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Abstract

Animal studies suggest that structural changes occur in the maternal brain during the early 

postpartum period in regions such as the hypothalamus, amygdala, parietal lobe, and prefrontal 

cortex and such changes are related to the expression of maternal behaviors. In an attempt to 

explore this in humans, we conducted a prospective longitudinal study to examine gray matter 

changes using voxel-based morphometry on high resolution magnetic resonance images of 

mothers’ brains at two time points: 2–4 weeks postpartum and 3–4 months postpartum. 

Comparing gray matter volumes across these two time points, we found increases in gray matter 

volume of the prefrontal cortex, parietal lobes, and midbrain areas. Increased gray matter volume 

in the midbrain including the hypothalamus, substantia nigra, and amygdala was associated with 

maternal positive perception of her baby. These results suggest that the first months of 

motherhood in humans are accompanied by structural changes in brain regions implicated in 

maternal motivation and behaviors.
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Maternal care during the first several months provides the foundation for the infant’s 

neurobiological, socioemotional, and cognitive development (Bornstein, 2002; Champagne 

et al., 2004). Animal studies have identified several brain areas as important for the initiation 

and maintenance of maternal pup-directed behaviors. For example, lesion studies have 

shown that the medial preoptic areas (MPOA), located in the rostral hypothalamus, and its 

connections with the mesolimbic dopamine system for reward processing play a critical role 

in maternal motivation (Numan & Insel, 2003; Swain et al., 2004). The thalamus, parietal 

cortex, and brainstem also serve important functions for the processing of infant-related 

sometosensory information, such as smell, touch, and vocalizations (Xerri, Stern, & 

Merzenich, 1994). The prefrontal cortex is involved in integrating these information and 

monitoring parental behaviors (Afonso, Sison, Lovic, & Fleming, 2007). In human mothers, 

recent functional MRI (fMRI) brain studies have reported that many of these brain regions 

including substantia nigra, amygdala, thalamus, parietal cortex, and prefrontal cortex were 

activated in response to infant-related stimuli, supporting the role of these brain areas for the 

development and expression of parenting behaviors (Lenzi et al., 2008; Lorberbaum et al., 

2002; Noriuchi, Kikuchi, & Senoo, 2008; Strathearn, Li, Fonagy, & Montague, 2008; 

Strathearn, Fonagy, Amico & Montague, 2009; Swain et al., 2008; see review by Swain, 

Lorberbaum, Kose, & Strathearn, 2007).

The increased activations of these brain regions during the early postpartum period may be 

further accompanied by structural changes in the brain. Animal studies have shown that 

increased interactions with pups over time during the early postpartum period lead to 

structural changes in the maternal brain. For example, the amount of experience interacting 

with their pups was correlated with enhanced c-fos expression and cortical representation in 

the hypothalamus (MPOA), basolateral amygdala, parietal cortex and prefrontal cortex of rat 

mothers (Featherstone, Fleming, & Ivy, 2000; Fleming & Korsmit, 1996; Kinsley et al., 

1999; Lonstein, Simmons, Swann, & Stern, 1998; Xerri et al., 1994). Based on these animal 

studies, it is reasonable to expect that similar structural changes occur in the brain of human 

mothers during the early postpartum period. However, this hypothesis has not been 

rigorously tested in human mothers yet.

To understand the neuroplasticity related to maternal behaviors during the early postpartum 

period, this longitudinal MRI study examined structural changes in the brains of human 

mothers from 2–4 weeks to 3–4 months postpartum. We employed the optimized voxel-

based morphometry (VBM) to identify region-specific changes in gray matter volumes over 

the first postpartum months (Mechelli, Friston, & Ashburner, 2005). We also assessed the 

mothers’ subjective experience of being a parent and perception of their baby at 2–4 weeks 

postpartum to examine whether maternal experience may facilitate longitudinal structural 

changes in the key maternal motivation areas of midbrain regions including hypothalamus, 

substantia nigra, and amygdala.
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Methods

