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ABSTRACT: A method was developed in which cellulose
(CEL) and/or chitosan (CS) were added to keratin (KER) to
enable [CEL/CS+KER] composites to have better mechanical
strength and wider utilization. Butylmethylimmidazolium
chloride ([BMIm+Cl−]), an ionic liquid, was used as the sole
solvent, and because the [BMIm+Cl−] used was recovered, the
method is green and recyclable. Fourier transform infrared
spectroscopy results confirm that KER, CS, and CEL remain
chemically intact in the composites. Tensile strength results
expectedly show that adding CEL or CS into KER substantially
increases the mechanical strength of the composites. We found
that CEL, CS, and KER can encapsulate drugs such as
ciprofloxacin (CPX) and then release the drug either as a single
or as two- or three-component composites. Interestingly, release rates of CPX by CEL and CS either as a single or as [CEL+CS]
composite are faster and independent of concentration of CS and CEL. Conversely, the release rate by KER is much slower, and
when incorporated into CEL, CS, or CEL+CS, it substantially slows the rate as well. Furthermore, the reducing rate was found to
correlate with the concentration of KER in the composites. KER, a protein, is known to have secondary structure, whereas CEL
and CS exist only in random form. This makes KER structurally denser than CEL and CS; hence, KER releases the drug slower
than CEL and CS. The results clearly indicate that drug release can be controlled and adjusted at any rate by judiciously selecting
the concentration of KER in the composites. Furthermore, the fact that the [CEL+CS+KER] composite has combined properties
of its components, namely, superior mechanical strength (CEL), hemostasis and bactericide (CS), and controlled drug release
(KER), indicates that this novel composite can be used in ways which hitherto were not possible, e.g., as a high-performance
bandage to treat chronic and ulcerous wounds.

■ INTRODUCTION

Keratins (KER) are a group of cysteine-rich fibrous proteins
found in filamentous or hard structures such as hairs, wools,
feathers, nails, and horns. Like other naturally derived protein
biomaterials such as collagen, KER possess amino acid
sequences similar to those found on extracellular matrix
(ECM). Because ECM is known to interact with integrins
which enable it to support cellular attachment, proliferation and
migration, KER-based biomaterials are expected to have such
properties as well.1−14 In fact, KER extracted from human hair
fibers was found to contain a cell adhesion motif of leucine-
aspartic acid-valine (LDV)1 and some regulatory molecules
which, as a consequence, render it able to enhance nerve tissue
regeneration. Keratin also exhibits minimal foreign body
response and fibrous capsule formation.5 The abundance and
regenerative nature of wools and hairs coupled with the ability
to be readily converted into biomaterials for the control of
several biological processes have made KER a subject of intense
study for various biomedical applications including scaffolds for
tissue engineering and drug delivery.1−14

Unfortunately, in spite of its unique structure and properties,
KER has relatively poor mechanical properties, and as a

consequence, materials made from KER lack the stability
required for medical applications.1−14 To increase the structural
strength of KER-based materials, attempts have been made to
cross-link KER chains with a cross-linking agent or convert its
functional group via chemical reaction(s).1−14 This rather
complicated, costly, and multistep process is not desirable as it
may inadvertently alter its unique properties, making the KER-
based materials less biocompatible and diminishing its unique
properties. A new method which can improve the structural
strength of KER products not by chemical modification with
synthetic chemicals and/or synthetic polymers but rather by
use of naturally occurring biopolymers, such as cellulose (CEL)
and/or chitosan (CS), is required.
Polysaccharides such as CEL are known to have strong

mechanical properties.6−8 Similar to CEL, CS, another
polysaccharide derived from chitin, not only has strong
mechanical properties but also has additional properties
including its ability to stop bleeding (hemostasis), heal wounds,
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kill bacteria, and adsorb organic and inorganic pollutants.15−24

