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Abstract

Large intergenic non-coding RNAs (lincRNA) regulate development and disease via interactions 

with their protein partners. Expression of the lincRNA HOX transcript antisense RNA (HOTAIR) 

is elevated in a variety of malignancies and linked to metastasis and poor prognosis. HOTAIR 

promotes proliferation, invasion, and metastasis in the preclinical studies of cancer through 

modulation of chromatin modifying complexes. In the current review we discuss the molecular 

mechanisms of HOTAIR-mediated aggressive phenotypes of cancer, HOTAIR’s potential in 

cancer intervention, and challenges in exploration of HOTAIR in cancer biology.
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Introduction

A groundbreaking discovery in the transcriptome research is that the majority of the human 

genome is actively transcribed although only ~4% of the transcribed RNAs are translated 

into proteins [1, 2]. One family of the non-coding RNAs is operationally defined as long 

non-coding RNAs (lncRNA) based on a length > 200 nucleotides [3]. One predominant 
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mode of action of lncRNAs is to govern the expression of protein-coding genes and thereby 

to regulate development and disease [4]. A global survey of lncRNAs and their co-regulated 

protein-coding genes has tied lncRNAs to the pathways pivotal to cancer [5].

Large intergenic non-coding RNAs (lincRNA), a subset of lncRNAs, are expressed from a 

genomic locus between the protein-coding loci [2, 5]. Thousands of lincRNAs have been 

identified in the human and the mouse [5, 6]. The importance of lincRNA genes are 

indicated by their global properties, such as a tendency for locations next to developmental 

regulators, enrichment of tissue-specific expression patterns, high conservation among 

species, and frequent association with genetic traits [2]. For instance, dozens of lincRNAs 

are essential to maintenance of the pluripotent state of embryonic stem cells [7]. The 

expression of these lincRNA genes are regulated by the key transcription factors in 

embryonic stem cells and their transcripts in turn regulate the gene expression program of 

pluripotency. lincRNAs govern development and disease via regulation of fundamental 

biochemical and cellular processes, such as gene expression, RNA splicing, and ligand-

receptor engagement [8]. One paradigm of lincRNA-mediated regulation of gene expression 

is that lincRNAs act as a recruiter and scaffold for assembly of chromatin modifying 

complexes on their target genes [9–13]. Numerous lincRNAs are linked to cancer as well as 

other human diseases such as facioscapulohumeral muscular dystrophy and Prader-Willi 

syndrome [14]. In the current review we focus on HOX transcript antisense RNA 

(HOTAIR), a tumor-promoting lincRNA [15].

Discovery of the HOTAIR gene

HOTAIR was discovered by Rinn and his colleagues as a lincRNA that marks the 

homeobox D gene cluster (HOXD) for transcriptional repression [15]. The human HOTAIR 

gene (Ensembl ID: ENSG00000228630) is located on the opposite strand within the 

intergenic region between HOXC11 and HOXC12 on chromosome 12. The orthologs of the 

human HOTAIR gene exist only in mammals and appear to evolve faster than its 

neighboring HOX genes [16, 17]. The human HOTAIR gene is transcribed into 5 variants. 

Its major transcript (Ensembl ID: ENST00000424518) is 2,421 nucleotide long, composed 

of 7 exons, spliced, and polyadenylated. Its 5′ domain (300 nucleotides) binds to the 

polycomb repressive complex 2 complex (PRC2) and its 3′ domain (646 nucleotides) binds 

to the lysine-specific demethylase 1 (LSD1) complex [11]. HOTAIR acts as a molecular 

scaffold for assembly of a histone modifying complex consisting of PCR2 and LSD1 and 

recruits the complex to its target genes for transcriptional repression [11]. The PRC2 

complex contains a histone methyltransferase named enhancer of zeste homolog 2 (EZH2) 

that marks a gene for transcriptional repression via tri-methylation of histone H3 Lys27 

(H3K27me3) [18]. The LSD1 complex possesses histone demethylase activity and marks a 

gene for transcriptional repression via demethylation of the tri-methylated histone H3 Lys4 

(H3K4me3), a histone code for transcriptional activation [19]. It is plausible that HOTAIR 

achieves maximal repression by coupling an increase of the repression code H3K27me3 

(PRC2-mediated methylation) with a decrease of the activation code H3K4me3 (LSD1-

mediated demethylation). In accordance deletion of the mouse HOTAIR gene results in de-

repression of the HOXD cluster genes, which correlates with concurrent decreased 

occupancy of H3K27me3 and increased occupancy of H3K4me3 on those genes [20]. As a 
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consequence HOTAIR null mice exhibit homeotic transformation of the spine and 

malformation of metacarpal bones [20].