Participants

Nineteen biological mothers of full-term and healthy infants participated in this longitudinal 

study. Nineteen mothers (mean age = 33.27, SD = 6.07) were recruited in postpartum 

hospital wards at the Yale-New Haven Hospital. All mothers were right-handed, Caucasian, 

and either married or cohabiting and all were breastfeeding. The average educational level 

was 18.5 (SD = 3.40) years. Ten out of the 19 mothers had male newborns. Eight of all the 

mothers were multiparous. On the Beck Depression Inventory (BDI), mothers scored 

between 0 and 13, indicating minimal to moderate levels of depressive symptoms at both 2–

4 weeks and 3–4 months postpartum (Beck, Steer, & Garbin, 1988). Informed consent was 

obtained from each participant according to the procedure approved by the School of 

Medicine Human Investigations Committee.

Mothers’ Subjective Perception on Parenting and Baby

At 2–4 weeks postpartum, during home visit, the Yale Inventory of Parental Thoughts and 

Actions – Revised (YIPTA-R), a semi-structured interview, was conducted by an 

experienced clinician. YIPTA-R was designed to elicit information concerning the specific 

features of new parents’ thoughts and actions. Positive Thoughts on Parenting and Baby was 

two of the subscales of YIPTA-R. Mothers were asked to select from a list of adjectives 

words that best described their perception of the baby or experience as a mother. A list of 

the words was based on a previous version of the YIPTA (Leckman et al., 1999). For the 

positive thoughts on baby, the list included 13 positive words including “Beautiful,” “Ideal,” 

“Perfect,” and “Special.” For the positive thoughts on parenting, this list included 32 

positive words including “Blessed,” “Content,” and “Proud.” The sum of the positive words 

mothers chose was included as a variable in this study. Positive thoughts on baby and 

positive thoughts on parenting scores ranged 0–13 and 0–32, respectively. Cronbach’s alpha 

value for the reliability was .78 for positive thoughts on baby, and .85 for positive thoughts 

on parenting.

Image Acquisition

Brain imaging data were obtained twice for each mother: first, between 2 and 4 weeks 

postpartum (Time 1) and second, between 3 and 4 months postpartum (Time 2) at the 

University Magnetic Resonance Research Center. The average interval between two scans 

was 76.53 (SD = 9.88) days. High resolution T1-weighted structural magnetic resonance 

images (MRI) were obtained (3D MPRAGE; TR = 2530 ms; TE = 3.66 ms; matrix size 256 

× 256; 176 slices) with a Siemens trio 3T full-body scanner (Erlangen, Germany). Head 

movements were restrained throughout the session with foam padding and surgical tape 

placed across each participant’s forehead.

Voxel-Based Morphometry Longitudinal Analysis

Voxel-based morphometry (VBM) analyses were performed with VBM2 toolbox for 

Statistical Parametric Mapping 2 (SPM2; Wellcome Trust Center for Neuroimaging, 

London, U.K.). All the structural images were processed according to the optimized VBM 
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protocol (Ganzel, Kim, Glover, & Temple, 2008; Good et al., 2001; Kim et al., 2010). 

Study-specific T1 gray matter, white matter, CSF templates were first created based on the 

images of all participants in one group from both Time 1 and 2. Next, customized T1 gray 

matter templates were used for segmentation and normalization of the original images. 

Template creation and subsequent segmentation and normalization were performed using 

default options in the VBM toolbox (25 mm cut off, medium regularization, medium HMRF 

[Hidden Markov Random Field]) weighting for segmentation) with 16 nonlinear iterations. 