It is, therefore, possible that adding CEL and/or CS to KER
will make it possible to not only enhance the mechanical
properties of the [CEL/CS+KER] composites but also extend
their properties so that the composites can be employed for a
variety of uses which hitherto have not been possible.
Unfortunately, in spite of the potential, it has been difficult
to synthesize such composites because the unique structures of
KER, CEL, and CS that give them desirable properties also
make it very difficult to dissolve these three biopolymers.
Recently, it was found that an ionic liquid such as butylmethyl-
imidazolium chloride ([BMIm+Cl−]) can dissolve not only
KER but also CEL and CS. This discovery is significant because
it is now possible to use [BMIm+Cl−] as the sole solvent to
synthesize [CEL/CS+KER] composites in a single step.15−24

The information presented is indeed provocative and clearly
indicates that adding CEL and/or CS to KER would not only
substantially enhance the mechanical properties but also expand
properties of the [CEL/CS+KER] composites, enabling them
to be used for various practical applications. Such consideration
prompted us to initiate this study which aims to improve the
mechanical properties of the KER composites by adding CEL
and/or CS to the composites and to determine if the
composites can encapsulate a drug and control drug release.
If it can, experiments will then be carried out to determine the
kinetics and mechanism of the release and the function of
components of the composite on the release. Ciprofloxacin, a
broad range antibiotic widely used for various treatments25,26

will be used as the drug in this study because it can be
sensitively detected through its intense fluorescence signal. The
results of our initial investigation are reported herein.

■ EXPERIMENTAL METHODS
Descriptions of the chemicals and instruments used in this work can
be found in the Supporting Information.

Synthesis of [CEL+CS+KER] Composites. The [CEL+CS+KER]
composites were successfully synthesized by making minor mod-
ifications to the procedure previously used to synthesize [CEL+CS]
composites.16−18 As shown in Scheme 1, under N2 atmosphere and
vigorous stirring, dissolution of KER, CEL, and/or CS in [BMIm+Cl−]
was carried out by adding KER, CEL, and/or CS in portions of 0.5 wt
% of the IL. Succeeding portions were added after the previous
material completely dissolved until the desired concentration was
reached. Dissolution of KER required a temperature (120 °C)
relatively higher than that needed for either CEL or CS (90 °C).
Consequently, all KER-based composites were synthesized by first
dissolving KER at 120 °C, and once dissolved, the solution
temperature was reduced to 90 °C before CEL or CS was added.
Using this procedure, [BMIm+Cl−] solutions of CEL, CS, and KER
containing up to total concentration of 6 wt % (relative to IL) with
various compositions and concentrations of the doped drug, CPX,
were prepared.

The resulting solution was cast onto PTFE molds with desired
thickness on Mylar films to produce thin films of two- and three-
component films with different compositions and concentrations of
CEL, CS, and KER. They were then allowed to undergo gelation at
room temperature to yield gel films. Because [BMIm+Cl−] is known to
exhibit some toxicity to living organisms,16−18 it was removed from the
composites by washing the gel films with water. The [BMIm+Cl−] in
washed water was recovered by distilling the washed solution and then
drying under vacuum at 70 °C overnight before being reused. Finally,
dried films were obtained when the wet films were allowed to dry at
room temperature in a humidity-controlled chamber.

Synthesis of [CEL+CS+KER] Composite Films Doped with
Ciprofloxacin. Minor modifications made to the procedure described
above were used to synthesize [CEL+CS+KER] composites
containing ciprofloxacin (CPX). In a typical experiment, e.g., for the
synthesis of CPX-doped 25:75 CS:KER film, 6 × 0.400 g portions of
precut wool pieces were dissolved in 40 g of [BMIm+Cl−] at 120 °C
under nitrogen. Upon complete dissolution, the temperature of the
[BMIm+Cl−] solution was lowered to 90 °C before 2 × 0.400 g
portions of CS were added. Then, 16 mg of CPX (equivalent of 0.5%
to total weight of biopolymers) was added and allowed to dissolve for