Expression of HOTAIR in cancer

Since its emergence in breast cancer, elevated expression of HOTAIR has been reported in 

16 types of malignancies [9, 21–51] (Table 1). The spectrum ranges from carcinomas of 

epithelial origin to gastrointestinal stromal tumor of stromal origin [9, 43, 52]. Surprisingly 

dysregulated expression of HOTAIR has not been reported in hematological malignancies in 

which the HOX genes are frequently dysregulated [53, 54]. An intriguing phenomenon in 

breast cancer is that the established tumor cell lines exhibit a much lower expression of 

HOTAIR than the tumor tissues [9, 21–51]. This apparent discrepancy might be attributed to 

activation of HOTAIR expression by several invasion-promoting cues that are aberrantly 

enriched in the tumor microenvironment but absent in routine culture condition. For instance 

addition of transforming growth factor-β1 to culture activates the expression of HOTAIR in 

breast and colon cancer cells [21]. In addition prolonged exposure of human breast cancer 

MCF-7 cells to tumor necrosis factor-α results in a robust increase in HOTAIR expression 

(unpublished observations). Moreover type 1 collagen transcriptionally up-regulates the 

expression of HOTAIR in lung adenocarcinoma cells [50]. Interestingly, those stimuli are 

potent inducers of epithelial-mesenchymal transition (EMT) and can up-regulate expression 

of another tumor-promoting non-coding RNA miR-21, which strengthens a mechanistic link 

between non-coding RNAs and invasiveness [55–59]. In human breast cancer MCF-7 cells 

the expression of HOTAIR is activated by estradiol through recruitment of a transcriptional 

co-activator mixed lineage leukemia (MLL) that marks the HOTAIR promoter for activation 

via H3K4me3 [22]. HOTAIR expression is also induced by bleomycin and radiation in 

human breast cancer MCF-7 cells, which implies a role for HOTAIR in cell response to 

DNA damage [44]. A recent report has revealed a novel layer of regulation of HOTAIR 

expression [25]. The HOTAIR transcript harbors a seed sequence (GenBank NR_047517, 

position 902–923) for the tumor suppressive microRNA miR-34a [25, 60, 61]. miR-34a 

suppresses the expression of a reporter gene that is controlled by the miR-34a seed sequence 

identified in the HOTAIR transcript [25]. This phenomenon, if proven to be widespread, 

establishes a novel yet critical interaction between two major non-coding regulators of 

cancer, microRNAs and lncRNAs [62, 63]. Taken together the expression of HOTAIR is 

regulated by the tumor modulating cues.

Function of HOTAIR in Cancer

Compelling evidence links elevated expression of HOTAIR to metastasis and poor 

prognosis in a variety of tumors (Table 1). Elevated expression of HOTAIR reprograms 

PCR2-mediated gene repression, which results in a shift from repression of tumorigenic 

genes to repression of tumor suppressive genes [9, 30, 32, 33]. As a consequence, HOTAIR 

regulates several signaling pathways that are pivotal to invasive and proliferative 

phenotypes. EMT leads to invasiveness and stemness of cancer cells [64]. Induction of 

HOTAIR by EMT inducers is required for EMT because knockdown of HOTAIR by RNAi 

abrogates the expression of EMT markers and invasion in cancer stem cells [21, 48]. 

