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Height has long been recognized as being associated with better outcomes: the

question is whether this association is causal. We use children’s genetic variants as

instrumental variables to deal with possible unobserved confounders and examine the

effect of child/adolescent height on a wide range of outcomes: academic performance,

IQ, self-esteem, depression symptoms and behavioral problems. OLS findings show that

taller children have higher IQ, perform better in school, and are less likely to have

behavioral problems. The IV results differ: taller girls (but not boys) have better

cognitive performance and, in contrast to the OLS, greater height appears to increase

behavioral problems.

& 2012 Elsevier B.V. Open access under CC BY license.
1. Introduction

The association between height and wealth has been noted in the academic literature for many decades. As early as the
17th Century, Guarinoni – one of the founders of preventive medicine – pointed to the difference in growth rates between
the rich in towns and the poor in the countryside (Tanner, 1982). More recent studies find height to be positively related to
education (Magnusson et al., 2006) and income (Persico et al., 2004). The advantages associated with greater height have
also been reported for children. For example, Case and Paxson (2008) find that taller children perform better in school tests
compared to shorter children and suggest that the relationship between childhood height and income and education in
adulthood is due to height being associated with greater intelligence.
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One problem in estimating the relationship between height and outcomes is that the relationship may not be causal.
Height is influenced by a wide range of environmental factors experienced in childhood which may be the determinants of
the outcomes, rather than height per se, for example, unobserved family wealth or differences in children’s nutrition. To
the extent that some of these unobserved differences are family specific, one approach is to identify the causal impact from
twin or sibling differences in height and outcomes. Case and Paxson (2010) use this approach, exploiting differences
between siblings. They conclude that taller children perform better in school, progress faster through school and consider
themselves more scholastically competent than their shorter siblings.

However, accounting for fixed unobserved family effects using twin (or sibling) differences does not necessarily
eliminate the inconsistency of the conventional cross-sectional estimator and can even aggravate it (Griliches, 1979;
Bound and Solon, 1999). The intuition is that taking twin or sibling differences filters out some, but not all, endogenous
variation but also filters out exogenous variation. If the endogenous variation comprises as large a proportion of the
remaining within-sibling variation as it does of the between-sibling variation, the parameters using within-sibling
estimation are as vulnerable to endogeneity bias as that found in between-sibling estimation. For example, some
potentially endogenous variation that may remain in a within-sibling estimation are unobserved differences between
siblings in nutrition and physical activity, both of which affect growth and final attained height. To argue that the within-
sibling estimator is more consistent than the between-sibling estimator, this endogenous variation as a share of the total

variation should be less in the within than the between-sibling estimation. There is no reason to be confident that this is
the case, as the within-sibling analysis also removes exogenous variation, which – together with the endogenous variation
– determines the inconsistency (Bound and Solon, 1999).

This paper therefore takes a different approach to estimate the causal effect of child height on children’s cognitive and
non-cognitive outcomes. Our approach is also called Mendelian randomization, which refers to the use of genetic variants
as instrumental variables (IV) to examine the causal effect of an exposure (here height) on outcomes. It exploits the
random assignment of an individual’s genotype at conception (Davey Smith and Ebrahim, 2003) to enable genetic variants
to instrument for a particular phenotype (the trait that the genetic variants is related to, e.g. height).1 At conception, genes
are randomly allocated from parents to offspring. Whilst this random allocation is at a family trio level, at a population
level it has been demonstrated that genetic variants are largely unrelated to the many socioeconomic and behavioral
characteristics that are closely linked with each other and that confound conventional observational studies (Bhatti et al.,
2005; Davey Smith et al., 2008; Kivimäki et al., 2008; Lawlor et al., 2008). Furthermore, since genetic variation is
determined at conception, it cannot be affected by later outcomes. Hence, in addition to dealing with fixed characteristics
that affect both height and the outcome, Mendelian randomization can also deal with time-varying characteristics that
affect height and outcomes. Therefore, under certain assumptions that we discuss below, genetic variants will allow us to
isolate the causal effect of child height on the outcome of interest.

This paper is the first to exploit genetic variants for height in an attempt to estimate the causal effect of height on
cognitive and non-cognitive outcomes for children. We begin therefore by outlining the conditions needed to use genetic
variants as instruments. To examine and indirectly test the validity of the IV approach in our context, we show first that
the genetic variants are uncorrelated with a large set of family background variables which may confound the relationship
between height and outcomes. We then discuss biological pathways of our genetic variants, and run two ‘falsification
checks’. First, we examine the effect of height on an outcome for which we have clear theoretical reasoning that there
should not be an effect (maternal education). And second, we investigate the effect of height on an outcome for which we
have strong beliefs that there should be an effect (body weight). Finding no evidence against the validity of the
instruments, we then use the genetic variants as instruments to examine the relationship between height and an extensive
set of cognitive, mental health and behavioral outcomes. In so doing, we add to the range of outcomes examined in the
previous literature. In addition to children’s academic attainment, scholastic competence and self-worth studied by Case
and Paxson (2010), we investigate the effects of height on IQ, symptoms of depression and behavioral problems, including
hyperactivity, emotional, conduct and peer problems. Note here, that our IQ measure is an index of general intellectual
functioning, which is shaped by both inherited and acquired attributes, including any family and environmental
influences. In other words, it does not simply measure ‘innate’ ability.

We use data from a cohort of UK children currently in their late teens (the ALSPAC survey, described below). The OLS
results show that taller children perform better in school tests, have higher IQ, and are less likely to have emotional and
peer problems, though these relationships differ slightly by gender. Tall girls have higher depression scores, but we find no
evidence of differences in self-esteem for children of different heights. The IV results suggest there is a causal relationship
between height and cognitive functioning, though only robustly for girls. In contrast to Case and Paxson (2010), we find no
evidence that height explains variation in scholastic self-esteem, global self-worth or depression. Further, we find evidence
that height confers disadvantage rather than advantage as it increases hyperactive behavior (girls), emotional and peer
problems (boys). These findings are robust to a set of instrument specification and robustness checks. We discuss the
results, relating back to the assumptions made in Mendelian randomization, and speculate about possible reasons for these
findings.
1 For a brief overview of some of the genetics terms used here, see the glossary in Table 1 and the Appendix.



S. von Hinke Kessler Scholder et al. / European Economic Review 57 (2013) 1–22 3
The next section begins by examining the possible mechanisms through which height may be related to the outcomes
of interest. In Section 3, we set out our methodology and Section 4 describes the data. The results are presented in Section
5 and Section 6 concludes.
2. Mechanisms

We examine a large set of outcomes: academic attainment, IQ, self-esteem, depression symptoms, and behavioral
problems. There are two ways in which height may be related to these outcomes. First, being tall could cause differences in
the outcome of interest. We define ‘causal’ however, not necessarily as height per se affecting the outcome, but as height
triggering social reactions that in turn affect the outcome. Hence, we hypothesize the effect of height to run via different
pathways, which we discuss below. Second, instead of there being a causal relationship, the association between height
and the outcome of interest may be driven by other unobserved factors that affect both.2

Several pathways through which height can causally affect outcomes are discussed in the literature, including taller
people being more competitive (Fessler et al., 2010), enjoying social dominance (Hensley, 1993) and having higher self-
esteem (Judge and Cable, 2004). In a field experiment asking participants to choose between a competitive and non-
competitive payment scheme, Fessler et al. (2010) find that, controlling for gender, the tallest quartile are one-and-a-half
times more likely to choose the competitive scheme compared to the shortest quartile. The (sociological and
psychological) literature posits several theories as to why (physical) characteristics may affect behavior or achievement.
First, the possession of certain characteristics (like being tall) can trigger expectations from others (like peers or teachers).
These expectations may influence their behavior towards the ‘possessor’, which in turn affects the possessor’s behavior,
often confirming the expectations. This self-fulfilling prophecy is also referred to as the ‘expectancy effect’ (see Darley and
Fazio, 1980). For example, some evidence suggests that taller people are perceived as more attractive (Macintyre and West,
1991). Attractiveness can in turn influence the behavior and assessment of teachers (Clifford and Walster, 1973) or
potential employers (Dipboye et al., 1975), causing taller people to behave and perform differently.

Second, short children are believed to have negative social experiences, including bullying, less social acceptance, and
fewer friends (Sandberg and Voss, 2002; Voss and Mulligan, 2000),3 though it is worth noting that tallness in girls has also
been shown to have similar negative psychological effects (Pyett et al., 2005; Binder et al., 1997). Having problematic
social relationships can in turn affect self-esteem, social adjustment, behavior, and scholastic performance (Morison and
Masten, 1991; Parker and Asher, 1987; Wentzel, 2009). Related to this is the question of whether parents compensate or
reinforce children’s endowments, the evidence of which is mixed, see e.g. Griliches, (1979) and Behrman et al. (1994). The
former may mean that parents spend relatively more time with a small compared to a tall child, to compensate for the
potential negative experiences related to short stature. As the child develops through childhood, this additional attention
and support can in turn increase their cognitive skills, or reduce their behavioral problems.