Scheme 1. Procedure Used to Prepare the [CEL/CS+KER] Composite Materials
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an additional 2 h. The viscous solution was then cast onto a Mylar film
and left to undergo gelation at room temperature for 24 h.
[BMIm+Cl−] was then removed by washing the gel film in 2.0 L of
CPX-saturated water. Fresh CPX-saturated water was replaced every
24 h for 72 h. CPX-saturated water was used to minimize desorption
of CPX from the film. The CPX-doped, [BMIm+Cl−]-free films were
then air dried in a chamber with relative humidity controlled at around
60%. The same procedure was used to prepare composites with
different compositions and concentrations of doped CPX.
Procedure Used to Measure in Vitro Release of Ciproflox-

acin from CPX-Doped [CEL+CS +KER] Composites. In vitro CPX
release from the CPX-doped composite films was monitored by the
fluorimetric method. Essentially, about 3.0−3.5 mg of composite film,
cut into a rectangular shape (4.3 ± 0.2 mm (L) 4.1 ± 0.3 mm (W)

0.18 ± 0.02 mm (thickness)), was placed in a standard 10 mm
fluorescence cell. A PTFE mesh, cut to fit in the cell, was laid flat on
top of the composite film. A tiny stir bar (7 mm × 2 mm × 2 mm, L ×
W × H) was then placed on top of the mesh. Exactly 3.5 mL of 1.0
mM phosphate buffer at pH 7.2 was added into the cell. The cell was
closed with a stopper before being immediately inserted into the
spectrofluorometer (QuantaMaster 40, PTI, Birmingham, NJ). The
release of CPX was then monitored by recording emission spectrum of
CPX in the buffer solution from 350 to 520 nm with λexc = 324 nm.
The emission spectrum was taken at specific time intervals for 10 h.
The samples were then left to stir for additional 14 h before the last
measurement was taken. This final measurement was used as the
amount of CPX released at equilibrium. The amount of CPX released
at each time point, Mt, was calculated by using a calibration curve

Figure 1. FTIR spectra of (A) [CEL+KER] and (B) [CS+KER] composites. The spectra for CEL powder (panel A, purple curve) and CS powder
(panel B, purple curve) are included for reference.
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generated at λemis = 418 nm. A preliminary experiment was carried out
using a blank film (that is, a sample without CPX) to determine if
[CEL+CS+KER] composites have any background signal. No
background signal was detected. Additional experimentation was also
performed to determine if CPX was stable during the 24 h
measurement period. Fluorescence of a buffer solution containing
CPX whose concentration was the same as that of CPX released at
equilibrium was measured and monitored for 24 h. It was found that
within experimental error, the fluorescence intensity remained the
same throughout the whole period, which indicates that CPX was
stable during the 24 h releasing measurement time.
Kinetics of Drug Release. The in vitro drug release data were

fitted to four different kinetic models: zero-order,27,28 first-order,27−30

Higuchi,31,32 and Korsmeyer−Peppas or power law model.33−36 The
zero-order model is based on the assumption that the rate of drug
release is independent of its concentration. It is represented by the
equation

=
∞

M
M

k tt
0

(1)

where Mt/M∞ is the fractional release of the drug at time t and ko is
the zero-order constant.
The first-order model describes a system in which the release rate is

concentration-dependent; it is represented by the equation

− = −
∞

⎛
⎝⎜

⎞
⎠⎟

M
M

k tln 1 t
1

(2)

where k1 is the first-order rate constant.
Higuchi model, sometimes referred to as the square root law

because of the square root of time dependence of drug released, is
based on Fickian diffusion of the drug from the matrix.31,32 This
relation is taken to be valid during the early times of drug release,
namely the time up to 60% release of the drug.31,32 Because not all
systems can be described by the Higuchi model, a more general model,
the Korsmeyer−Peppas model,33−36 was developed to describe all
cases including systems which deviate from Fickian diffusion. The
model relates fractional release to time through an empirical exponent,
n, and rate constant, ksp, according to

=
∞

M
M

k tt n
sp

(3)

