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Abstract

In randomized trials, pair-matching is an intuitive design strategy to protect study validity and to 

potentially increase study power. In a common design, candidate units are identified, and their 

baseline characteristics used to create the best n/2 matched pairs. Within the resulting pairs, the 

intervention is randomized, and the outcomes measured at the end of follow-up. We consider this 

design to be adaptive, because the construction of the matched pairs depends on the baseline 

covariates of all candidate units. As a consequence, the observed data cannot be considered as n/2 

independent, identically distributed (i.i.d.) pairs of units, as common practice assumes. Instead, the 

observed data consist of n dependent units. This paper explores the consequences of adaptive pair-

matching in randomized trials for estimation of the average treatment effect, conditional the 

baseline covariates of the n study units. By avoiding estimation of the covariate distribution, 

estimators of this conditional effect will often be more precise than estimators of the marginal 

effect. We contrast the unadjusted estimator with targeted minimum loss-based estimation 

(TMLE) and show substantial efficiency gains from matching and further gains with adjustment. 

This work is motivated by the Sustainable East Africa Research in Community Health (SEARCH) 

study, an ongoing community randomized trial to evaluate the impact of immediate and 

streamlined antiretroviral therapy on HIV incidence in rural East Africa.
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1. Introduction

Pair-matching helps balance treatment groups with respect to important determinants of the 

outcome at baseline [1, 2]. In observational studies, matching can help control for 

confounding. In randomized trials, there is no confounding; the probability of receiving the 

intervention or the control is a known constant. Nonetheless, covariate imbalance is 

common in small trials, and data sparsity may limit our ability to adjust for these 

characteristics during the analysis. Thereby, matching is sometimes implemented in 
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randomized trials to protect study credibility. For example, the “face validity” [3] of a 

randomized trial for violence prevention could be compromised if neighborhoods with 

highest baseline violence were all randomized, by chance, to the control level of the 

intervention. Matching is also implemented to improve study power. By decreasing variation 

in the outcome within pairs, matching may, but is not guaranteed to, increase study 

efficiency. The conflicting recommendations on pair-matching have inspired a heated debate 

in the literature for over sixty years [3–17].

Much of the work in the design and the analysis of pair-matched trials has assumed that the 

observed data consist of n/2 independent and identically distributed (i.i.d.) units (e.g. [3, 17–

21]). Such a data structure could arise by randomly sampling n/2 matched pairs from some 

target population of pre-existing matched units. Often, however, there may be substantial 

logistical or financial barriers to practical implementation of this design. Alternatively, this 

data structure could arise by (i) sampling a unit from an infinite target population, (ii) 

measuring its baseline covariates, (iii) repeatedly sampling units until the baseline covariates 

of the second were sufficiently close to the first, (iv) randomizing the intervention within the 

matched pair, (v) measuring the outcomes, and (vi) repeating this process n/2 times. This 

pair-matching scheme may also be impractical and is likely to be resource intensive. 

Theoretically, this design also yields less information for estimating the (population) 

average treatment effect than a design randomly pairing two sampled units [22].

A different pair-matching scheme was implemented in the Sustainable East Africa Research 

in Community Health (SEARCH) trial [23, 24]. SEARCH is a multinational, 

multidisciplinary consortium to evaluate the health, economic and educational impacts of a 

community-based strategy for immediate and streamlined antiretroviral therapy (ART) for 

all HIV-positive persons. In the trial, 54 candidate communities were identified from rural 

Uganda and Kenya. These clusters satisfied the study's inclusion criteria, which included 

community size, health care infrastructure and sufficient distance from other potential study 

units. Thirty-two communities were then pair-matched within region and on baseline 

predictors of HIV transmission and health care delivery. The intervention has been 

randomized within the resulting 16 matched pairs and the 5-year cumulative incidence of 

HIV will be measured at the conclusion of the trial. We consider this design to be adaptive, 

because partitioning of the study communities into matched pairs was a function of the 

baseline covariates of all candidates. Thereby, the observed data do not consist of n = 32 

i.i.d. random variables or of n/2 = 16 i.i.d. paired random variables. Instead, the observed 

data consist of n dependent units. For examples of other types of adaptive designs, see [25–

28].