Additional bias correction was performed to minimize these intensity differences between 

the time points due to systematical differences in the bias field (Mechelli et al., 2005). To 

preserve the total within-voxel volume, which may have been affected by the nonlinear 

transformation, every voxel’s signal intensity in the segmented GM images was multiplied 

by the Jacobian determinants derived from the spatial normalization (Good et al., 2001; 

Mechelli et al., 2005). All the modulated images were smoothed with a filter of 12 mm 

Gaussian kernel. Finally, the modulated and smoothed images were analyzed with a paired t 

test (available in the VBM2 toolbox for the longitudinal analysis) to test gray matter changes 

between Time 1 and Time 2. Parenting experience (primiparous = −0.5; multiparous = 0.5) 

and scan interval were included as a control variable. Statistical significance was defined 

using a whole-brain false-discovery-rate (FDR) of 5% (p < .05) and an extent threshold of 

100 voxels after multiple comparison correction (Genovese, Lazar, & Nichols, 2002). 

Multiple regression analyses was performed using SPSS (SPSS, Inc., Chicago, Ill) to test the 

association between behavioral measures (positive experience on parenting and baby) and 

gray matter volume changes in the midbrain region from Time 1 to 2, controlling for 

parenting experience and scan intervals. Estimates of gray matter volume changes were 

extracted from a cluster of the midbrain region for each participant using MarsBaR 

(Marseille boîte à région d’intérêt; Brett, Anton, Valabregue, & Poline, 2002).

Results

Optimized whole brain VBM analyses revealed that from Time 1 (2–4 weeks postpartum) to 

Time 2 (3–4 months postpartum), mothers showed an increase in gray matter volume in a 

number of brain regions including superior, middle and inferior prefrontal cortex, precentral 

and postcentral gyrus, superior and inferior parietal lobe, insula and thalamus, p < .05 (FDR 

corrected), > 100 voxels (see Table 1 and Figure 1A). No brain region showed a decrease in 

gray matter volumes from Time 1 to Time 2, p < .05 (FDR corrected), > 100 voxels.

Mothers’ positive thoughts on baby averaged 6.11 (SD = 2.83; Range 1–12) and the positive 

thoughts on parenting averaged 8.21 (SD = 7.71; Range 1–32). The mother’s positive 

perception of her baby at Time 1 significantly predicted gray matter volume change from 

Time 1 to Time 2 in a cluster of the midbrain including hypothalamus, amygdala, and 

substantia nigra, controlling for parenting experience and scan interval, β = .44, p = .01 

(Figure 1B). The positive thoughts on parenting did not significantly predict the gray matter 

changes in the same region.
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Discussion

Rodent studies have indicated that the expression of maternal behaviors is associated with 

structural changes in brain regions including the MPOA, the parietal lobe, and the prefrontal 

cortex (Fleming & Korsmit, 1996; Xerri et al., 1994). This study identified structural 

changes in similar brain regions among human mothers during the first few postpartum 

months. Increased gray matter volumes in large regions of the prefrontal cortex, parietal 

lobe, and midbrain were found. Furthermore, a mother’s positive thoughts on her baby at the 

first month postpartum predicted gray matter volume increase from the first month to 3–4 

months post-partum. This postpartum period marks a critical time for the development of 

sensitive mothering and changes in these brain regions may be important to promote 

sensitive maternal behaviors.

Several key maternal motivation and behavior regions including bilateral hypothalamus, 

amygdala, substantia nigra, and globus pallidus showed increases in gray matter volume 

during the early postpartum period. The animal literature underlines the importance of these 

structures for parenting and lesions in the hypothalamus including MPOA impairs maternal 

motivation and in the MPOA regions increase the likelihood of infanticide (Flannelly, 

Kemble, Blanchard, & Blanchard, 1986; Novakova, Sterc, Kuchar, & Mozes, 1993). 