As expected, data fitted using this relation in the early time release
region is the same as in the Higuchi model.31−36 According to this
model, the n exponential value is related to the mechanism of drug
release.33−36 Specifically, the release is Fickian diffusion when n ≤ 0.45.
If 0.45 ≤ n ≤ 0.8, it indicates anomalous (non-Fickian) transport, and
for 0.8 ≤ n ≤ 1, the release follows case II, zero-order mechanism.33−36

Release of CPX by each composite was measured at least three
times. Data obtained were fitted into the four different kinetic models
described, and averaged kinetic parameters (rate constants (k0, k1, kH,
and kSP) and exponential n values) are reported together with their
associated standard deviations. It is not possible to present all averaged
rate constants together with their corresponding standard deviations
because of space limitation of Table 1. As a consequence, the standard
deviations are presented in the parentheses next to their corresponding
averaged values. For example, kSP for 100% CS is 1.06 ± 0.01, which is
presented in Table 1 as 1.06(1).

■ RESULTS AND DISCUSSION
Spectroscopic Characterization. Fourier transform infra-

red (FTIR) spectroscopy was used to confirm that CEL, CS,
and KER were not chemically altered by dissolution with and
regeneration from ionic liquids. Spectra of wool, shown as the
pink curve in Figure 1A,B, exhibited characteristic bands that
can be assigned to the vibrational modes of peptide bonds in
proteins. For example, the bands at 1700−1600 cm−1 and 1550
cm−1 are due to amide CO stretch (amide I) and C−N

stretch (amide II) vibrations, respectively.37 In addition, the
3280 cm−1 band can be assigned to N−H stretch vibration
(amide A) while a band at 1300−1200 cm−1 is due to the in-
phase combination of the N−H bending and the C−N stretch
vibrations (amide III). This finding is expected because wool
contains more than 95% of keratin protein.38 It is noteworthy
to add that the FTIR spectrum of wool does not have any band
at 1745 cm−1, which is known to be due to lipid ester carbonyl
vibrations.39 It seems, therefore, that the Soxhlet extraction
effectively removed all residual lipids from wool. Interestingly,
upon regenerating KER film from the wool, no new IR
signatures were detected in the FTIR spectrum of the former
(compare pink spectrum for wool to the black spectrum for
100% KER). The results indicate that dissolution by and
regeneration of KER from [BMIm+Cl−] do not produce any
chemical alteration in the chemical structure of KER.
The FTIR spectra of [CEL+KER] and [CS+KER]

composites with different compositions are also presented in
panels A and B of Figure 1, respectively. As expected, the
spectra of these composite films exhibit bands characteristic of
their respective components. Furthermore, magnitude of these
bands seems to correlate well with the concentration of
corresponding component in the film. For example, the band
between 900 and 1200 cm−1 (due to sugar ring deformations)
increased in relative intensity concomitantly with the relative
concentration of CEL in the [CEL+KER] composite (Figure
1A). On the other hand, the intensity of the amide I and amide
II bands increased with the increase in the relative
concentration of KER in the same composite films. Similar
behavior was also observed for [CS+KER] composite films
(Figure 1B). It is noteworthy to add that in all composite films
([CEL+KER], [CS+KER], and [CEL+KER+CS]), no new
bands are found in their FTIR spectra, i.e., the spectra of the
composites are a superposition of the spectra of the
corresponding individual components. This, as noted earlier,
further confirms that no chemical alterations occurred during
the synthesis of these composites.