Another strand of the literature suggests that individuals (peers, parents, teachers as well as medical personnel) treat
children at a ‘size-appropriate’ rather than ‘age-appropriate’ level: tall children are generally perceived to be (and treated
as) older, whereas smaller children are treated as younger (Jones and Bayley, 1950; Rotnem et al., 1977; Underwood, 1991;
Sandberg et al., 2004). Adults in turn may have different expectations depending on children’s heights (Skuse et al., 1994),
which can subsequently affect children’s behavior. Children who ‘look young’ according to their peers are perceived to be
less (physically and verbally) aggressive and more emotional and passive (Sandberg et al., 2004). In addition, the literature
has found taller children to have more behavioral problems, such as aggression or violent behavior. Raine et al. (1998) find
that height in 3-year-old children is associated with increased aggressiveness at age 11, and Farrington (1989) find that
height at age 8–10 years is associated with violence at age 16–18 years. They argue that their early life may have taught
them that it is an effective strategy in winning social conflicts, reinforcing this behavior. In contrast, smaller and physically
weaker children lack the physical capacity to execute this behavior (Raine et al., 1998).

As opposed to a causal effect, there may be other factors that relate to both height and the outcome of interest and that
drive the associations. One set of candidates is the pre- and postnatal environment. Regarding the latter, the fastest growth
in children occurs up to age 2. There is evidence of links between early (post-natal) nutrition and child height, and
between nutrition and cognitive and social development. For example, iron-deficiency in infants and children is associated
with poorer cognitive, motor and socio-emotional function (see e.g. Lozoff et al., 2006). In addition, some studies report
that iron supplementation positively affects height (Angeles et al., 1993). But although early nutrition is a possible
candidate, several studies have shown that even under conditions of severe malnutrition (prenatal, such as fetuses
2 In theory, poor outcomes could lead children to change their eating patterns, which may affect their growth resulting in reverse causation. We

argue however, that this is very unlikely and consider this to be less of an issue than (for example) in the case of body weight.
3 In fact, the treatment of short children with growth hormone is, in part, based on the belief that being taller will improve short children’s peer

relationships (Sandberg et al., 2004; Sandberg and Voss, 2002). However, the evidence showing that short children have more negative experiences is

ambiguous: a review by Sandberg and Voss (2002) for example, concludes that the psychological adaptation of shorter-than-average individuals is

largely indistinguishable from others, whether in childhood, adolescence or adulthood. Others, however, argue that short people may simply be

discriminated against (Magnusson et al., 2006; West, 1991). Persico et al. (2004) instead suggest that taller adolescents are more likely to participate in

social activities that develop human capital. Hamermesh and Biddle (1994) argue that (labor market) discrimination does not arise from correlations

with height. Instead, they claim it is mainly based on the employee’s looks (‘beauty’).
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subjected to war-time famine and postnatal, such as starvation in the early years of life) complete equality in height with
siblings or peers is attained before puberty (Tanner, 1978).

In terms of the pre-natal diet, there is evidence that nutrition in utero plays an important role in child development. But
nutriments which help some developmental aspects, may hurt others. For example, omega 3 fatty acids in fish and seafood
consumption are crucial for brain development and have been associated with decreased hostility and aggression (Benton,
2007), but are also the primary source of (non-occupational) mercury exposure (Oken and Bellinger, 2008). Several studies
have shown prenatal methylmercury exposure to be associated with decreased IQ and test scores (Axelrad et al., 2007;
Cohen et al., 2005). Likewise, some studies find that maternal alcohol consumption and smoking during pregnancy
negatively affect birth weight and child growth (Mills et al., 1984; Gilman et al., 2008). Lower birth weights in turn are
associated with poorer cognitive performance (Richards et al., 2002; Ericson and Kallen, 1998) and behavioral
development (Elgen et al., 2002), though the literature suggests that this relationship is driven by family background
characteristics rather than a specific intrauterine effect (Yang et al., 2008). There is mixed evidence on the effects of
maternal smoking and alcohol consumption during pregnancy on child outcomes, with some arguing it lowers outcomes
and others finding no effect (see e.g. Olds et al., 1994; Gilman et al., 2008; Kafouri et al., 2009; Davey Smith, 2008; Nilsson,
2008; Russell, 1991).

Other potential confounders include genetic causes of both height and the outcome of interest. This may be especially
important in this context, as both height and (for example) cognition are likely be influenced by a large number of genes,
each with very small effects. Indeed, some literature suggests that part of the height–intelligence association is driven by a
genetic component (Sundet et al., 2005), though others find no evidence of this. For instance, comparing first and second
born biological brothers in Sweden, Magnusson et al. (2006) find that the taller brother is significantly more likely to
attend higher education. However, the height effect estimated between brothers is almost identical to that across all men,
suggesting that the correlation between height and intelligence is not driven solely by genetic or environmental factors
common to brothers.

This discussion suggests that a potential bias can go in either direction. If a well-balanced diet or the family’s socio-
economic position positively affects height, but also leads to fewer behavioral problems, the OLS is likely to under-
estimate the true effect of height on behavioral problems. If, however, this same diet leads to better educational outcomes,
OLS is likely to over-estimate the true effect on education. However, if certain dietary components lead to decreased
cognitive functioning, the OLS may under-estimate the true effect on educational outcomes and IQ. Under the assumptions
we discuss in detail below, the use of the child’s genetic markers as instrumental variables will shed more light on these
issues and will allow us to estimate the causal effect of child height.
3. Methodology

3.1. The potential outcomes framework

We examine the impact of child height on three sets of outcomes: (1) cognitive skills, (2) mental health, and (3)
behavioral problems. We discuss the outcomes in more detail below. As both height and outcomes differ by gender, we
estimate all models separately for boys and girls. We model the relationship between height and outcomes using the
potential outcomes framework, building on the work by Imbens and Angrist (1994) and Angrist et al. (1996), which has
been of great importance in linking the econometric IV literature to the potential outcomes framework.

Let C, H and Z denote random variables representing, respectively, the outcome of interest, child height and the genetic
variant as IV. For simplicity, we initially discuss the case of a binary instrument, though we consider the case of multi-
valued instruments below. Zi¼1 indicates that individual i carries the genetic variant, Zi¼0 implies that individual i does
not carry the genetic variant.

Let Hi(z) be the potential height for individual i when the instrument is set equal to z. Equivalently, let Ci(h,z) be the
potential outcome for individual i that would be obtained if height, the treatment variable, was set to h and the instrument
set to z. We refer to Hi(z) and Ci(h,z) as the potential treatments and potential outcomes respectively.

The individual treatment effect, or causal effect, is Ci(h0,z)�Ci(h,z), where h is some baseline value. Under the exclusion
restriction discussed below, we can write Ci(h0,z)¼Ci(h0). The causal estimand of interest can therefore be written as

E½Ci h0
� �
�CiðhÞ�: ð1Þ

We follow Angrist et al. (2000), who specify the conditions under which the simple IV estimator identifies a weighted
average of the derivative function of the non-linear causal response function. We discuss these assumptions in turn.

Assumption 1. (Independence)

Zi ? fCi h,zð Þ,HðzÞgh,z

Independence implies that the instrument is independent of the potential outcome and the potential height, for all
values of h and z. In other words, the instrument is as good as randomly assigned.
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Assumption 2. (Exclusion)

Ci h,1ð Þ ¼ Ci h,0ð Þ for all h:

Exclusion implies that the potential outcomes, at any height h, are unchanged by the presence or absence of the genetic
variant. In other words, the only way through which the instrument affects the potential outcome is via H.

Assumption 3. (Nonzero effect of instrument on height)

E½Hið1Þ�Hið0Þ�a0

This implies that expected potential height is affected by the genetic variant and therefore, that the instrument has an
effect on treatment.

Assumption 4. (Monotonicity)

P½Hið1ÞZHið0Þ� ¼ 1 for all or vice versað Þ

This means that the potential height for individual i with the genetic variant is at least as high as the potential height for
the same individual without the genetic variant.

Specifying heterogeneous responses, the potential outcome for individual i can be written as a general function of h, say
Ci(h)�gi(h). Under the assumptions above, the instrumental variables estimand, defined as the ratio of the difference in
average outcomes at two values of the instrument to the difference in average treatment at the same two values of the
instrument, can be written as

E½Ci9Zi ¼ 1��E½Ci9Zi ¼ 0�

E½Hi9Zi ¼ 1��E½Hi9Zi ¼ 0�
¼

R
E½gi
0 ðqÞ9Hið0ÞoqoHið1Þ�PfHið0ÞoqoHið1ÞgdqR

PfHið0ÞoqoHið1Þgdq
, ð2Þ

where gi
0 ðqÞ is the derivative of gi(h) w.r.t. h evaluated at q. Therefore, the IV estimator is a weighted average of the

derivative function (Angrist et al., 2000; Angrist and Pischke, 2009).
Although the above discussion uses a binary instrumental variable, we observe a multi-valued instrument. In the case

of such discrete instruments, the IV estimate is a weighted average of the average causal derivatives calculated at each
value of the instrument, where the weights are determined by the strength of the instrument on the treatment. Hence, the
IV estimate is a weighted average of the derivative function at the different values of the instrumental variable (Angrist
et al., 2000).