To the best of our understanding, adaptive pair-matching has been implemented in several 

other cluster randomized trials. Examples include the Mwanza trial to prevent HIV [29], the 

PRISM trial to prevent postpartum depression [30], and the SPACE study to promote 

physical activity [31]. The process of selecting n/2 pairs based on the covariates of n 

candidates is also known in other literature as “nonbipartite matching” [14, 32] and has 

motivated the development of “optimal multivariate matching” algorithms to pair units 

based on several covariates simultaneously [33–36]. Previously, van der Laan et al. [37] 

explored the consequences of adaptive pair-matching for estimation of the population 
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average treatment effect. This paper explores the consequences of adaptive pair-matching 

for estimation of the average treatment effect, conditional on the baseline covariates of the n 

study units. For brevity, we will refer to this causal parameter as the conditional average 

treatment effect (CATE). This parameter was initially proposed in Abadie and Imbens [38], 

can be interpreted as the intervention effect, given the covariates of the sample at hand, and 

often leads to more precise estimators [16, 39, 40].

Adjustment for baseline covariates during the analysis can help control for chance 

imbalances in important determinants of the outcome and can also increase study efficiency 

[41–43]. Nonetheless, the recommendations on whether and how to adjust in pair-matched 

trials have been conflicting (e.g. [3, 15–17, 21, 44, 45]). The intervention effect can be 

estimated with the average of the differences in the outcomes within matched pairs. 

Alternatively, one could take a multi-step approach of first fitting a regression model with 

terms for the pairs and covariates (but not the intervention) and then contrasting the 

observed versus predicted outcomes within matched pairs [17, 29, 46]. In all cases, the 

estimation approach should be tailored to the parameter of interest (i.e population vs. 

conditional average treatment effect). To the best of our knowledge, this is the first paper to 

propose targeted minimum loss-based estimation (TMLE) for the CATE in a randomized 

trial. Without risking bias due to regression misspecification [41–43], TMLE allows for 

further adjustment for baseline characteristics (beyond that attained by matching alone) and 

thereby can provide an efficient estimate of the intervention effect.

The remaining article is outlined as follows. We first describe the adaptive design and the 

resulting data structure. Second, we motivate the use of the CATE as the causal parameter of 

interest. Third, we discuss two estimators of the corresponding statistical parameter: the 

unadjusted difference in outcomes within matched pairs and targeted minimum loss-based 

estimation (TMLE). The latter estimator allows for further adjustment of important baseline 

covariates, beyond that attained with matching, and is thereby more powerful under 

reasonable scenarios. We also provide asymptotically conservative variance estimators and 

finite sample simulations. We conclude with some practical recommendations. While the 

SEARCH trial serves as the motivating example, our conclusions are applicable to other 

randomized trials and also general to other study outcomes beyond incidence. Moreover, we 

focus on data at the level of the experimental unit (i.e. the unit of randomization). Thereby, 

our results are applicable to both individually randomized trials as well as cluster 

randomized trials. Detailed proofs are given in the Supplementary Material.

2. The Estimation Problem

The SEARCH consortium will estimate the impact of immediate antiretroviral therapy 

(ART), initiated at all CD4+ T cell counts and delivered by a streamlined care system, on 

the 5-year cumulative incidence of HIV [24]. The trial began enrolling communities in 2013, 

and data collection is ongoing. In communities randomized to the intervention, all 

individuals testing positive for HIV will be immediately eligible for ART with streamlined 

delivery, which includes enhanced services for initiation, linkage and retention in care. In 

communities randomized to the control, all individuals testing positive for HIV will be 

offered ART according to in-country guidelines, which are primarily based on CD4+ T cell 
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counts. HIV incidence, as well as other health, economic and educational outcomes, will be 

measured among approximately 320,000 individuals, followed longitudinally for the 5 years 

of the trial. The SEARCH study aims to understand the impact this community-based “test-

and-treat” program on both HIV-positive individuals and their greater communities [47–54].

For the purposes of understanding the adaptive design, we focus on the cluster-level data. 