Structural reorganization in the MPOA was also found to be sensitive to postpartum 

experience; the increased amount of interactions with pups was associated with greater 

density in MPOA in rat mothers (Featherstone et al., 2000; Fleming & Korsmit, 1996; 

Lonstein et al., 1998). An increase in gray matter volumes was also found in the right 

substantia nigra, a key region of the mesolimbic dopaminergic system responsible for 

processing reward signals (Schultz, Dayan, & Montague, 1997). During the postpartum 

period, SN serves an important function in activating positive responses to pup stimuli 

through dopamine neurons. The ventral pallidum, a part of the globus pallidus, receives 

inputs from substantia nigra and regulates motor activities and behavioral reactivity (Nestler, 

2001). Hypothalamus and globus pallidus have previously been implicated in maternal 

responses to infant stimuli in humans (Bartels & Zeki, 2004; Lorberbaum et al., 2002). 

Finally, amygdala activations has been found to be important for maternal behaviors in 

rodents and nonhuman primates (Kling & Steklis, 1976; Sheehan, Paul, Amaral, Numan, & 

Numan, 2001). Activations of the amygdala, particularly the medial amygdala, inhibit 

maternal responses to pup in virgin rats. However, animal studies suggest that once mothers 

are exposed to their offspring, such pathways involving the medial amygdala may be a key 

to consolidating maternal learning about the infant (Fleming, Gavarth, & Sarker, 1992; 

Mayes, 2006). Thus, interactions with the infant during the first postpartum months may be 

associated with the increased gray matter volumes in the hypothalamus, substantia nigra, 

globus pallidus, and amygdala may help the mothers activate their maternal motivation and 

respond to infant cues.

Furthermore, the structural changes in the midbrain region including the hypothalamus, 

substantia nigra, globus pallidus, and amygdala over time were predicted by a mother’s 

positive perception of her baby at the first month postpartum. Thus, the mother’s positive 

feelings on her baby may facilitate the increased levels of gray matter volume. fMRI studies 

with human mothers have similarly shown that greater substantia nigra responses to infant 
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stimuli were correlated with the mother’s self-reported positive emotional reactions to infant 

stimuli (Bartels & Zeki, 2004; Noriuchi et al., 2007).

Several brain regions implicated in somatosensory information processing also showed an 

increase in gray matter over the first postpartum months. These findings may provide 

evidence that these changes in parent brain structure require exposure to infant-related 

stimuli. In rats, a rich amount of olfactory, auditory, somatosensorial, and visual information 

during physical interactions with pups and suckling stimuli during nursing were associated 

with the reorganization of the thalamus, parietal lobe, and someosensory cortex in lactating 

mothers (Kinsley et al., 2008; Lonstein et al., 1998; Xerri et al., 1994). Moreover, these 

changes in the parietal cortex only occurred when mothers interacted with their pups but not 

when they were only exposed to the pups’ smells or sounds (Fleming & Korsmit, 1996). It 

would be of interest to examine whether the increased gray matter volumes found here in the 

thalamus, precentral and postcentral gyrus, and superior parietal lobe from the first to fourth 

month postpartum are related to the frequency and quality of the mother’s interactions with 

her infant.

Another large area that showed an increase in gray matter volume was the prefrontal cortex 

(PFC), including the superior, middle and medial frontal cortices. Afonso and colleagues 

(2007) found that mother rats with medial prefrontal cortex lesions exhibited deficits in a 

certain maternal behaviors such as pup retrievals and licking behavior, but not in nest 

building or pup mouthing. Thus, it is possible that the increase in gray matter volumes in the 

PFC reported here is associated with the mothers’ adaptation to orchestrate a new and 

increased repertoire of complex interactive behaviors with infants during the early 

postpartum. Neuroimaging data highlights the importance of the PFC in parenting 

behaviors; greater activations in frontal regions including superior and middle frontal gyrus 

(BA 9, 10) and medial frontal guys (BA8) have been found in almost every fMRI study of 

human mothers’ responses to infant stimuli (reviewed in Swain et al., 2007).