3.2. The genetic variants

We use a set of nine genetic variants (single-nucleotide polymorphisms: SNPs (see glossary, Table 1, and the Appendix))
that have all been robustly associated with height among individuals of European ancestry. The nine variants we use are
SNPs in the following genes: HMGA2 (rs1042725), ZBTB38 (rs6440003), GDF5 (rs6060373), LOC387103 (rs4549631),
EFEMP1 (rs3791675), SCMH1 (rs6686842), ADAMTSL3 (rs10906982), DYM (rs8099594) and C6orf106 (rs2814993), where
the rs number is a unique SNP identifier.4

Mendelian randomization is valid assuming that, at the population level, the genetic variants are unrelated to the type
of unmeasured lifestyle and socio-economic confounders that tend to distort interpretations of observational studies. The
theory of random allocation of genetic variants and the empirical evidence on this suggest this is the case (Bhatti et al.,
2005; Davey Smith et al., 2008; Kivimäki et al., 2008; Lawlor et al., 2008; see also Fisher, 1952; Box, 2010; Bodmer, 2010).
We discuss the assumptions in turn, relating this to our research question.5

3.2.1. Assumption 1: Independence

One way to indirectly test Assumption 1 is by exploring whether the distribution of individual or family-level
characteristics that are available in the data is the same in different groups defined by the value of the instrument. In
Section 4.4, we examine the relationship between the genetic variants and a large set of child and family background
characteristics. The idea is that, if the instrumental variable is indeed randomized, there should be no systematic variation
in the covariates by genotype. This raises the question however, about which covariates to test for, as any characteristic is,
in principle, a post-treatment variable with respect to the instrument. Hence, any systematic variation in these indirect
4 See e.g. Weedon et al. (2007, 2008), Lettre et al. (2008) Gudbjartsson et al. (2008), and Allen et al. (2010). For example, Weedon et al. (2008) identify

20 loci that robustly affect stature, including those used here, using a total of 30,147 individuals of European ancestry. These have since been confirmed

in more independent samples (see e.g. Weedon et al., 2007; Lettre et al., 2008; Gudbjartsson et al., 2008; Allen et al., 2010). We use nine of the 20 SNPs

identified by Weedon et al. (2008), as these were the only variants available in our data at the time of writing.
5 For a more detailed discussion of the use of genetic markers as instrumental variables from an economic perspective using a similar framework as

the above, see von Hinke Kessler Scholder et al. (2011b). Lawlor et al. (2008) includes a more general discussion of the situations and (biological)

processes that may invalidate Mendelian randomization studies.



Table 1
A glossary of some genetic terms.

Term Definition

Alleles One of two or more versions of a specific location on the DNA sequence. An individual has two alleles, one from each

parent

Base Also called nucleotide. Bases are the ‘building blocks’ of DNA. DNA consists of four bases: adenine (A), cytosine (C),

guanine (G) and thymine (T). It is the sequence of these four bases that encodes information

Chromosome A continuous piece of DNA that carries a collection of genes. Every cell in the human body contains 46 chromosomes

DNA Deoxyribonucleic acid (DNA) contains the genetic instructions used in the development and functioning of all living

organisms. The DNA segments that carry the genetic information are called genes. The double-helix structure joins

two strands of DNA, where the base A binds with T, and G binds with C

Gene A section on the chromosome that comprises a stretch of DNA

Genotype The specific set of two alleles inherited at a particular location on the DNA sequence. If the alleles are the same, the

genotype is homozygous. If different, it is heterozygous

Homozygous When the two alleles at a particular locus are the same

Heterozygous When the two alleles at a particular locus are different

Heritability The proportion of the total variance that is explained by genetic factors. It is most commonly calculated from twin

studies by comparing intra-pair correlations for the characteristic in monozygotic (MZ) with intra-pair correlation in

dizygotic (DZ) twins. The heritability is of a characteristic is calculated as twice the difference between MZ and DZ

intra-pair correlations (h2
¼2n(rMZ�rDZ))

Linkage disequilibrium (LD) The correlation between alleles at different loci within the population that occurs due to the co-inheritance of alleles.

Alleles that are in LD are not independent of another. The extent of LD is a function of the distance between the alleles

on the chromosome

Phenotype An organism’s observable characteristic or trait, such as its biochemical or physiological properties. Phenotypes result

from the expression of genes as well as the influence of environmental factors and the interaction between the two

Pleiotropy The potential for variants to have more than one phenotypic effect. If a SNP is pleiotropic, it influences multiple

phenotypes

Polymorphism Locations where DNA varies between individuals

Population stratification The presence of a systematic difference in allele frequencies between subpopulations within a population. The most

common example is population stratification due to ethnicity

Single-nucleotide

polymorphism (SNP)

A genetic variation in which a single base/nucleotide on the DNA is altered, e.g. the nucleotide T is changed to A
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tests does not necessarily indicate a violation of independence (or exclusion). It may be, for example, that the instrument is
picking up additional causal effects of the same risk factor, or that it is picking up reverse causation from the outcome to a
different covariate.

One way through which the independence assumption can be violated is population stratification. This refers to a
situation in which there is a systematic relationship between the allele frequency and the outcome in different population
subgroups (see Table 1 and the Appendix for a definition of some genetic terms). For example, allele frequencies can vary
across ethnic groups. If these groups also have systematically different educational outcomes that are not due to a genetic
make-up, this could lead to an association between the two at the population level without an actual causal relationship,
violating the independence Assumption 1. In other words, despite the fact that genotypes are randomly allocated and with
that satisfy Independence, any population stratification can violate this assumption. This can be dealt with however, by
examining the question of interest within ethnic groups, separately analyzing the different sub-populations, and/or
adjusting for principal components from genome wide data that function as ancestry markers, relying on the conditional

independence assumption. Population stratification is unlikely to affect our estimation, as our cohort is recruited from a
specific geographically defined region, and fewer than 3% of the mothers reported that either they or their partner were
from an ethnicity other than White European. With this small number of participants removed, a principal components
analysis using genome-wide data in the cohort suggests that it consists of one population.

3.2.2. Assumption 2: Exclusion

There are various situations that can violate the exclusion restriction. First, as individuals inherit their genes from their
parents, it may be important to consider whether parents’ behaviors are affected by their genotype (and hence are related
to their offspring’s genotype). In the presence of strong ‘dynastic effects’, genetic instruments may be invalid if they are
related to parental behaviors that in turn affect the outcome of interest (Fletcher, 2011). For example, parents who carry
‘tall’ alleles may be treated differently because of their taller stature. If this affects their preferences for their child’s
education, Assumption 2 may be violated. The extent of this potential violation however, will depend on the effect sizes of
the variants. In our case, the genetic variants increase the average height by a relatively modest amount, which is unlikely
to lead to strong (parental) responses.

Second, if the variants have multiple functions (also known as pleiotropy), Assumption 2 could be violated. This would
occur for example, if – over and above the association with height – the variant has a direct effect on our outcome of
interest (such as cognition or self-esteem), violating the exclusion restriction. Similarly, if a variant is co-inherited with
another genetic variant (known as being in linkage disequilibrium (LD)), violation of Assumption 2 depends on the effect of
the co-inherited variant on the outcome of interest. The current evidence suggests that some height variants may indeed
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be pleiotropic or in LD (i.e. co-inherited) with other variants. For example, individuals with higher levels of GDF5 on
average have both increased bone and cartilage growth (Sanna et al., 2008). However, there is currently no evidence that
the variants used here additionally directly affect (or are in LD with variants that directly affect) our outcomes of interest
or determinants thereof.

We investigate the potential violation of the IV assumptions in a number of ways. First, we search the literature to
identify evidence on the biological pathways of our variants, which may shed more light on the mechanisms through
which they affect height. Medical and theoretical evidence that suggest that the SNPs only affect the outcome through their
effect on height would in turn mitigate concerns about the exclusion restriction. Although the biological pathways are not
known for all variants, Allen et al. (2010) show that a substantial number of the 180 SNPs they study, including some used
here, are involved in growth-related processes.6

Despite the absence of evidence of our SNPs directly affecting (determinants of) the outcomes of interest, and despite
the biological pathways pointing to skeletal development and cell growth, we cannot guarantee that Assumption 2 holds.
For instance, it is possible that some variants’ pleiotropic effects (i.e. any additional effects independent from those on
height) have simply not yet been identified. The 180 SNPs that have so far been identified explain 10% of the total variation
in height. Hundreds, maybe thousands more effects are still lost in the genome (McEvoy and Visscher, 2009). Hence, it is
possible for one (or more) of the nine instruments used here to be pleiotropic or in LD with a variant that directly affects
our outcome. Based on the best available evidence however, we assume this is not the case and that Assumption 2 holds.7

We reiterate though, that – similar to any other IV approach – this remains an assumption, as we cannot test for this
directly. In other words, its validity will never be known with complete certainty and can only be examined indirectly or
falsified by the data.

When data are available on a large number of variants affecting the risk factor of interest, genetic confounding through
pleiotropy or LD can be examined in more detail. More specifically, if multiple IV models – each using different
independent combinations of these variants – predict a similar causal effect, this is very unlikely to be due to some
common pleiotropy or LD across the different sets of variants, assuming that the different variants are located on different
chromosomes and affect the trait via different pathways (Davey Smith, 2011; Palmer et al., 2011). Hence, if the different IV
specifications display consistency, it provides some evidence against genetic confounding. One would ideally have a large
number of variants available to thoroughly test for this, allowing for many different combinations of instrument sets
without having to deal with weak instruments. Although the genetic data available to us is more limited, we explore this
concept and investigate this further in Section 5.3.