Let N denote the number of candidate communities considered for inclusion in the study, n 

denote the number of communities selected for the SEARCH trial, and n/2 denote the 

number of matched pairs. Let W represent the pre-intervention community-level covariates, 

which include region, proximity to trucking routes, occupational mix and baseline 

population HIV RNA levels [55]. A subset of these baseline covariates were used to select 

the n/2 best matched pairs of communities from the N possible candidates. Within the 

resulting pairs, the intervention was randomized. The treatment variable A is a binary 

indicator, equalling one if the community was assigned to the intervention (all individuals 

testing positive for HIV are immediately offered ART with streamlined care delivery) and 

equalling zero if the community was assigned to the control (all individuals testing positive 

for HIV are offered ART according to in-country guidelines). Finally, the outcome Y is the 

5-year cumulative incidence of HIV, which will be measured through longitudinal follow-

up. Thereby, the data structure for a SEARCH community is O = (W, A, Y).

The adaptive design has important implications for estimation and inference [37]. Mainly, 

the partitioning of the sample into n/2 pairs is a function of the baseline covariates of all N 

candidates. Adaptive pair-matching results in n dependent copies of O. Nonetheless, given 

the covariates of all candidate communities W N = (W1, . . . , WN), the observed data can be 

represented as n/2 conditionally independent random variables:

where the index j = 1, . . . , n/2 denotes the partitioning of the candidates {1, . . . , N} into 

matched pairs according to similarity on their baseline covariates W N. Throughout the 

subscripts j1 and j2 denote the first and second communities within matched pair j. We place 

no assumptions on the joint distribution of covariates P0(W N), where subscript 0 denotes the 

true but unknown distribution. The treatment assignment mechanism is known; with 

probability 0.5, the first unit is randomized to the intervention and the second to the control:

Study communities are assumed to be causally independent (i.e. no contamination or 

spillover effects). In other words, we assume that the baseline covariates and intervention 

assignment of one community do not affect the outcome of another study community. We 

further assume that there is no spatial correlation between study communities. For further 

discussion of the impact of spatial dependence in cluster randomized trials, we refer the 

reader to [56–60]. Recent work, relaxing these assumptions and considering a network of 

interacting units, is elaborated in van der Laan [61]. Under these assumptions, the 
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conditional distribution of the observed data, given the baseline covariates of the candidate 

units, factorizes as

Throughout,  denotes the true conditional distribution of the observed data, given the 

baseline covariates of the n study units W n = (W1, . . . , Wn). There are no other restrictions 

on the set of possible observed data distributions, and the resulting statistical model  is 

semiparametric.

2.1. The Conditional Average Treatment Effect (CATE)

The goal of the SEARCH trial is to estimate the effect of a strategy for immediate and 

streamlined ART for all HIV diagnosed persons on the 5-year cumulative HIV incidence in 

rural East African communities. A common target of inference is the population average 

treatment effect E[Y (1)] − E[Y (0)] or its relative counterpart E[Y (1)]/E[Y (0)], where Y (a) 

denotes the counterfactual cumulative incidence under treatment level A = a. This causal 

parameter is the difference in the expected outcomes if all communities (in some 

hypothetical target population) were to receive the intervention and if all communities (in 

some hypothetical target population) were to receive the control.

An alternative estimand involves conditioning on the baseline covariates of the study 

communities [16, 38–40]:

where Yi(a) denotes the counterfactual cumulative incidence under treatment level A = a for 

unit i. This parameter is the difference in the expected counterfactual outcomes, treating the 

baseline covariates of the study communities as fixed. As a result, the parameter is data-

adaptive; its value changes with the sample of study units. Nonetheless, ψF can be 

interpreted as the intervention effect, given the covariates the sample units. Greater 

generalizability is up to the reader and not implicitly assumed in the parameter specification. 

Furthermore, by obviating estimation of the covariate distribution, estimators of the 

conditional parameter will also often be more precise than those of the population parameter 

[16, 38–40].

2.2. Estimation

Since the intervention is randomized within matched pairs, the causal parameter is readily 

identifiable from the conditional distribution of the observed data. The statistical estimand is
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where Q̄0(A, W) denotes the conditional mean outcome, given the intervention A and 

covariates W. In other words, the target parameter is the average difference in the strata-

specific expected HIV incidence under the intervention and control for the n study 

communities. This estimand is still random through the vector of covariates W n = (W1, . . . , 

Wn). The true value ψ0 depends on the sample of n units.