Mechanical Properties. Although KER has been shown to
induce controlled release of drug substances,5,8,9,13 its poor
mechanical properties continue to hamper its potential
applications. For example, as previously reported and also
observed in this study, regenerated KER film was found to be
too brittle to be reasonably used in any application. Because
CEL is known to possess superior mechanical strength, it is
possible enhance the mechanical properties of KER-based
composites by adding CEL or other polysaccharides such as CS
into it. Accordingly, [KER+CEL] and [KER+CS] composites
with different concentrations were prepared, and their tensile
strength was measured. Figure 2 plots tensile strength of [CEL
+KER] and [CS+KER] composites as a function of CEL and
CS content. As illustrated, the tensile strength of [CEL+KER]
composite films was found to increase concomitantly with the
content of CEL. For example, the tensile strength of [CEL
+KER] increased at least 4-fold when CEL loading was
increased from 25% to 75%. This behavior has also been
reported elsewhere when CEL was used as a reinforcement in
other composites.16 It is worth noting that [CEL+KER]
composite films were much weaker than [CS+CEL].24 For
example, [CEL+KER] and [CEL+CS] containing 75% and 71%
CEL had tensile strengths of 36 ± 3 and 52 MPa, respectively.
This could be attributed to the fact that CEL structure is more
similar to that of CS than KER structure. Therefore,
interactions formed between CEL and CS can be much
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stronger than those between CEL and KER. Although CS also
leads to an increase in the tensile strength of [CS+KER], its
effect is noticeably weaker than that of CEL of comparable
loading. For example, [CEL+KER] and [CS+KER] had tensile
strength values of 37 ± 6 and 20 ± 1 MPa, respectively, for a
40% KER loading. This could be due to the fact that CS has
mechanical strength that is relatively inferior to that of CEL,
which can be seen by the tensile strengths of 100% CS (36 ± 9
MPa) and 100% CEL (82 ± 4 MPa).
Qualitative Assessment of the Release Assay. The

objective of this study was to evaluate if composites containing
CEL, KER, and/or CS are suitable as matrix platforms for
controlling the release of the drug CPX; if they are, an
additional objective is determining the most effective
composition and concentration of the composite. Drug release
assays were carried out using composites containing relatively
different concentrations of CEL, KER, and CS. The
concentration of the drug was fixed at 0.5% of the total weight
of the biopolymers in each formulation. Careful consideration
was made to ensure that sink conditions for the drug were
maintained throughout the experiment so that the release
medium was not saturated by the released drug. Specifically,
experimental conditions were chosen to ensure that the drug

concentration was always less than 10% of the saturation
solubility in the release medium, which for CPX in phosphate
buffer is 73 ± 7 ppm at 21 ± 1 °C.40 Each of the composite
films used in release experiments (i.e., 3.5 mg of film) contains
0.0174 mg of CPX (equivalent to 0.5% CPX per total weight of
biopolymers in the composite) which in 3.5 mL of release
medium corresponds to ∼5 ppm of the maximum concen-
tration of CPX that can possibly be released by a typical
composite film. Because this value is well below the CPX
maximum solubility of 73 ± 7 ppm, it is clear that sink
conditions were maintained in this study.
Fluorescence spectra of the drug release from 100% KER film

(i.e., CPX in solution) plotted as a function of releasing time
are shown in Figure 3. As illustrated, the intensity of the
fluorescence spectrum increases as a result of CPX being
released into the buffer medium. The fact that the position of
λmax (at 480 nm) and the shape of the spectra remained the
same throughout the entire release time seems to indicate that
the drug remained stable over the whole assay period. In
addition, these time-dependent spectra appeared to be identical
to the calibration spectra (not shown). This suggests that CPX
remained chemically stable throughout the encapsulating
process into the biopolymer matrices.
Fluorescence spectra of CPX that were released from other

films, 100% CS and 100% CEL, were also measured, and the
results obtained were used, together with those for 100% KER,
to generate plots of fraction of drug released, Mt/M∞, against
time, t, for each film (Figure 4). As illustrated, for all three films,
the release profiles are characterized by an initial rapid release
that eventually reaches a plateau. While the duration and
amount of CPX released are somewhat similar for 100% CS
and 100% CEL, they are much different from those for 100%
KER. For example, it took ca. 30 min for 100% CEL and 100%
CS to release 60% of the encapsulated CPX, whereas up to a 4-
fold greater time (120 min) was needed for 100% KER to
release a similar amount of CPX. Because CS and CEL are both
polysaccharides and have similar structure, it is expected that
the release of CPX from them will be similar. Being a protein,
KER has a structure that is very much different from that of the
polysaccharide.24,41 In fact, it is known that proteins such as
KER have relatively well-defined secondary structure (i.e., α-
helix and β-sheet)24,41 compared to polysaccharides which are
known to adopt random structure in solution. This, in effect,
makes KER structurally denser compared to CEL and CS.