3.2.3. Assumption 3: Nonzero effect of instrument on height

The prior knowledge on the effects of the variants, our use of a comparable sample of individuals of European ancestry,
and the fact that these associations have been replicated in different independent samples, justify the use of these variants
and their compliance with Assumption 3. However, as gene–environment interactions in different samples can violate this
Assumption (see e.g. von Hinke Kessler Scholder et al., 2011a), Section 5.2 examines the strength of the instrument in our
sample, using the standard statistical tests. Although the relationships between the SNPs and height are robust, their
phenotypic effects (the actual effects on height) are small. In our analysis, we therefore combine the different SNPs into a
count of the number of ‘tall’ alleles carried by each child to get around the problem of low power. We create a count of the total
number of height-increasing alleles for each child and use this as the instrumental variable for height (see Section 4.4).
3.2.4. Assumption 4: Monotonicity

Given random allocation of genetic variants and the fact that individuals do not know their genotypes, we assume that
an individual who carries a ‘tall’ allele is at least as tall as the same individual, had she not carried the ‘tall’ allele, thus
satisfying the monotonicity Assumption 4. As this relies on knowing each individual’s counterfactual, this remains an
assumption. The literature only shows that, at a group or population level, those who possess the genetic variant are taller
than those who do not. The assumption could, for example, be violated in the presence of gene–environment interactions,
though we are not aware of any evidence of this for the SNPs used here.

4. Data

We use data from a cohort of children born in the Avon area of England. Avon has approximately 1 million inhabitants,
including 0.5 million in its main city, Bristol. Women eligible for enrollment in the population-based Avon Longitudinal
6 Indeed, DYM, GDF5 and HMGA2 have been associated with skeletal growth in the Online Mendelian Inheritance of Man (OMIM) database (http://

www.ncbi.nlm.nih.gov/omim). GDF5 is a protein of the Transforming Growth Factor b (TGFb) superfamily, which is important for cell growth and skeletal

development. HMGA2 is likely to be associated with increased cell growth, DYM is related to skeletal development, and EFEMP1 and ADAMTSL3 are

involved in pathways influencing the extracellular matrix, which – among others – is essential for processes like growth and wound healing.
7 Even if a genetic component affects both height and the outcome of interest, it does not necessarily imply that a specific genetic variant causes this

through (for example) pleiotropy or LD. It may be caused, for example, by interactions between genes (from simple pairs to complex networks), or other

variations in DNA.

http://www.ncbi.nlm.nih.gov/omim
http://www.ncbi.nlm.nih.gov/omim
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Study of Parents and Children (ALSPAC) had an expected delivery date between 1 April 1991 and 31 December 1992.
Approximately 85% of these mothers enrolled, leading to about 14,000 pregnancies. The Avon area is broadly
representative of the UK, though mothers were slightly more affluent compared to the general population (Golding
et al., 2001; see www.bris.ac.uk/alspac for a more detailed description of the sample, its enrollment, and response rates).
Note that ALSPAC is a cohort; there is no systematic data collection on siblings.

Detailed information on the children and their families has been collected from a variety of sources, including self-
completed questionnaires, data extraction from medical and educational records, in-depth interviews, and clinical
assessments and so our data contain a large range of child health and development, family background, family inputs
and school measures.

A total of 12,620 children survived past the age of 1 and returned at least one questionnaire. Of these, 642 were
excluded because either their mother or father is of non-white ethnic origin, leaving 11,978 potential participants. Our
sample selection process is as follows. First, we select those children for whom we observe all nine genotypes, leaving us
with approximately 7100 children. Second, we drop children for whom we do not observe their height. Children were
invited to attend specially designed clinics, where their anthropometric measures were recorded. As not all children
attended these clinics, our sample sizes reduce to between 4594 (age 8) and 3867 (age 13). Finally, we restrict the sample
to those children for whom we observe the outcome of interest, leading to a final sample size of around 3900 at age 8 and
3300 at age 13. We deal with missing values on other covariates by using multivariate imputation (Royston, 2004).

4.1. Outcome measures

We examine three sets of outcomes. First, we observe two measures of cognitive function. These are the child’s score on
the nationally set Key Stage 3 (KS3) exam (taken by all 14-year-olds educated in the state sector) and the child’s IQ,
measured as age 8.8 Both measures are objective and comparable across all children. Increasing scores indicate better
performance. It is important to note that IQ does not only measure ‘innate’ ability. Instead, our measure of IQ (WISC-III) is
an index of general intellectual functioning, which is shaped by both inherited and acquired attributes, including any
family and environmental influences. For example, there is evidence of differences in IQ between children of different
quality home environments and socio-economic position (see e.g. Molfese et al. (1997) and references therein).

Second, we examine three measures of mental health or self-esteem: depression symptoms, scholastic competence and
global self-worth. The latter two are measured at age 8, using the Harter’s Self-Perception Profile for Children (Harter,
1985), with increasing scores indicating higher self-esteem. The depression score is self-reported by the teenager at age 13
using the Moods and Feelings Questionnaire (Angold et al., 1995). Increasing scores indicate more depression symptoms.

Third, we examine the child’s behavioral problems, as measured by the mother’s report on the Strength and Difficulties
Questionnaire (SDQ; Goodman, 1997) administered at age 13. SDQ has four sub-scores, which we examine separately (as is
common in the literature). These are hyperactivity, emotional problems, conduct problems and peer problems. Increasing
scores indicate increasing problems.

For comparability, all outcomes are standardized on the full sample of children for whom data is available, with mean
100, standard deviation 10.

4.2. Measures of child height and the genetic variants

We examine the effect of contemporaneous height on each outcome. Height is adjusted for the exact age in month at
which it is measured and standardized to have mean 100, standard deviation 10. All measurements are taken by trained
nurses. We instrument height with a set of SNPs that have been consistently shown to relate to stature. These are SNPs
located in the following genes: HMGA2, ZBTB38, GDF5, LOC387103, EFEMP1, SCMH1, ADAMTSL3, DYM and C6orf106. All but
two SNPs are located on different chromosomes (LOC387103 and C6orf106 are both on chromosome 6), with the correlation
in our sample ranging from �0.029 to 0.026. Hence, each SNP has an independent effect on stature.

4.3. Covariates

The main reason for the inclusion of covariates in economics IV studies is that the conditional independence and
exclusion restriction are more likely to be valid. A second reason for including covariates is that it may reduce the
variability in the dependent variable, leading to more precise estimates. In Mendelian randomization studies, however, the
theory and evidence on the random allocation of genetic variants suggests that we can rely on the unconditional

independence and exclusion restriction. In fact, the inclusion of covariates may bias the estimates of interest. For example,
if the instrumented risk factor (here: height) has multiple causal effects, or if the outcome of interest has a causal effect of
its own on the covariates, adjusting for such post-treatment variables may lead to biased estimates of the causal effect of
8 The KS3 scores are averaged over three subjects (English, maths and science) and obtained from the National Pupil Database, a census of all pupils

in England within the state school system (this includes 93% of English children), which is matched into ALSPAC. IQ is measured using the Wechsler

Intelligence Scale for Children (WISC-III; Wechsler, 1991) and is administered by the ALSPAC psychology team.

www.bris.ac.uk/
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interest. Under the independence assumption and exclusion restriction, and in a situation where the instrumented risk
factor and outcome do not (directly or indirectly) affect these covariates, the unadjusted and adjusted IV estimates should
be similar, though the latter may be more precise. We present the main findings both with and without adjustment for
covariates. These show similar results, providing at least suggestive evidence that the instruments satisfy independence
and exclusion.

In the analysis that adjusts for covariates, we control for a rich set of child and family characteristics, including the
child’s birth weight and the number of older and younger siblings under 18 in the household. As the outcomes of interest
may vary with within-year-age, we also account for the child’s age (in months) at the time the outcome is measured. We
control for the family’s socio-economic position with various measures: log equivalized family income and its square, four
binary variables for mother’s and father’s educational level, the mother’s parents’ educational level, an indicator for
whether the child is raised by the natural father, variables indicating the family’s social class, and parents’ employment
status when the child is 21 months. As a further measure, we include a measure of small (local) area deprivation, as
measured at the child’s birth.9

In addition to these generally observed controls, our data allow us to also account for several further measures of
mother’s health and behavior, which may be correlated with both child height and the outcome of interest. We use two
binary variables which measure whether the mother smoked or drank alcohol in the first three months of pregnancy; an
ordered indicator for the intensity of mother’s breastfeeding (never, o1 month, 1–3 months and 3þ months); mother’s
age at birth (20–24, 25–29, 30–34, 35þ); mother’s ‘locus of control’, a psychological concept that describes whether
individuals attribute successes and failures to internal or external causes (those with an external locus of control attribute
success and failure to chance); two further measures of maternal mental health; and finally several measures of parental
involvement or interest in the child’s development.10
4.4. Descriptive statistics

Table 2 presents mean height (at age 8) for each of the SNPs, distinguishing between children who are homozygous for
the height-increasing allele, heterozygous and homozygous for the height non-increasing allele (see the glossary in Table 1
and the Appendix for some of the genetic terms used here). These show that each of the individual SNPs explain little of
the variation in child height. This would imply that the first stage regressions have low explanatory power, which could
result in biased estimates. To avoid such problems of low power, we create a count of the total number of height-
increasing alleles carried by each child (as in e.g. Weedon et al. (2008); Lettre et al. (2008)). We use this in our main
analysis as the instrument for child height. As shown by Pierce et al. (2010), combining genetic factors as such alleviates
weak IV problems. However, they also show that such counts are mainly appropriate when variants have similar effects,
but suboptimal otherwise, as the effect sizes will be mis-specified. Indeed, a simple count of the number of risk alleles
imposes structure, setting the magnitude of the effects of all alleles to be equal. As an alternative, we therefore check the
robustness of our results in Section 5.3, using a weighted allele score, where the weights are the gender-specific strengths
of the association between the variant and individual height, as estimated by a large genome-wide association study of
183,727 individuals in 61 independent datasets (Allen et al., 2010). In this section, we also investigate the robustness of
our results to the use of different combinations of different sets of instruments.