An intuitive estimator of ψ0 is the average difference in outcomes within matched pairs:

where the observations within matched pair j have been ordered such that the first 

corresponds to the intervention, Aj1 = 1, and the second the control, Aj2 = 0. This estimator is 

equivalent to taking the difference in the average outcomes among intervention units Q̄n(1) 

= En(Y|A = 1) and the average outcomes among control units Q̄n(0) = En(Y|A = 0). Since the 

intervention is randomized, the unadjusted estimator is unbiased for the parameter of 

interest, given the vector of covariates W n. (See Appendix A in the Supplementary Material 

for the accompanying proof.) When the measured covariates are predictive of the outcome, 

this simple difference-in-means estimator tends to be inefficient as it fails to adjust for 

measured covariates. Despite recent advances in matching algorithms [14, 35, 36], there is 

likely to be some residual imbalance on pre-intervention determinants of the outcome within 

matched pairs. Furthermore, even if we succeeded in matching well on all available 

characteristics, there might be additional baseline covariates that are predictive of the 

outcome, but were unavailable during the matching process. In the SEARCH trial, for 

example, baseline population HIV RNA levels are thought to be a major driver of incidence 

but were unavailable during matching.

An alternative approach is to use TMLE, which can provide an unbiased and efficient 

estimate of the intervention effect. The TMLE for  is given by the following 

substitution estimator:

where  denotes a targeted estimate of the conditional mean function E0(Y|A, W). 

In general, this targeting step is used to achieve the optimal bias-variance trade-off for the 

parameter of interest and to solve the efficient score equation [62]. We refer the reader to 
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van der Laan and Rose [63] for a detailed discussion and worked examples of TMLE. In an 

adaptive pair-matched trial, TMLE for  can be implemented as follows.

1. Estimate the conditional mean function Q̄0(A, W) by regressing the outcome Y on 

the treatment A and covariates W, while ignoring the dependence in the data.

• For a binary outcome or a bounded continuous outcome, the negative log 

likelihood is a valid loss function and provides stability in the context of 

sparsity [64]. Specifically, the boundedness property of the logistic function 

guarantees the predicted outcomes are within the appropriate range (e.g. 

[0,1] for a proportion). For a continuous outcome, initial estimation of the 

conditional mean Q̄0(A, W) can also be based on linear regression, which can 

yield more power than non-linear (logistic) regression in randomized trials. 

In particular, Rubin and van der Laan [41] detail the use of least squares 

regression to optimize the fit of Q̄0(A, W) to achieve the lowest possible 

variance. Initial estimation can also be based on an a priori specified data-

adaptive method, such as Super Learner [65]. In all cases, there is no risk of 

bias due to model misspecification [41–43].

2. If the initial regression model included an intercept and a main term for the 

exposure, the estimator of the conditional mean outcome Q̄n(A, W) is already 

targeted. Skip to step 3. Otherwise, update the initial estimator as follows.

• If logistic regression was used for initial estimation, then the following 

fluctuation sub-model is appropriate:

and ε is the univariate parameter. If linear regression was used, then the 

following fluctuation sub-model is appropriate:

with ε and H(A) are defined as above. In practice, run logistic (linear) 

regression of the outcome Y on the covariate H(A), using the initial estimate 

as offset. Then plug the estimated coefficient εn into the fluctuation model to 

yield the targeted estimates .

3. Take the sample average of the differences in the expected outcomes:
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where  denotes the expected outcome for unit i under the intervention 

and  denotes the expected outcome for unit i under the control. It is 

worth emphasizing that empirical mean, here, is part of target parameter mapping; 

we are not estimating the covariate distribution as would be required for the 

population average treatment effect.

In practice, many cluster randomized trials have a limited number of (conditionally) 

independent units. For example, there are only 16 conditionally independent pairs in the 

SEARCH trial. As a result, the number of parameters in the regression model for Q̄0(A, W) 

can quickly approach the number of observations. Therefore, the curse of dimensionality can 

prevent adjustment for all the measured covariates W or the inclusion of multiple interaction 

terms. Nonetheless, it is often possible to adjust for a single or few covariates and obtain 

efficiency gains without risk [42, 43]. Furthermore, when the regression model for Q̄0(A, W) 

includes an intercept and the exposure A as a main term, the initial estimator is already 

targeted. Thus, we can obtain an unbiased and more efficient estimator in two steps: 

estimate Q̄0(A, W) with main terms linear or logistic regression, and take the sample average 

of the differences in the expected outcomes under the treatment and control.