Epigenetic regulation accounts for the profound alteration in gene expression during EMT 
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[65]. Over-expression of HOTAIR reprograms gene expression to promote invasion via its 

interaction with PRC2 and consequent H3K27me3 on its target genes [9]. It is plausible that 

HOTAIR is up-regulated by EMT inducers and such an induction in turn promotes the gene 

expression program that mediates EMT [21, 48, 50]. For instance HOTAIR represses the 

expression of Wnt inhibitory factor 1 (WIF-1), an inhibitor of the Wnt/β-catenin pathway 

that mediates EMT in cancer [28, 66]. In addition HOTAIR represses the expression of 

phosphatase and tensin homolog (PTEN), an inhibitor of EMT [34, 67]. HOTAIR also 

regulates the effectors of invasion as HOTAIR is required for the expression of matrix 

metalloproteinases that break down extracellular matrix to pave the path for invasion [29, 

46, 48]. In consistence with these in vitro studies, HOTAIR is required for metastasis of 

grafted cancer cells in mice [9, 27, 35, 36]. Besides invasion and metastasis, elevated 

expression of HOTAIR is essential to proliferation and resistance to apoptosis in a variety of 

cancer cells (see Table 1). The pro-proliferative and pro-survival actions of HOTAIR can be 

attributed to the HOTAIR-mediated suppression of the anti-proliferative genes (i.e., 

p21cip1/waf1) and the anti-survival genes (i.e., PTEN) [34, 37].

Diagnostic and therapeutic potential of HOTAIR in cancer

Because of the elevated expression of HOTAIR is observed in the malignant tissues over 

their adjacent normal tissues and correlated with metastasis and poor prognosis, HOTAIR 

can be explored as a biomarker for metastasis of a variety of tumors (Table 1). In addition 

HOTAIR is a potential biomarker for patients’ response to certain anti-cancer treatments 

because HOTAIR is linked to resistance to cisplatin in lung cancer cells and resistance to 

castration in prostate cancer cells [25, 37]. Its feasibility as a biomarker is affirmed by the 

findings that lincRNAs are stable and measurable in body fluids and thereby suitable for 

measurement via non-invasive procedures [68]. For instance, HOTAIR along with several 

other lincRNAs can be detected and quantitated in plasma samples collected from the 

patients with gastric cancer [69].

HOTAIR is a promising therapeutic target because HOTAIR promotes proliferation, 

survival, and invasion in cancer cells (Table 1). In support of HOTAIR’s therapeutic 

potential, inhibitors of EZH2, the catalytic subunit of PRC2 that HOTAIR directly binds to, 

has emerged as a promising anti-cancer drug in pre-clinical studies as well as early phases of 

clinical trials [70, 71]. It is appealing to selectively disrupt the interaction between HOTAIR 

and EZH2 in cancer cells upon successful molecular and biochemical resolution of 

HOTAIR’s binding to EZH2. In addition to disruption of the HOTAIR-EZH2 interaction, 

therapeutic targeting of HOTAIR can come at a number of other levels. Base-pairing driven 

oligonucleotide-based methods are particularly attractive against lncRNAs [72]. For 

instance, small interfering RNA (siRNA) against HOTAIR has been shown to attenuate 

invasiveness in breast and gastric cancer cells as well as growth of pancreatic cancer in a 

mouse xenograft model [9, 32, 48]. Further, synthetic single stranded antisense DNA is 

effective at knocking down HOTAIR and leading to apoptosis in MCF7 breast cancer cells 

[22]. Importantly, a number of complementary therapeutic strategies are concurrently being 

developed to target mRNA and microRNA (such as using ribozymes, aptamers, and small 

molecules that selectively bind to target RNAs) [72]. As the structural information of 

HOTAIR is further elucidated these methods could be readily applied to inhibit HOTAIR.
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Challenges and future directions

HOTAIR has emerged as an appealing diagnostic and therapeutic target for cancer. However 

several challenges hinder fulfillment of HOTAIR’s potential in cancer care. One challenge is 

our limited understanding of the interaction between HOTAIR and EZH2 although a 300 

nucleotide binding domain is identified in HOTAIR [11]. A high resolution mapping of 

HOTAIR-EZH2 binding is essential to develop compounds that can effectively and 

specifically disrupt the HOTAIR-EZH2 interaction in cancer cells. This need is demanded 

by the fact that the EZH2-containing PRC2 physically interacts with thousands of lincRNAs 

and its function is tightly controlled by the bound lincRNAs [6, 73]. It is conceivable that 

PRC2 can form a pool of hundreds of functional units as defined by their lincRNA partners 

and the composition of those units is dynamically fine-tuned to maintain an appropriate gene 

expression program to a cell’s needs in a particular cellular context. How an increased 

expression of HOTAIR impairs this fine-tuned pool of PRC2-lincRNA units and promotes 

cancer is a daunting yet important question to answer [74]. Another question arises from 

EZH2-mediated methylation of non-histone proteins, such as transcription factor GATA4 

and consequent regulation of the GATA4-mediated gene expression [75]. Undoubtedly 

inhibition of either HOTAIR or EZH2 reduces tumor progression [9] (also see Table 1). 