The left panel of Fig. 1 presents a histogram of the number of ‘tall’ alleles carried by each child, showing a bell-shaped
distribution. The linear prediction of height, obtained from a regression on the number of ‘tall’ alleles, is presented by the
straight line. On average, each ‘tall’ allele increases the child’s height at age 8 by 0.043 standard deviations (about 0.25 cm).
There is, however, a considerable amount of unexplained variation in height (R2o1%), as shown in the right panel of Fig. 1,
where the linear prediction is presented by the same straight line.

Columns 1 and 2 in Table 3 present the descriptive statistics (mean, standard deviation) of the variables discussed
above. This shows an average height at age 8 of 132.2 cm and of 163.3 cm at age 13. In the analysis, we use standardized
heights. Columns 3–5 show the raw association between this measure, the covariates and the number of ‘tall’ alleles,
obtained from a regression of standardized height or each covariate on the number of height-increasing alleles. The top
two rows of these columns present the relationship between child height and the instrument, showing a strong
9 Family income is an average of two observations (when the child is aged 3 and 4) and is in 1995 prices. The educational indicators are: less than

ordinary (O) level, O-level only, advanced (A) level that permits higher educational study, and having a university degree. We use the standard UK

classification of social class based on occupation (professional (I), managerial and technical (II), non-manual skilled (IIInm), manual skilled (IIIm), semi-

skilled (IV) and unskilled (V)). The Index of Multiple Deprivation (IMD) is based on six deprivation domains, including health deprivation and disability;

employment; income; education, skills and training; housing; and geographical barriers to services. Increasing IMD scores indicate greater deprivation.

The IMD measure relates to areas containing around 8000 persons.
10 Maternal mental health is measured by the Edinburgh Post-natal Depression Score (EPDS) and Crown-Crisp Experimental Index (CCEI) at 18 weeks

gestation. EPDS indicates the extent of post-natal depression; CCEI captures a broader definition of mental health, measuring general anxiety, depression

and somaticism. Higher scores mean the mother is more affected. The mother’s ‘teaching score’ is constructed from questions that measure whether the

mother is involved in teaching her child (depending on the child’s age) songs, the alphabet, being polite, etc. We use an average score from three

measures at ages 18, 30 and 42 months to capture longer-term involvement. Likewise, a variable is included indicating whether the mother reads/sings to

the child, allows the child to build towers/other creations etc., measured at age 24 months. Finally, we account for the extent to which parents engage in

active (outdoor) activities with their children, such as going to the park or playground and going swimming.



Table 2
Mean and standard deviation of height at age 8 (in cm) for each SNP.

Gene SNP rs number ‘Tall’ allele Homozygous for ‘non-tall’ allele Heterozygous Homozygous for ‘tall’ allele

Mean Std. dev. Mean Std. dev. Mean Std. dev.

HMGA2 rs1042725 C/T 132.0 (5.47) 132.0 (5.59) 132.7 (5.71)

ZBTB38 rs6440003 A/G 131.8 (5.53) 132.3 (5.68) 132.4 (5.47)

GDF5 rs6060373 C/T 132.2 (5.58) 132.2 (5.59) 132.2 (5.71)

LOC387103/C6orf173 rs4549631 C/T 131.6 (5.45) 132.5 (5.68) 132.1 (5.54)

EFEMP1 rs3791675 A/G 131.0 (5.75) 131.9 (5.52) 132.4 (5.61)

SCMH1 rs6686842 A/G 131.9 (5.51) 132.2 (5.62) 132.4 (5.68)

ADAMTSL3 rs10906982 A/T 131.8 (5.53) 132.1 (5.64) 132.5 (5.57)

DYM rs8099594 T/C 131.9 (5.72) 132.2 (5.51) 132.2 (5.65)

HMGA1/C6orf106 rs2814993 T/C 132.2 (5.70) 132.1 (5.34) 132.5 (5.19)

Note: The height-increasing allele is bold and underlined.

Fig. 1. Histogram of children’s height at age 8 by the number of height-increasing alleles.
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relationship for height at both ages. On average, each ‘tall’ allele is associated with a 0.043–0.047 standard deviation
increase in child height (recall from above that height is distributed with mean 100, standard deviation 10). The rest of
columns (3–5) show no clear patterns or (with three exceptions) statistically significant associations in the relationship
between the contextual variables and the number of height-increasing alleles. Using a two-sided binomial probability test
at the 5% level, a comparison of the observed versus expected number of significant correlations suggests that the genetic
variants show no greater association with the child and family background characteristics than what would be expected by
chance (p¼0.15). Failing to reject the null, however, does not necessarily imply it is true. In other words, it does not
guarantee that the instrument is orthogonal to any potential confounders, as it may be that the association is too small to
detect with our sample size, or that we simply do not observe the relevant confounders. Nevertheless, it provides
suggestive evidence that the instruments support Assumptions 1 and 2.11
4.5. IV falsification check

Another way to examine the robustness of our IV approach and the validity of our instruments is by undertaking a
‘falsification check’. We do this in two ways. First, we examine the effect of height on an outcome for which we have clear
theoretical reasoning that there should not be an effect. Second, we examine the effect of height on an outcome for which we
have strong beliefs that there should be an effect. These approaches, also known in epidemiology as ‘negative control’ and
‘positive control’ methodology respectively, are increasingly adopted in the biomedical field (see e.g. Davey Smith, 2008;
Lipsitch et al., 2010). In the first test, we investigate the relationship between children’s height and maternal educational level
in an OLS and IV analysis. With evidence of a socio-economic gradient in height, we expect a positive association. However,
there is no reason to believe there to be a causal effect, and hence, we expect the IV approach to remove this correlation.

Columns 1 and 2 of Table 4 present the results, showing strong positive correlations between maternal education and
height in the OLS, which turn insignificant in the IV model. The IV point estimates are sometimes smaller and sometimes
11 To shed more light on whether the variants are likely to be related to other background characteristics, we also examine the relationship between

the genetic variants and a wide set of further variables (64 additional pairwise comparisons) that are not included in our analysis (such as whether the

child had sleeping difficulties, the child’s ‘locus of control’, whether the mother had a cesarean section, mother’s self-esteem, anxiety, depression,

whether the family owns their own home, whether they have financial difficulties, etc.). The findings (available from the authors upon request) also

suggest the genetic variants are unrelated to these other variables (using a two-sided binomial probability test, p¼0.77 at the 5% level).



Table 3
Descriptive statistics of height and the covariates: Columns 1 and 2 show their mean and standard deviation. Columns 3–5 present the coefficients,

standard error and p-value of the variables shown in the first column regressed on the instrument (a count of the number of height-increasing alleles).

(1) Mean (2) Std. dev. (3) Coeff. (4) Std. err. (5) p-value

Height (columns 1 and 2: in cm; columns 3–5: standardized)

Age 8 132.2 (5.6) 0.430 0.081 o0.001

Age 13 163.3 (7.6) 0.474 0.089 o0.001

Control variables
Age in months at Focus at 8 clinic 103.1 (2.21) 0.018 0.017 0.284

Age in months at Teen Focus 2 clinic 166.0 (2.12) 0.011 0.015 0.466

Age in months at KS3 exam 169.6 (3.76) �0.033 0.025 0.194

Birth weight (g) 3422 (549) �1.505 3.699 0.684

Younger siblings under 18 in the household 0.51 (0.65) �0.003 0.004 0.543

Older siblings under 18 in the household 0.74 (0.74) 0.000 0.005 0.972

Ln(income) 5.32 (0.45) 0.000 0.003 0.995

Father’s education 2.43 (1.01) 0.000 0.007 0.986

Mother’s education 2.36 (0.88) 0.003 0.006 0.615

Mother’s mother’s education 1.73 (0.75) �0.001 0.005 0.829

Mother’s father’s education 1.84 (0.79) �0.003 0.005 0.610

Child is not raised by natural father 0.06 (0.23) 0.001 0.002 0.628

Father’s social class at the child’s birth 3.04 (1.28) �0.001 0.009 0.894

Mother is employed part-time at 21 months 0.40 (0.49) 0.008 0.003 0.020

Mother is employed full-time at 21 months 0.10 (0.30) �0.000 0.002 0.906

Father is employed at 21 months 0.92 (0.28) 0.004 0.002 0.038

Index of Multiple Deprivation (IMD) 19.50 (13.95) �0.014 0.100 0.891

Mother: alcohol in month 1–3 of pregnancy 0.57 (0.50) 0.004 0.003 0.266

Mother: smoked in month 1–3 of pregnancy 0.18 (0.39) �0.000 0.003 0.917

Breastfeeding 1.88 (1.20) 0.011 0.008 0.207

Mother’s age 3.38 (0.91) 0.002 0.006 0.711

Mother’s ‘locus of control’ 98.88 (9.44) �0.020 0.065 0.764

Mother’s EPDS 6.46 (4.54) 0.025 0.031 0.412

Mother’s CCEI 12.88 (7.19) 0.038 0.049 0.443

Teaching score 7.02 (0.93) 0.001 0.007 0.916

Activities (indoor) score 0.69 (0.20) 0.003 0.001 0.032

Activities (outdoor) score 27.89 (4.61) �0.008 0.032 0.810

Note: Rather than height in cm, the analysis uses standardized heights (with mean 100, standard deviation 10).
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larger, with no clear patterns in size or sign of the effects of height measured at different ages. As expected, the standard
errors are much larger in the IV, and we cannot reject the null of no effect. The large standard errors however, also preclude
us from rejecting the Durbin–Wu–Hausman (DWH) test, suggesting that we cannot distinguish the IV estimates from the
OLS estimates.