2.3. Statistical Inference

As established in Appendix B of the Supplementary Material, both the unadjusted estimator 

and the TMLE are asymptotically linear and normally distributed. Briefly, an estimator is 

asymptotically linear if the difference between the estimator and the estimand behaves (in 

first order) as an empirical mean of a function, known as the influence curve, of the unit data 

[63]. Then the limit distribution of the standardized estimator is normal with mean 0 and 

variance given by the variance of its influence curve. With an estimate of the influence 

curve and thereby an estimate of the variance, the standard normal distribution can be used 

for confidence interval construction and hypothesis testing in large studies. For trials with 

limited numbers of (conditionally) independent units, the Student's t-distribution with n/2-1 

degrees of freedom is an appropriate alternative to the standard normal distribution. 

Randomization inference, in contrast, may not be appropriate, as it is testing a different null 

hypothesis of a constant treatment effect (e.g. Yi(0) = Yi(1) ∀i) [66, 67]. The causal and 

statistical estimands, considered here, are in terms of a sample average effect over the study 

units.

The influence curve for the TMLE of  in a trial with adaptive pair-matching is the 

following function of the paired data (proof in Appendix B of the Supplementary Material):
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where Q̄(A, W) denotes the limit of the targeted estimator of the conditional mean function 

Q̄0(A, W) and where the marginal probability of being assigned the treatment or the control 

is known: P0(A) = 0.5. Through the conditional expectation of D̄* (Ōj), given the vector of 

covariates W n, the influence curve relies on the true but unknown conditional mean 

outcome Q̄0(A, W):

This term captures deviations between the true and estimated mean outcomes for 

observations within a matched pair. The influence curve for the unadjusted estimator 

is analogous, but with Q̄(A, W) replaced with the limit of the treatment-specific mean Q̄n(A) 

= En(Y|A). For either estimator, there is no contribution from the covariate distribution, 

which is considered fixed.

The asymptotic variance of the unadjusted estimator or the TMLE is then given by the 

variance of its influence curve, divided by n/2. Improved estimation of the conditional mean 

outcome Q̄0(A, W) leads to more precise estimators of intervention effect . 

Specifically, if this conditional mean is consistently estimated (i.e. if Q̄(A, W) = Q̄0(A, W)), 

then the term, involving deviations between the true and estimated means, is zero, and the 

estimator of  is asymptotically efficient. In other words, the estimator's influence 

curve equals the efficient influence curve, and the estimator has lowest possible variance 

among a large class of estimators [63]. Otherwise, the estimator is still be unbiased, but does 

not achieve the efficiency bound. When the baseline covariates W impact the outcome, the 

targeted estimator of the conditional mean outcome  is expected to be closer to 

the true mean Q̄0(A, W) than the unadjusted estimator Q̄n(A). As a result, the asymptotic 

variance of the TMLE  is often smaller than that of the unadjusted estimator . 

Thus, for both individual and cluster randomized trials, TMLE is often a more efficient 

estimator of the CATE than the unadjusted.

Consistent estimation of the influence curve and thereby the asymptotic variance rely on 

consistent estimation of this conditional mean Q̄0(A, W), which might be particularly 

challenging when n is small, as common in cluster randomized trials. Nonetheless, we can 

conservatively approximate the influence curve of the unadjusted estimator  or the 

TMLE  by the difference in residuals within matched pairs (proof in Appendix B.1 of 

the Supplementary Material):
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respectively. Again, Q̄n(A) denotes an unadjusted estimate of the treatment-specific mean, 

 denotes a targeted estimate of the conditional mean outcome, and observations in 

matched pair j have been ordered such that the first corresponds to intervention (Aj1 = 1) and 

the second to the control (Aj2 = 0). An asymptotically conservative variance estimator is 

then given by the sample variance of the estimated influence curve, divided by n/2. For 

, this is equivalent to the sample variance of the within pair differences, divided by 

n/2, and is commonly recommended for pair-matched randomized trials [17] even though it 

is known to be conservative if the conditional parameter is the target of inference [16, 38–

40]. To obtain a less conservative variance estimator for , Abadie and Imbens [40] 

proposed a matching estimator, involving the variance of pairs-of-pairs with similar 

covariates. Our approach to reduce the true variance of the estimator and obtain a less 

conservative variance estimate is through adjustment with TMLE. In most practical settings, 

the sum of squared adjusted residuals is smaller than the sum of squared unadjusted 

residuals. Thereby, the estimated variance of the TMLE is often smaller than the estimated 

variance of the unadjusted algorithm. In summary, this implies that covariate adjustment 

with TMLE results in a more precise estimator (i.e. smaller true variance) and a less 

conservative variance estimator.