In addition to parenting experience during the early postpartum period, several other factors 

may be associated with changes in gray matter volumes in mothers’ brain should be 

monitored in future studies. Animal studies demonstrate that hormones including estrogen, 

oxytocin, and prolactin act in several brain areas to activate maternal behaviors in response 

to infant-related stimuli (Pedersen, Caldwell, Peterson, Walker, & Mason, 1992; Wamboldt 

& Insel, 1987) and changes in these hormones during the early postpartum period affect 

anatomical changes (Rosenblatt, 2002). Experience during the pregnancy, for instance, 

increased amount of stress, may also be associated with structural changes in mothers’ brain 

regions susceptive to stress exposure including amygdala, hypothalamus, and PFC 

(McEwen, 2007). A future study may include gray matter volumes during the pregnancy as 

a baseline and compare them with the ones during the postpartum period. Other factors such 

as changes in menstrual cycles (Protopopescu et al., 2008) or in hydration, weight and 

nutritional status (Castro-Fornieles et al., 2009; Raji et al., 2010) may also produce 

alterations in the brain structure. Studies comparing the gray matter volumes between new 

mothers and age-matched women with no parenting experience would be helpful to control 

these factors to assess the apparent new learning that may be occurring (Draganski & May, 

2008; Driemeyer, Boyke, Gaser, Büchel, & May, 2008).
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Finally, the results should be considered in the light of the study’s limitations that suggest 

future studies. First, although the findings are in accord with animal literature, the study has 

a relatively small sample size and requires replication in larger groups. Second, although our 

finding suggest that experience with infants during the first few months is associated with 

structural development in brain areas that are important for parental motivation and 

behaviors, the causal directionality is not clear. Also, we measure maternal behaviors based 

on mothers’ subjective reports. Future research should investigate the relationship between 

direct measures of maternal behaviors and structural changes in maternal brain. Third, 

although VBM is an increasingly widely used tool to examine changes in brain structure 

among healthy and clinical population (Good et al., 2001; Rüsch et al., 2003), interpreting 

the microstructural and functional nature of the findings is limited. With this caveat in mind, 

we consider that the current group differences in the VBM measure indicate an increase in 

regional gray matter volume. This increase may be attributed to enlarged neuropil, neuronal 

size, or extended dendritic, or axonal arborization (Ashburner & Friston, 2001; Draganski & 

May, 2008). The findings promote further exploration of other gray matter properties of 

these populations with different measurements, such as tensor based morphometry, 

deformation-based morphometry or cortical thickness measurements as well as connecting 

brain structure changes with function. The potential change in white matter fiber tract is also 

worthy of future studies with diffusion tensor imaging. Finally, our findings on the plasticity 

of the parental brain demonstrate normative changes among human mothers since the 

sample included healthy mothers of healthy infants who lived in supportive environments. 

However, mothers with genetic and environmental risk factors such as early traumatic 

experiences, peripartum or postpartum mood disorders, adolescence or low socioeconomic 

status may show different patterns of structural changes in brain regions that are important 

for the expression of parenting behaviors. Such abnormal brain structures may be further 

associated with risk of low parental sensitivity among these parents and affect child outcome 

(Feldman et al., 2009; Francis, Diorio, Liu, & Meaney, 1999; Swain et al., 2004). Further 

research is thus required to identify distinctive changes in the maternal brain among at-risk 

mothers and their infants in order to devise and direct more specific and early interventions 

appropriately.
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Figure 1. 
A. Gray matter increase from 2–4 weeks to 3–4 months postpartum, p < .05, (FDR 

corrected) > 100 voxels—surface areas shown in red—please see Table 1 for complete list 

of structures that increased in density over time; B. A cluster of midbrain regions are circled 

in yellow (x = 1, y = −10, z = −15; p < .05, corrected; the vertical color bar indicates t 

statistical values for the paired t test.), for which gray matter increase from 2–4 weeks 

postpartum to 3–4 months postpartum was predicted by mothers’ positive perception of own 

baby at 2–4 weeks postpartum, controlling for parenting experience and scan intervals, β = .

44, p = .01.
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