In the second falsification check, we examine the effect of height on body weight. As these are highly (positively)
correlated, particularly in children who are still growing (e.g. see any children’s growth charts), we expect to find strong
positive effects. Assuming that height is exogenous to body weight, we also expect the OLS and IV estimates to be similar,
though the exogeneity of height in this setting is an assumption.12 However, as shown by Tanner (1978) and discussed
above, even with severe (prenatal or postnatal) malnutrition, children attain similar heights as their siblings or peers.
Hence, assuming that height is exogenous to weight, a substantially different or null IV finding would cast doubt on our IV
strategy.

Columns 3 and 4 of Table 4 show strong positive estimates of height on body weight at different ages in both the OLS
and IV. A one standard deviation increase in height is associated with a 0.52–0.70 standard deviation increase in weight in
the OLS, and a 0.21–0.93 standard deviation increase in weight in the IV. The point estimates are similar in both models,
though the standard errors are again much larger in the IV. The Durbin–Wu–Hausman test shows that the majority of the
IV estimates are indistinguishable from those estimated by OLS.

Despite the imprecision of the IV approach, the two tests suggest that our instruments perform well. Although this does
not guarantee that our IV approach also correctly identifies the causal effect on the other outcomes of interest such as
depression or behavior, it does provide support for the argument that both the approach and the instruments are valid to
obtain causal estimates of the effects of stature. In Section 5.3, we examine the robustness of these estimates to the use of
different combinations of instrumental variables.
12 If a healthy (unobserved) diet positively affects height and negatively affects weight, the OLS estimates would be biased downwards.



Table 4
Two falsification checks, OLS and IV.

Maternal education Weight (measured at the same age as height)

(1) OLS (2) IV (3) OLS (4) IV

Boys Girls Boys Girls Boys Girls Boys Girls

Height, age 3 0.005nnn 0.005nnn
�0.004 0.012 0.687nnn 0.650nnn 0.738nnn 0.437nn

(0.002) (0.002) (0.016) (0.021) (0.015) (0.016) (0.136) (0.190)

p-value DWH test 0.570 0.712 0.706 0.237

No. of observations 2750 2559 2750 2559 2716 2532 2716 2532

Height, age 5 0.005nn 0.003 0.005 �0.011 0.609nnn 0.595nnn 0.913nnn 0.932

(0.002) (0.002) (0.020) (0.087) (0.026) (0.032) (0.183) (0.684)

p-value DWH test 0.996 0.864 0.086 0.592

No. of observations 2003 1867 2003 1867 1742 1617 1742 1617

Height, age 8 0.007nnn 0.005nn 0.001 0.016 0.681nnn 0.698nnn 0.476nnn 0.446nn

(0.002) (0.002) (0.018) (0.027) (0.018) (0.020) (0.145) (0.227)

p-value DWH test 0.751 0.674 0.135 0.243

No. of observations 2346 2248 2346 2248 2209 2126 2209 2126

Height, age 11 0.007nnn 0.003 0.005 0.002 0.644nnn 0.640nnn 0.487nnn 0.213

(0.002) (0.002) (0.016) (0.019) (0.017) (0.018) (0.132) (0.184)

p-value DWH test 0.928 0.988 0.221 0.008

No. of observations 2226 2218 2226 2218 2226 2216 2226 2216

Height, age 13 0.004nn 0.006nn
�0.003 0.044 0.604nnn 0.555nnn 0.520nnn 0.392

(0.002) (0.003) (0.016) (0.029) (0.016) (0.024) (0.155) (0.245)

p-value DWH test 0.641 0.164 0.582 0.492

No. of observations 1925 1942 1925 1942 1925 1940 1925 1940

Height, age 15 0.004n 0.008nnn 0.004 0.046 0.633nnn 0.522nnn 0.541nnn 0.860nnn

(0.002) (0.003) (0.018) (0.032) (0.023) (0.029) (0.166) (0.289)

p-value DWH test 0.991 0.219 0.573 0.223

No. of observations 1631 1758 1631 1758 1630 1753 1630 1753

Notes: The estimates come from regressions of (1) maternal education or (2) body weight on height by gender at ages 3, 5, 8, 11, 13 and 15; DWH

test¼Durbin–Wu–Hausman test (H0: OLS is consistent).
n po0.1.
nn po0.05.
nnn po0.01.
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5. Results

5.1. OLS results

We begin by examining the OLS association between height, cognitive skills and mental health. Columns 1 and 2 of
Table 5 show a positive association between height, test scores and IQ that halves when controlling for the background
characteristics. The actual magnitude of the association is small: controlling for all covariates (the ‘adjusted’ results), a one
standard deviation increase in height is associated, for example, with a 0.057 standard deviation increase in girls’ IQ.
Comparing this to the effect of within-school-year age on IQ in our data, this corresponds to a difference in test scores
between children born approximately one month apart.

Columns 3–5 examine the relationship between height, the two measures of self-esteem and symptoms of depression.
This shows that height is correlated with increases in self-esteem and depression scores, though the estimates are small
and generally indistinguishable from the null (the positive association with depression symptoms for girls is the one
exception).

Table 6 presents both the unadjusted and adjusted associations between height and behavioral problems. These show
that height is unrelated to hyperactivity and conduct problems, but there is a negative correlation with emotional
problems. The effects are again small: a one standard deviation increase in height is associated with 0.06–0.07 standard
deviations decrease in emotional problems. The results also show a small negative association between height and peer
problems for girls.

5.2. IV results

Table 7 presents the IV results for cognitive skills and mental health. The unadjusted and adjusted analyses lead to
similar conclusions (as expected, since Table 3 showed the instruments to be generally uncorrelated to the covariates). Our



Table 5
OLS—The unadjusted and adjusted effects of contemporaneous height (ages 8 and 13) on cognitive skills and mental health.

(1) Key Stage 3,
Age 14

(2) IQ test score,
Age 8

(3) Scholastic self-esteem,
Age 8

(4) Global self-worth,
Age 8

(5) Depression,
Age 13

Boys Girls Boys Girls Boys Girls Boys Girls Boys Girls

Unadjusted

Height 0.076nnn 0.133nnn 0.121nnn 0.104nnn 0.024 0.036 0.022 0.023 0.003 0.063nn

(0.021) (0.026) (0.022) (0.020) (0.022) (0.022) (0.023) (0.022) (0.019) (0.031)

Adjusted for all covariates

Height 0.038nn 0.086nnn 0.060nnn 0.057nnn 0.005 0.021 0.008 0.019 0.001 0.055n

(0.017) (0.023) (0.020) (0.019) (0.023) (0.022) (0.024) (0.023) (0.019) (0.031)

No. of observations 1559 1590 2300 2222 2153 2117 2153 2117 1896 1932

Notes: The estimates come from OLS regressions of the outcome on contemporaneous height by gender; The adjusted analysis includes controls for: birth

weight, age in months, number of older and younger siblings, log family income and its square, mother’s -, father’s -, and mother’s parents’ educational

level, raised by natural father, social class, maternal age at birth, parents’ employment status, IMD at birth, mother’s smoking and drinking during

pregnancy, breastfeeding, mother’s ‘locus of control’ and mental health (EPDS and CCEI), parental involvement in child development, and their

engagement in active activities with their child.
n po0.1.
nn po0.05.
nnn po0.01.

Table 6
OLS—The unadjusted and adjusted effects of contemporaneous height on behavior at age 13.

(1) Hyperactivity (2) Emotional problems (3) Conduct problems (4) Peer problems

Boys Girls Boys Girls Boys Girls Boys Girls

Unadjusted

Height (age 13) �0.013 �0.005 �0.060nnn
�0.087nnn

�0.002 �0.015 0.011 �0.068nn

(0.023) (0.027) (0.019) (0.032) (0.021) (0.028) (0.024) (0.029)

Adjusted for all covariates

Height (age 13) �0.001 0.012 �0.059nnn
�0.068nn 0.004 �0.000 0.009 �0.056n

(0.024) (0.028) (0.020) (0.032) (0.021) (0.028) (0.024) (0.029)

No. of observations 1647 1668 1644 1670 1644 1670 1643 1669

Notes: The estimates come from OLS regressions of the outcome on contemporaneous height by gender; Controls are listed in the note to Table 5.
n po0.1.
nn po0.05.
nnn po0.01.

Table 7
IV—The effects of contemporaneous height, instrumented by a count of the number of risk alleles, on cognitive skills and mental health.