However the experimental approaches used in those studies are not able to exclude the 

possibility that the altered gene expression and cell behaviors can be, at least in part, 

attributed to altered methylation of the transcription factors and other non-histone proteins 

methylated by EZH2. It is also naive to conclude that PRC2 and LSD1 are the sole protein 

partners of HOTAIR and epigenetic regulation of gene expression is the sole function of 

HOTAIR. lincRNAs have been localized in every subcellular compartments and linked to a 

wide range of cell functions, such as signaling transduction, RNA splicing, ligand-receptor 

engagement [8]. One such exemplary is metastasis associated lung adenocarcinoma 

transcript 1 (MALAT1), a tumor associated lincRNA that regulates gene expression, RNA 

splicing, and formation of nuclear speckles via distinct mechanisms [76]. A versatility of 

HOTAIR function in cancer can be explored upon a successful probing of HOTAIR-bound 

protein partners using HOTAIR as a bait in cancer cells. Despite these challenges HOTAIR 

is a novel and promising target in diagnostic and therapeutic interventions of cancer.
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Abbreviations

lincRNA long intergenic non-coding RNA

HOTAIR HOX transcript antisense RNA

PRC2 polycomb repressive complex 2

EZH2 enhancer of zeste homolog 2

LSD1 lysine-specific demethylase 1
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PTEN Phosphatase and tensin homolog
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Table 1

Malignancies associated with elevated expression of HOTAIR.

Types Interacting molecules/pathways Cellular Processes Clinical manifestations

Ameloblastomas Keratinized phenotype [45]

Breast cancer BRCA1 [47]
Estrogen [22]
EMT/Stemness [21]
DNA methylation [38]
PRC2 [9]

Invasion [9]
Proliferation & apoptosis [22]
Genotoxic stress [44]

Metastasis [9, 24]
ER and PR positivity [24]
Poor survival [9, 24]

Colorectal cancer EMT/Stemness [21]
PRC2 [33]

Invasion [21] Metastasis, poor prognosis [33]

Esophageal cancer Wnt/β-catenin [28] Proliferation, invasion, apoptosis, 
metastasis [23, 35, 39]

Advanced stage, poor survival [23, 28, 39]

Gastric cancer PRC2 [30]
EMT [48]

Proliferation, invasion, apoptosis, 
metastasis [27, 48]

Lymph node metastasis, advanced TNM 
staging, poor survival [27, 30]

GIST Invasion [43] High risk grade, metastasis [43]

Glioma Cell cycle progression [43] Poor prognosis [43]

HCC Gelatinase, VEGF [29] Invasion [29, 49]
Proliferation [31]
Apoptosis, chemosensitivity [49]

Lymph node metastasis, recurrence [29, 
49]
Poor prognosis [31, 49]

Laryngeal cancer PTEN [34] Invasion, apoptosis [34] Advanced stages, poor prognosis [34]

Lung cancer HOXA5 [36]
Col-1 [50]
p21cip1/waf1 [37]

Morphogenesis [50], Invasion [36], 
Cisplatin resistance, cell cycle, 
apoptosis [37]

Lymph node metastasis, poor prognosis 
[36]
Brain metastasis [41]

Melanoma Gelatinase [46] Invasion [46] Lymph node metastasis [46]

NPC Proliferation, invasion [42] Lymph node metastasis, poor survival 
[42]

Ovarian cancer Advanced stage, poor differentiated [26]

Pancreatic cancer PRC2 [32] Proliferation, apoptosis [32] Advanced stage [32]

Prostate cancer miR-34a [25] Proliferation, invasion, apoptosis, 
castration resistance [25]

Sarcoma Metastasis, therapeutic resistance [40]

GIST: gastrointestinal stromal tumor; HCC: hepatocellular carcinoma; NPC: nasopharyngeal carcinoma; EMT: epithelial-mesenchymal transition; 
ER: estrogen receptor; PR: progesterone receptor; PRC2: polycomb repressive complex 2; PTEN: Phosphatase and tensin homolog.
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