We also briefly note that a randomized trial with adaptive pair-matching will often be more 

efficient for estimation of the CATE than a randomized trial without matching. The designs 

will only have the same efficiency bound if the conditional mean outcome is consistently 

estimated (i.e. Q̄(A, W) = Q̄0(A, W)). In practice, we expect there to be some deviations 

between the true and estimated means. If these deviations are positively correlated within 

matched pairs, the asymptotic variance of the TMLE will be smaller in the adaptive trial 

than in the completely randomized trial. In finite samples, we also expect there to be an 

efficiency gain from adaptive pair-matching. Mainly, if we succeed in matching pairs on 

predictive covariates, then the sample covariance of the residuals within matched pairs will 

be positive and the adaptive design will yield more power. We refer the reader to Appendix 

C in the Supplementary Material for further details and associated proofs.

3. Simulations

We present the following set of simulations to demonstrate (1) implementation of the above 

estimators, (2) the potential gain in efficiency with adaptive pair-matching, and (3) the 

further gain with adjustment during the analysis due to having a more precise estimator and 

a less conservative variance estimator. These simulations are not intended to represent the 

full complexities of a cluster randomized trial. (To be clear, these simulations were not the 

ones used when developing the design and analysis of the SEARCH trial.) Nonetheless, they 

explore some of the challenges faced, such as rare outcomes, the inability to match on all 

baseline covariates, and limited numbers of conditionally independent units. All simulations 

were done in R v3.0.1 [68].
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3.1. Data Generating Process & Estimators

For n = 32 units, three baseline covariates W = (W1, W2, W3) were independently drawn 

from a normal distribution with mean 0 and standard deviation 1. A fourth covariate Z was 

generated as a function of these baseline covariates and random noise UZ:

where the expit function is the inverse of the logit function and UZ was drawn independently 

from a normal with mean 0 and standard deviation 1. To imitate adaptive pair-matching, the 

nonbipartite matching algorithm (nbpMatching v1.3.6 [33]) was applied to the set of n 

covariates W n = (W1, . . . , Wn) with Wi = (W1i, W2i, W3i). Within the resulting 16 matched 

pairs, the exposure A was randomized. As before, A is binary indicator, equaling 1 if the unit 

was randomized to the intervention and 0 otherwise. Finally, the outcome Y was generated 

as

where random noise UY was drawn independently from a uniform distribution with 

minimum 0 and maximum 0.025. Dividing by 15 was done to scale the outcome Y, 

representing a proportion, to be within plausible ranges for the cumulative incidence of HIV. 

The term β0 was set to either -2 or 0.5 to examine the performance of the estimators when 

the outcome was rare (“Simulation A”) or more common (“Simulation B”). To simulate the 

null scenario, the treatment was randomly assigned within pairs but the outcomes generated 

as if all communities received the control (A = 0). For comparison, we also simulated 

equivalent data for a non-matched randomized trial with balanced allocation of the 

treatment.

Over 5000 data sets, we examined the performance of the unadjusted estimator and TMLE. 

For the latter, we compared linear to logistic main terms regression with various adjustment 

sets. Linear regression can result in more efficient estimation, by minimizing the empirical 

variance of the influence curve [41]. With rare outcomes, however, logistic regression can 

provide stability, by guaranteeing the predicted outcomes respect the model bounds (i.e. are 

in [0,1]). Therefore, we expected the TMLE with logistic regression to result in better 

performance when the outcome was rare (Simulation A) and the TMLE with linear 

regression to result in better performance when the outcome was more common (Simulation 

B). In terms of adjustment sets, we compared regression models with main terms for the 

exposure A and the covariate Z as well as regression models with main terms for the 

exposure A, the matching covariates W and the remaining covariate Z. Recall Z was an 

important determinant of the outcome but not used in matching. We expected that the fully 

adjusted estimator (TMLE with main terms for (A, W, Z)) would suffer from over-fitting. 