Figure 2. Plots of tensile strength as a function of % CEL in [CEL
+KER] composites (red circles) and % CS in [CS+KER] composites
(black squares).

Figure 3. Time-dependent fluorescence spectra for Ciprofloxacin release from 100% KER (λexc = 324 nm).
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Consequently, KER releases the drug at a relatively slower rate
than CEL and CS.
Water molecules can diffuse into the biopolymer matrix,

producing swelling of the biopolymer. This, in turn, makes it
easier for the encapsulated drug to diffuse out and be released.
It is known, based on our previous report on swelling,17 that CS
absorbs at least 3 times more water than CEL owing to the
more rigid structure of CEL. Therefore, CS is expected to
eventually release more drug than CEL at equilibrium. In fact,
the results obtained in the present study concur with this
finding, namely, 100% CS released a total of 77% CPX whereas
100% CEL released only 65%. Being structurally denser with a
well-defined secondary structure, it is expected that it would be
relatively harder for water molecules to diffuse into KER.42

However, it is possible that the phosphate ions in the buffer
may adsorb onto the protein thereby making it more ionic.
This, in effect, would make it easier for KER to absorb more
water over time. As a consequence, KER released relatively
more drug at equilibrium, albeit at a slower pace than either
CEL or CS. This could explain why 100% KER released up to
91% of the drug at equilibrium.
As described above, CEL and CS were added to KER to

enable [CEL+CS+KER] composites to have better mechanical
strength and wider utilization. Releasing profiles of [CEL/CS
+KER] composites with different concentrations are shown in
Figure 5. In all cases 100% CEL released the least total amount
of drug at equilibrium. All samples containing KER showed
some degree of controlled release, especially at high KER
concentration. Conversely, higher concentrations of either CEL
or CS produced the opposite effect. This was most pronounced
for composites containing only CEL and CS. As illustrated, all
[CS+CEL] composites reached equilibrium within the first
hour of the release time. However, when either CEL or CS was
blended with KER, there was a substantial slowdown in the rate
of drug release. These results clearly indicate that KER can
serve in controlling the release of the drug.

Quantitative Assessment of the Release Profiles.
Quantitative assessment of the release kinetics was then
performed on composites with different compositions and
concentrations. This was accomplished by fitting release data to
the four kinetic models; zero-order, first-order, Higuchi, and
Korsmeyer−Peppas (KP) or power law model. Results
obtained of all composites for all models are listed in Table
1. Figure 6 shows representative fitting of the 10:50:40
CS:KER:CEL composite for all four models. The performance
of each model was evaluated by visually inspecting the fit and

Figure 4. Plots of release of CPX as a function of time from 100% CS
(black curve with stars), 100% KER (purple curve with filled circles),
and 100% CEL (red curve with filled triangles).

Figure 5. Plots of release of CPX as a function of time from (A) [CS+KER], (B) [CS+CEL], (C) [CEL+KER], and (D) [CS+KER+CEL].
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the R2 and MSC values.43 As shown in Figure 6 and listed in
Table 1, data fit very poorly to zero-order model, and, as
expected, also gave the lowest R2 and MSC values for all
composites, which indicate that this model cannot be used to
describe the release kinetics. Although the first-order model
gave relatively better fit and higher R2 and MSC values for some
composites, this trend was inconsistent. For examples, the first-
order model gave the highest R2 and MSC values for only 100%
KER, 25:75 CEL:KER, and 50:10:40 and 30:30:40 CS:KER:-
CEL, which corresponds to only 24% of the total composites
measured. It is, therefore, not appropriate either.
Both Higuchi and Kormeyer−Peppas models have relatively

