analyzed
through association genetics since the number of panmictic
generations guarantees very low LD and absence of struc-
ture. Using more individuals (1000 SSD lines are available—
seed samples are available on request) with a higher density
of markers should confirm that these evolutionary mapping
populations are an invaluable platform for trait discovery and
validation in the future.
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Appendix

The observations (Figure A1), nil, were defined as the number of alleles A (arbitrarily chosen from the two alleles of each
biallelic SNP) observed in the SSD lines for each individual i at each locus l. The random variable Nil, defined as the number
of A alleles for individual i at locus l can take three possible values: 0 or 2 when homozygous for allele A or B, respectively,
and 1 if heterozygous. We did not consider linkage disequilibrium; consequently the number of alleles A at each locus for
each individual is independent. The likelihood function is thus defined as

L ¼
YI
i

YL
l

PðNil ¼ nilÞ;

with I the total number of individuals (i.e., the 380 SSD lines here) and L the total number of loci considered (i.e., the
number of markers). The probability function of Nil follows a binomial distribution leading to

L ¼
YI
i

YL
l

�
2
nil

�
pnij

l ð12plÞ22nij ;

with pl the probability of an individual carrying allele A at locus l (i.e., the expected frequency of allele A at locus l in the
evolved population). Given that individuals and loci are independent in the model above, the equation is exactly equivalent
to

L ¼
YL
l

�
380 3 2

n:l

�
pn:l
l ð12plÞ3803 22n:l ;

with n.l the total number of alleles A at locus l over all individuals. In others terms this model relies only on allele frequencies
in the evolved population and not on their associations (i.e., no LD). It is thus capable of coping with the numerous selfing
events necessary to obtain SSD lines. The probability pj depends on the expected contribution of each parental line k,
PðPar ¼ kÞ, and on the frequency of allele A in each parental line k, f ðAÞk. We can thus formulate pj as

pj ¼
XK
k

f ðAÞkPðPar ¼ kÞ;

with K the total number of parental lines (i.e., K = 56 in this study).Genetic information is available for all putative parental
lines K thus:

XK
k

PðPar ¼ kÞ ¼ 1:

Furthermore PðPar ¼ kÞ is the same for all loci considered during estimation. Finally because no previous information was
available on the virtual contribution of each putative parental line k, we considered a flat Dirichlet prior distribution,

PðPar ¼ 1 . . .KÞ�DirðaÞ;

with ak ¼ 1 for each of the K elements of the vector a.
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Figure A1 Scheme of the method of parental contribu-
tion estimation. (A) The available data, f(X/L) i.e. the allele
frequency at each locus X within each parental line L. (B)
The unknown parameters to estimate, P(L) i.e. the proba-
bility of contribution to the observed population of each
parent L. (C) The observations, f(X) i.e. the allele frequency
at each locus. In this example we consider 3 parent lines
(L1 in grey, L2 in red and L3 in yellow) genotyped at 3
SNPs (A, in green, B in blue and C in pink). We specify
a binomial distribution of the allele frequencies with N the
total number of individuals sampled in the observed pop-
ulation. Each locus is treated independently and the aim of
the algorithm is estimation of genomic contribution of
parents to the population.
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Figure S1   Linear relationship between the total lost contributions and the mean absolute error. The red line represents the regression of mean error by lost 
contributions (Y= 1.21 10‐4 + 3.74 10‐2X). The blue lines represent the estimate for a mean contribution of each parental line of 1% leading to a mean absolute 
error of about 0.16% on the contribution estimates.
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Figure S2   Distribution of contribution s estimated by chromosome for each parent. Black stars are parental contributions estimated 
genome‐wide (maximum credible interval : 0.002). Parents with the highest contribution are in red and those with the lowest in green.
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Figure S3 LD decay (mean and standard deviation every 5cM) in the initial population as a function of genetic distance. 
Inter‐chromosome mean LD is set at an arbitrary distance of 320cM.
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