Since main terms regression models were used, the fluctuation step of the TMLE algorithm 

did not provide an update. In all cases, there was no risk of bias due to regression model 

misspecification [42, 43]. Inference was based on the sample variance of the estimated 

influence curve and the Student's t-distribution with 15 degrees of freedom. The 
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corresponding TMLE implementation and proof of statistical inference for the non-matched 

randomized trial are given in Appendix C of the Supplementary Material.

3.2. Results

Recall the true value of the statistical estimand depends on the n = 32 communities in the 

sample. Table 1 shows the minimum, mean and maximum value of the intervention effect 

ψ0 over the 5,000 simulated data sets. For comparison, the table also gives the 

corresponding summaries of the exposure-specific effects: 

. This estimand is the sample average of the 

conditional mean outcome, setting the exposure A = a and given the covariates (W, Z). For 

Simulation A, representing a rare outcome, the average values of the effect under the 

exposure ψ0(1) and the control ψ0(0) were 0.024 and 0.032, respectively. The corresponding 

mean value of the intervention effect ψ0 was -0.009, translating to 26.41% reduction in the 

incidence of the outcome (on average). For Simulation B, representing a more common 

outcome, the average values of the conditional effect under the exposure ψ0(1) and the 

control ψ0(0) were 0.05 and 0.061, respectively. The corresponding average value of the 

target parameter ψ0 was -0.011, translating to a 17.90% reduction in the incidence of the 

outcome (on average).

For Simulation A, Table 2 illustrates the performance of the estimators over 5,000 simulated 

data sets. All estimators were unbiased. As expected, there was an efficiency gain with 

matching. The standard deviation (square root of the variance of the point estimates) of the 

unadjusted estimator was 1.58 times higher without matching than with matching. Likewise, 

the attained power (proportion of simulated trials where the null hypothesis was correctly 

rejected) jumped from 34% to 64% with matching. As expected, adaptive pair-matching on 

the three covariates W reduced variability in the outcomes within matched pairs. The 

coefficient of variation, measuring of the variability in outcomes between units in the 

absence of the intervention, was k = 0.53, while the matched-pair coefficient of variation, 

measuring of the variability in outcomes within matched pairs in the absence of the 

intervention, was km = 0.29 [17].

There was also an efficiency gain from adjustment. For the non-matched design, the 

standard deviation of the unadjusted estimator was 1.58 times higher than the standard 

deviation of the TMLE, using linear regression to adjust for Z. The corresponding power 

increased from 34% to 72%. For the adaptive design, the standard deviation of the 

unadjusted estimator was 1.13 times higher than the standard deviation of the TMLE, using 

linear regression to adjust for Z. The corresponding attained power increased from 64% to 

74%. For both designs, there was a further precision gain by using logistic regression to 

adjust for Z. Under sparsity, logistic regression can be more stable than linear regression and 

is guaranteed to yield parameter estimates within the appropriate range (i.e. [0,1] for 

proportions) [64]. While there was some power gain from adjusting for all four covariates 

(W, Z), there was also a risk in over-fitting the regression model and under-estimating the 

variance. Recall the variance estimators in Section 2.3 are asymptotically conservative, and 

the simulations represent finite samples. Indeed, with a main terms regression model for the 

conditional mean outcome, there were 5 parameters with only 16 conditionally independent 
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units. As a result, the confidence interval coverage (proportion of studies containing the true 

parameter value) was less than the nominal rate of 95% for the fully adjusted estimator. 

Likewise, the type I error rate (proportion of studies falsely rejecting the null hypothesis) 

was greater than α = 0.05 for the fully adjusted estimator, as shown in Table 1 of Appendix 

D in the Supplementary Material. Conversely, for both the unadjusted estimator and the 

TMLE only adjusting for Z, there was good confidence interval coverage and control of type 

I error rates. Indeed, there was some evidence of over-coverage of confidence intervals and 

conservative Type I error rates for the unadjusted estimator in both designs, as predicted by 

theory.

The results for Simulation B, representing a more common outcome, are also given in Table 

2 and largely echoed the above findings. Because the exposure was randomized, all 

estimators were unbiased. As before, there was a substantial efficiency gain with matching. 

Adaptive matching on the three covariates W = (W1, W2, W3) reduced variability in the 

outcomes within pairs. The coefficient of variation was k = 0.27, while the matched-pair 

coefficient of variation was km = 0.14. Again, there was also a substantial precision gain 

from adjustment. With a more common outcome, however, there was a greater gain in 

power from adjusting for Z with linear regression than logistic regression for both designs. 