better fit and high values for R2 with the former having higher
values 64% of the time, and the later model 36% of the time.
This suggests that both Higuchi and power law models may be
suitable. However, when MSC values are also taken into
account, the Higuchi model gives higher values of MSC only
24% of the time with the remaining 76% are provided by the
Korsmeyer−Peppas model. These two results seem to be
contradictory at first. However, closer inspection reveals that
that the differences in the R2 values of both models are
relatively small whereas the differences in MSC are substantially
larger. As a consequence, the Korsmeyer−Peppas model seems
to be more suited and hence was subsequently used to describe
release kinetics.
For clarity the rate constants (kSP values) from the

Korsmeyer−Peppas model were used to generate 3D plots
which are shown in Figure 7A for two-component composites
([CEL+KER] and [CS+KER]), and Figure 7B for three-
component composites ([CEL+CS+KER]). As illustrated,
100% KER gave the lowest kSP values (0.357 ± 0.006)
compared to that of either 100% CEL or 100% CS. In addition,
100% CEL and 100% CS gave almost identical kSP values (1.04
± 0.07 and 1.06 ± 0.01 for 100% CEL and 100% CS,
respectively).

As listed in Table 1 and Figure 7A, for [CS+KER]
composites, kSP values decreased concomitantly with the
increase in proportional content of KER. For example, adding
62.5% KER to CS reduced ksp value by 33%. A further 48%
reduction was observed when additional 12.5% of KER was
added to the 62.5:37.5 KER:CS composite film. The blending
of CS and KER is attractive because CS not only improves the
mechanical properties but may also provide additional benefits.
Specifically, we have previously shown that CS fully retains its
unique properties (hemostasis and ability to inhibit the growth
of both Gram positive and negative microorganisms (including
Escherichia coli, Staphylococcus aureus, methicillin resistant S.
aureus and vancomycin resistant Enterococcus faecalis) when
added to CEL.16,18 It is, therefore, expected that CS also can
retain its property as a component of the [KER+CS]
composites. The same trend observed in the release by [CS
+KER] composites was also seen in the release by [CEL+KER]
composites. This is hardly surprising considering CEL and CS
are both polysaccharide and possess similar chemical structure
except for the presence of amino groups in CS. However, for a
given KER content, the [CEL+KER] composite film gave a ksp
value somewhat higher than that of the corresponding [CS
+KER] composite. For example, composites containing 75%
KER gave kSP values of 0.53 ± 0.01 for [CEL+KER] and 0.313
± 0.005 for [CS+KER]. To verify that KER was indeed
responsible for the slowdown in drug release, we synthesized
CPX-doped composite films containing only the two
polysaccharides, CEL and CS. The kinetic results are listed in
Table 1 and plotted in Figure 7A. It is interesting to note that
when these two polysaccharides were blended, the resultant
composites gave kSP values that were relatively higher than kSP
values obtained from either 100% CEL or 100% CS. In
addition, the kSP values for the [CS+CEL] composites do not
seem to correlate to the amount of either CS or CEL in the
composites. This behavior could be a result of similarity in the

Figure 6. Kinetics of release of CPX from 10:50:40 CS:KER:CEL plotted as zero-order, first-order, Higuchi, and Korsmeyer−Peppas or power law
model.
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chemical structures of these two polysaccharides. The fact that
the kSP values for [CEL+CS] composites were consistently
higher than kSP values of either [CEL+KER] or [CS+KER]
further confirms the ability of KER to control drug release.
Experiments were also designed to determine if KER can still