(1) Key Stage 3,
Age 14

(2) IQ test score,
Age 8

(3) Scholastic
self-esteem, Age 8

(4) Global self-worth,
Age 8

(5) Depression,
Age 13

Boys Girls Boys Girls Boys Girls Boys Girls Boys Girls

Unadjusted

Height �0.316 0.703nn
�0.001 0.944nn

�0.040 �0.148 �0.157 �0.023 0.163 0.237

(0.203) (0.298) (0.203) (0.367) (0.210) (0.301) (0.212) (0.309) (0.162) (0.323)

p-value DWH test 0.031 0.023 0.544 0.002 0.757 0.537 0.393 0.881 0.310 0.587

First stage F-statistic 18.99 13.78 26.23 10.90 25.62 10.53 25.62 10.53 24.33 16.94

Adjusted for all covariates

Height �0.179 0.538nn 0.102 0.666nn
�0.017 �0.148 �0.100 �0.072 0.151 0.211

(0.159) (0.242) (0.162) (0.278) (0.188) (0.286) (0.187) (0.293) (0.154) (0.312)

p-value DWH test 0.148 0.030 0.792 0.007 0.907 0.550 0.557 0.755 0.317 0.613

First stage F-statistic 19.52 14.36 33.98 12.80 33.64 11.92 33.64 11.92 26.15 18.31

Notes: Estimates are obtained from IV regressions of the outcome on contemporaneous height by gender; Controls are listed in the note to Table 5; DWH

test¼Durbin–Wu–Hausman test (H0: OLS is consistent).
nn

po0.05.
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Table 8
IV—The effects of contemporaneous height, instrumented by a count of the number of risk alleles, on behavior at age 13.

(1) Hyperactivity (2) Emotional problems (3) Conduct problems (4) Peer problems

Boys Girls Boys Girls Boys Girls Boys Girls

Unadjusted

Height (age 13) 0.110 0.492 0.319n 0.204 �0.262 0.130 0.334 �0.334

(0.191) (0.372) (0.178) (0.365) (0.186) (0.354) (0.216) (0.344)

p-value DWH test 0.513 0.133 0.022 0.405 0.139 0.676 0.118 0.417

First stage F-statistic 24.89 9.97 24.87 10.31 25.09 10.18 24.58 10.42

Adjusted for all covariates

Height (age 13) 0.093 0.573n 0.324nn 0.207 �0.255 0.170 0.323 �0.182

(0.171) (0.337) (0.163) (0.336) (0.165) (0.323) (0.198) (0.309)

p-value DWH test 0.576 0.055 0.011 0.396 0.096 0.592 0.096 0.675

First stage F-statistic 29.26 12.04 29.37 12.56 29.41 12.38 29.04 12.66

Notes: Estimates are obtained from IV regressions of the outcome on contemporaneous height by gender; Controls are listed in the note to Table 5; DWH

test¼Durbin–Wu–Hausman test (H0: OLS is consistent).
n po0.1.
nn po0.05.
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instrument predicts height well in all specifications, with a first stage F-statistic between 19 and 34 for boys, and 11 and 18
for girls, satisfying Assumption 3.13

Columns 1 and 2 show the IV estimates for KS3 and IQ respectively. These are positive for girls, but indistinguishable
from zero for boys. For girls, instrumented height has a large positive effect on both KS3 and IQ, and we reject the Durbin–
Wu–Hausman (DWH) test. Despite the much larger standard errors, the IV estimate for girls is larger than the OLS,
suggesting that the latter underestimates the true effect. We discuss possible reasons for this below.

Columns 3–5 of Table 7 show that for self-esteem, global self-worth and depression symptoms, the large standard
errors mean we cannot reject the null of no effect, though in contrast to the OLS estimates, all three sets of IV coefficients
relate increasing height to worse outcomes.

Table 8 presents the IV results for behavioral problems. In contrast to the OLS results in Table 6, the IV estimates in
Column 1 of Table 8 show height to be a predictor of hyperactivity in girls. A one standard deviation increase in
instrumented height increases the hyperactivity score by about 0.5 standard deviations. Similarly, height appears to be a
positive predictor of boys’ emotional problems, with the DWH test rejecting the exogeneity assumption of height.
Although not statistically significant, the estimated effect is only slightly smaller for girls’ emotional problems. Finally,
columns 3 and 4 show that height increases conduct problems and decreases peer problems for girls, whilst the opposite is
found for boys. With large standard errors however, we cannot statistically reject the null of no effect.
5.3. Instrument specification checks

We investigate the robustness of these results by using several instrument specification checks. First, we re-run the IV
analyses using the weighted allele score as the instrumental variable, rather than the simple count of the number of risk
alleles. The first as well as second stage results (available from the authors upon request) are very similar to those shown
above, suggesting that the imposed structure on the instrument plays less of a role in this application. In fact, if we regress
child height on each of the individual SNPs simultaneously, we cannot reject the null that the coefficients are equal to one
another.

Second, we specify the nine SNPs as nine instrumental variables, rather than a count of the number of ‘tall’ alleles.
As shown in Tables 9 and 10, this leads to a much weaker first stage, reducing the F-statistic to between 2 and 4. The point
estimates remain similar to those reported above, though they are somewhat closer to zero. One difference is the estimate
for girls’ self-esteem. This was negative when using the allele count, but positive when using each SNP separately as an
instrument. As we show below, this is probably due to the general imprecision with which these are estimated. The main
results, however, are unchanged for both the unadjusted and adjusted regressions: height increases KS3 and IQ for girls
(Table 9), and leads to an increase in behavioral problems (Table 10). In addition, the use of nine instruments allows us to
test for over-identification using the Hansen J test, which we cannot reject in any of the specifications, providing
suggestive evidence that the instruments are uncorrelated with the error term.
13 As a general test of gene–environment interactions, we explore whether our genetic variants are only expressed in specific environments, and

therefore whether there is any direct evidence of violation of the monotonicity assumption. We estimate the first stage regression, interacting the genetic

variants with indicators for various subgroups and test whether the instrument coefficient is the same across groups. The results (available from the

authors) show no more significant differences than what would be expected by chance, providing suggestive evidence that gene–environment

interactions do not play an important role for the genetic variants used here.



Table 9
IV—The effects of contemporaneous height, instrumented by the nine SNPs simultaneously, on cognitive skills and mental health.

(1) Key Stage 3,
Age 14

(2) IQ test score,
Age 8

(3) Scholastic
self-esteem, Age 8

(4) Global self-worth,
Age 8

(5) Depression,
Age 13

Boys Girls Boys Girls Boys Girls Boys Girls Boys Girls

Unadjusted

Height �0.164 0.358* 0.015 0.419** �0.057 0.196 �0.072 0.072 0.099 0.123

(0.167) (0.184) (0.185) (0.182) (0.189) (0.206) (0.190) (0.202) (0.139) (0.228)

p-value DWH test 0.122 0.209 0.484 0.080 0.636 0.495 0.616 0.839 0.568 0.915

p-value Hansen J test 0.514 0.586 0.550 0.177 0.783 0.702 0.511 0.793 0.310 0.748

First stage F-statistic 2.90 3.69 3.63 2.96 3.43 2.48 3.43 2.48 3.50 3.61

Adjusted for all covariates

Height �0.148 0.296* 0.081 0.353** �0.002 0.161 �0.074 0.058 0.125 0.098

(0.137) (0.175) (0.146) (0.165) (0.168) (0.217) (0.168) (0.218) (0.133) (0.246)

p-value DWH test 0.137 0.139 0.986 0.068 0.946 0.587 0.646 0.912 0.369 0.923

p-value Hansen J test 0.900 0.554 0.771 0.595 0.619 0.638 0.524 0.739 0.271 0.788

First stage F-statistic 3.08 3.02 4.83 2.81 4.55 2.28 4.55 2.28 3.87 3.16

Table 10
IV—The effects of contemporaneous height, instrumented by the nine SNPs simultaneously, on behavior at age 13.

(1) Hyperactivity (2) Emotional problems (3) Conduct problems (4) Peer problems

Boys Girls Boys Girls Boys Girls Boys Girls

Unadjusted

Height (age 13) 0.139 0.280 0.199 0.252 �0.143 0.197 0.285 �0.074

(0.166) (0.205) (0.148) (0.231) (0.155) (0.211) (0.176) (0.203)

p-value DWH test 0.394 0.156 0.058 0.194 0.324 0.274 0.088 0.859

p-value Hansen J test 0.290 0.345 0.542 0.383 0.158 0.939 0.934 0.468

First stage F-statistic 3.61 3.41 3.63 3.46 3.64 3.46 3.60 3.48

Adjusted for all covariates

Height (age 13) 0.148 0.357* 0.206 0.291 �0.119 0.201 0.297* �0.055

(0.150) (0.212) (0.135) (0.230) (0.136) (0.213) (0.164) (0.205)

p-value DWH test 0.380 0.082 0.048 0.162 0.316 0.353 0.059 0.923

p-value Hansen J test 0.283 0.337 0.454 0.312 0.105 0.820 0.965 0.432

First stage F-statistic 4.22 3.23 4.25 3.29 4.25 3.29 4.22 3.30
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Finally, as discussed in Section 3.2.2, it is possible to examine genetic confounding through pleiotropy (i.e. variants influencing
multiple pathways) or LD (i.e. variants being co-inherited) in more detail, using multiple combinations of genetic variants in
different IV specifications. We investigate this here by estimating multiple IV models in which – each time – the instrument is
defined by a different set of SNPs. We run a different IV regression for all possible sets of instrumental variables, leading to a total
of 511 regressions for each outcome.14 Obtaining similar estimates with different instrument sets would provide evidence against
genetic confounding and increase the confidence in the validity of our findings.