slow drug release from a composition containing KER, CEL,
and CS. Five composites were synthesized in which the
concentration of CEL was fixed at 40% whereas those for CS
and KER were varied from 10% to 50%. The results are listed in
Table 1 and plotted in Figure 7B. Again, it was found that
increasing concentration of KER leads to a substantial decrease
in the release kinetics. For example, increasing concentration of
KER from 10% to 30% leads to a 41% decrease in the release
rate (from 2.0 ± 0.3 to 1.16 ± 0.06). Further increasing KER
concentration to 50% lead to kSP value of 0.76 ± 0.03 or 34%
reduction. It is therefore evidently clear that the ability of KER
to slow the release of the drug remains intact in three-
component composites as well. This finding is of particular
significance because it indicates that drug release can be
controlled and adjusted at any rate by judiciously selecting the
concentration of KER in the [CEL+CS+KER] composite.
Furthermore, the [CEL+CS+KER] composite is superior to all
other two-component composites as it has combined properties
of all three components, namely, superior mechanical strength

(from CEL); hemostasis, bactericide, and ability to adsorb
pollutants and toxins (from CS); and controlled release of
drugs (from KER).
Additional information on the mechanism of the drug release

can also be obtained from the exponential value (n) of the
Korsmeyer−Peppas model. As described in the section above, if
n ≤ 0.45, the mechanism is Fickian; if 0.5 ≤ n ≤ 0.8, the
mechanism is non-Fickian; and if 0.8 ≤ n ≤ 1.0, a zero-order
mechanism governs the drug release from the composites.32−35

n values for different composites are listed in Table 1. With the
exception of two composites (75:25 CS:KER and 10:50:40
CS:KER:CEL) which, within experimental error, have n values
close to 0.4, all other 13 composites have 0.5 ≤ n ≤ 0.8. The
results seem to indicate that drug release from these composites
is governed mainly by a non-Fickian mechanism. It is possible
that more than one mechanism is involved in the release. For
example, a combination of diffusion and relaxation of the
biopolymers including swelling by water and unfolding of the
biopolymers contribute to the releasing of the drug from the
composites.

■ CONCLUSIONS

We have demonstrated that novel composite materials
containing CEL, CS, and KER can be successfully synthesized
by a simple, green, and totally recyclable one-step process.
Adding CEL into the composite substantially improves its
mechanical strength thereby enabling it to be used for practical
and general applications. All three biopolymers, CEL, CS, and
KER, were found to be able to encapsulate a drug such as
ciprofloxacin (CPX) and subsequently release it either as a
single or as two- or three-component composites. Interestingly,
release rates of CPX by CEL and CS either as a single or as
[CEL+CS] composite are relatively much faster and
independent of concentration of CS and CEL in the composite.
Conversely, releasing rate by KER is much slower, and when
incorporated into CEL, CS, or CEL+CS, it substantially slows
the release rate of the composites as well. Furthermore, the
reducing of the release rate was found to correlate to the
concentration of KER in the composite. This may be due to the
fact that KER, being a protein, is known to have secondary
structure, whereas CEL and CS exist only in random form.
This, in effect, makes KER structurally denser compared to
CEL and CS, which are porous because of their random
structure. Consequently, KER releases the drug at rate that is
relatively slower than that of CEL and CS. Taken together,
results obtained clearly indicate that drug release can be
controlled and adjusted at any rate by judiciously selecting the
concentration of KER in the [CEL+KER], [CS+KER], and
[CEL+CS+KER] composites. Furthermore, the fact that the
[CEL+CS+KER] composite has combined properties of all
three components, namely, superior mechanical strength (from
CEL), hemostasis and bactericide (from CS), and controlled
release of drugs (from KER), indicates that it is possible, for the
first time, to use this novel composite for general and practical
applications which hitherto have not been possible. This
includes its use as a high-performance bandage which can heal
wounds, kill bacteria, and deliver drugs for the treatment of
chronic ulcerous wounds of diabetic patients.

Figure 7. 3D plot for release rate constants, kSP, obtained by fitting
release data to Korsmeyer−Peppas model for (A) two-component
composites ([CEL+CS] (black), [CEL+KER] (red), and [CS+KER]
(green)) and (B) three-component composites ([CS+KER+CEL]).
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