Figs. 2 and 3 plot the point estimates from the IV regressions with different instrument sets, where the horizontal axis
represents the IV estimate.15 This shows a clear positive effect of height on KS3 and IQ for girls (the dashed line), with a
negative or null effect for boys (the solid line). The sometimes long flat tails of the densities reflect estimates with a first
stage F-statistic between 1 and 2, for which the estimates are more volatile. Excluding these weaker estimates removes the
flat tail. The effect of height on scholastic competence and depression symptoms is generally zero for boys, with girls
showing a slightly more positive effect on depression symptoms. In general, the estimates for girls are slightly more
variable, which is likely due to their smaller first stage F-statistic, which also explains the different findings for self-esteem
in Tables 7 and 9. Examining child behavior, the estimates show a clear increase for boys in emotional and peer problems,
and a decrease in conduct problems, with no obvious effects on hyperactivity. The effects for girls are slightly more
variable, but suggest height increases hyperactivity, emotional and conduct problems, but decreases peer problems.
14 We generate all possible subsets of k SNPs from the total of n (nine) elements, where k¼1,y,9. For example, when using sets of five of the nine

SNPs, there are 126 unique combinations (ignoring the ordering of the SNPs): (n(n�1)(n�2)y(n�kþ1))/(k(k�1)(k�2)y1); or (9n8n7n6n5)/(5!). We

repeat this for all k-combinations, leading to 511 possible instrument sets.
15 We exclude estimates with a first stage F-statistic less than 1. The plots for the two self-esteem measures (scholastic competence and global self-

worth) look similar; we plot only the former (the graph for self-worth is available on request).
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For comparison, Figs. 4 and 5 present the point estimates from IV regressions with different instrument sets for the two
falsification checks discussed above and shown in Table 4. The ‘negative control’ clearly shows a spike at zero for both boys and
girls, confirming the absence of any effects of height on maternal education. The ‘positive control’ also confirms what we find
above: height in both boys and girls increases their weight. Overall, these analyses do not provide evidence against the validity of
the IV assumptions.

5.4. Non-linearities

As discussed in Section 2, the existing literature has found both tallness and shortness to have negative psychological
effects in children. The estimates discussed above only examine differences in the outcome of interest at the mean, but the
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relationship between height and the outcomes may differ at different points in the distribution. We therefore investi-
gate different cut-points and examine the effects of being below the 25th and above the 75th percentile of the age-
and gender specific height distribution. The results (available upon request) confirm our main findings. IV
estimates show that shorter girls have lower IQ and do worse in school tests, and vice versa for taller girls, but there is
no evidence of a relationship between height and scholastic competence, self-worth or depression. The IV effects of being
tall or short on the child’s behavioral problems also show similar patterns to those above: relatively tall girls are more
hyperactive, and have fewer emotional and peer problems, though with the large standard errors, the latter is not
significant at conventional levels. For boys, height increases emotional and peer problems, and decreases conduct
problems.
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6. Discussion and conclusion

This paper is the first to exploit genetic variation in height to examine the causal effects of height on human capital
accumulation. OLS results show that taller children perform better in terms of cognitive performance and are less likely to
have emotional and peer problems (girls), though tall girls are more likely to show symptoms of depression. Using genetic
variation in height in an IV specification, we attempt to deal with the problems of endogeneity. The IV findings for girls are
similar to the OLS for cognitive performance, showing a positive effect of height on KS3 and IQ. However, we do not find
this for boys, where the results are indistinguishable from zero. We also find no effects of height on self-esteem and
depression symptoms. In addition, we find a negative relationship of height with behavior. This suggests that the OLS
results are downwardly biased and that height increases rather than decreases these behavioral problems. Taller children
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are more hyperactive and are more likely to have emotional problems. In addition, taller boys are more likely to have peer
problems, though there is a negative relationship for girls.

This suggests that height is endogenous to cognitive performance and behavior, though perhaps less so to self-esteem
and depression symptoms, for which the OLS and IV estimates do not differ substantively. We are unsure why height
would be endogenous to some, but not other outcomes. This may simply be due to the large standard errors, precluding us
from making more precise inferences. Alternatively, it may be that unobserved factors such as pre- and postnatal nutrition
affect cognitive functioning and behavior, but not self-esteem or depression. We cannot distinguish between such
potential explanations.

In many of our results, the IV estimates suggest that OLS is biased downwards. One possible explanation for the
difference between IV and OLS could be a genetic one. For example, (one of) our SNPs could be pleiotropic or in LD with
another variant that directly affects IQ or cognition. Although our tests of associations with known confounders, our
falsification checks, the ‘multiple IV test’, and the scientific literature do not give any reason to expect this to be the case,
we cannot rule this out. For instance, it may be that our sample is too small to detect any association between the SNPs and
the covariates, and it may be that any pleiotropic effects have simply not yet been identified, or that we do not observe the
relevant confounders. From the evidence discussed in Section 3.2 and from the fact that we use only nine SNPs out of
possibly hundreds or thousands SNPs coding for height, we assume that our assumptions hold. However, as in any other IV
study, we cannot directly test this, and it remains an assumption.

A possible explanation for our IV findings that indicate that being taller increases rather than decreases behavioral problems
could be the differential treatment of children of different stature. A ‘size-appropriate’ rather than ‘age-appropriate’ treatment of
tall children may trigger behavioral problems. Expectations and reactions to ‘tall-for-age’ children’s (what may seem childish)
behavior can in turn affect children’s development. As factors such as socio-economic position are positively related to height and
negatively related to behavioral problems, the OLS estimates will be downward biased if these factors are insufficiently controlled
for. Though possible, these are speculations as we currently have no further evidence to confirm these. However, the finding of
increased behavioral problems is consistent with the psychological literature that has shown a positive relationship between
height and children’s behavioral problems, though this literature has mainly examined outcomes such as aggression and violence
(Raine et al., 1998; Farrington, 1989) rather than those we examine here.

Finally, the IV effects for behavior and IQ are large: a one standard deviation increase in height raises these scores by
about 0.2–0.7 standard deviations. Comparing these effects with those of other child characteristics shows they are
substantial. For example, a 0.4 standard deviation difference in girls’ IQ (Table 9) is comparable to the difference in this
score for girls born approximately 6 months apart within the same school year. Likewise, the difference between girls’ and
boys’ raw hyperactivity scores is approximately 0.37 standard deviations which is similar to the estimated effect of one
standard deviation increase in height on hyperactivity for girls.

In conclusion, our findings suggest that height is an important factor in children’s human capital accumulation in both
childhood and adolescence, most likely as a result of the social reactions that are triggered by variations in height. We show that
being tall may not only confer advantage but also disadvantage. Our examination of behavioral problems contrasts with the more
positive view of height that emerges from the existing empirical literature on height and children’s cognitive performance.
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Appendix. A brief introduction to genetics

Each cell in the human body contains a nucleus in which most DNA (99.9995%) is kept.16 DNA provides a template that
is ‘read’ and used to produce all of the proteins in living organisms. This is done with just four bases (also called
16 See the glossary in Table 1 for a definition of the words in italic and other genetic terms.
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nucleotides)—adenine (A), cytosine (C), guanine (G) and thymine (T). DNA consists of two strands of bases, which – for
ease of understanding – have been likened to a zip in the way they fasten together. These two strands are held together
such that A on one strand can only be linked to T on the other. Similarly, G can only be linked to C. DNA is stored in
structures called chromosomes, where each chromosome contains a single continuous piece of DNA (made up of the two
strands). A gene is a section of the chromosome that consists of a segment of DNA, i.e. a set of base pairs in a
particular order.

All cells in the human body apart from germ cells contain 46 chromosomes, organized into 23 pairs: one copy of
chromosome 1–22 from each parent, plus an X-chromosome from the mother and either an X or Y chromosome from the
father.

About 99% of the DNA of any two unrelated individuals is identical. Locations where DNA varies between people are
called polymorphisms. The most commonly studied form of polymorphism is a Single-Nucleotide Polymorphism (SNP): a
change in just one base (nucleotide; one of the four molecules that form the codes of DNA) on the DNA sequence. As
chromosomes come in pairs (one from each parent), humans have two such bases at each position, called alleles. These
alleles can either be the same or different. The term genotype describes the specific set of alleles inherited at a particular
location. For example, individuals can have one of three genotypes of the SNP in HMGA2 that we use as one of our
instruments. They can be:
1.
 Homozygous for the common allele (having two of the same common (most prevalent/typical) alleles. For HMGA2, this is
denoted by TT)
2.
 Heterozygous (having one common and one rare allele: CT)

3.
 Homozygous for the rare allele (having two of the same rare alleles: CC)

We refer to the height-increasing allele as the ‘tall’ allele. The number of ‘tall’ alleles – and with that an individual’s
genotype (i.e. being homozygous or heterozygous) – matters, as it is positively related to an individual’s height: the more
‘tall’ alleles an individual carries, the taller the individual is on average.

The visible or measurable effect of a particular genotype is the phenotype (here: child/adolescent height). Studies of
human height generally report a high heritability: up to 0.9 (Silventoinen et al., 2003; Macgregor et al., 2006). This
however, does not imply that any individual SNP has a large phenotypic effect. For example, there are many different SNPs
that affect human height, though all with small effects: so-called ‘polygenes’. Together, these variants may have a large
phenotypic effect.
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