Here, minimizing the sum of squared residuals helped to minimize the empirical variance of 

the influence curve and thereby maximize the empirical efficiency [41]. With the fully 

adjusted estimator, again there was some risk of over-fitting and inference was optimistic. In 

contrast, for both the unadjusted estimator and the TMLE adjusting only for Z, there was 

good confidence interval coverage as well as Type I error control (Table 1 of Appendix D in 

the Supplementary Material). In summary, our finite sample simulations support our 

theoretical results: adaptive pair-matching yields more power than complete randomization, 

and further efficiency gains can be attained through adjustment during the analysis.

4. Discussion

To our knowledge, this is the first paper to study and articulate the consequences of adaptive 

pair-matching for estimation of the average treatment effect, given the baseline covariates of 

the n study units. This work was motivated by SEARCH trial, which aims to estimate the 

effect of immediate ART, delivered in a streamlined fashion, on the five-year cumulative 

incidence of HIV. The decision to pair-match communities in the trial was motivated by a 

desire to protect study credibility and by the potential to increase study power. Through 

careful definition of the data generating experiment, we recognized that the design would 

not yield n/2 i.i.d. paired units, as current practice assumes. Instead, by constructing the 

matched pairs as a function of the baseline covariates of all candidate communities, the 

adaptive design results in n dependent units and n/2 conditionally independent units, given 

the baseline covariates of the study communities.

To the best of our understanding, adaptive pair-matching is a common design and has been 

implemented in other cluster randomized trials (e.g. [29–31]). In practice, adaptive pair-

matching (a.k.a. “nonbipartite matching”) can be carried out with standard software. For 

example, the nbpMatching package [33] in R and the corresponding web application will 

generate the set of optimal matched pairs as function of a user-supplied matrix of covariates 
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[35, 36]. These tools allow the user to weight covariates differently (e.g. on importance or 

relevance to the outcome) and to specify the maximum number of matches - choices, which 

should be driven by subject matter knowledge as well as resource constraints.

We focused on estimation of the CATE. By obviating estimation of the covariate 

distribution, estimators of the conditional parameter will often be less variable than 

estimators of the population parameter [16, 38–40]. We contrasted the unadjusted estimator 

with TMLE adjusting for baseline covariates. We provided a step-by-step implementation of 

the latter estimator and detailed proofs of inference. Both estimators can be implemented 

ignoring the dependence in the data and with standard software, such as the tmle [69] and 

ltmle [70] packages in R. Asymptotically conservative inference can obtained with the 

sample variance of the pairwise differences in residuals, divided by n/2. When the baseline 

covariates are predictive of the outcome, the unadjusted estimator will be less efficient than 

the TMLE. Furthermore, the estimated variance of the TMLE will often be less conservative 

than that of the unadjusted estimator.

Finite sample simulations were used to evaluate estimator performance and verify our 

theoretical results. Since the intervention was randomized, all estimators were unbiased [41–

43]. There was an efficiency gain with matching and a further gain with adjustment. When 

the outcome was quite rare, adjusting for a single baseline covariate with logistic regression 

yielded more power than adjustment with linear regression. When the outcome was more 

common, the converse was observed. While the variance estimators are asymptotically 

conservative, there was some risk of over-adjusting in small trials. Indeed, with only 16 

(conditionally) independent units, adjusting for all 4 baseline covariates resulted in under-

coverage of the confidence intervals and higher than nominal Type I error rates.

Previously, Imai et al. [15] suggested, “randomization by cluster without prior construction 

of matched pairs, when pairing is feasible, is an exercise in self-destruction.” Our work also 

suggests that asymptotically and in finite samples, a randomized trial with adaptive pair-

matching will often be more efficient for estimation of the CATE than its completely 

randomized counterpart. The trials will only have the same efficiency bound when the 

conditional mean outcome, given the exposure and covariates, is consistently estimated. In 

practice, we expect there to be some deviations between the true and estimated means. 

When these deviations are positively correlated within matched pairs, the design with 

adaptive pair-matching will be more efficient (Appendix C.3). In finite samples, pair-

matching will also often result in a positive covariance of the residuals (deviations between 

the observed and predicted outcomes) within matched pairs and thereby smaller finite 

sample variance.

Overall, adaptive pair-matching is an intuitive strategy to group candidate units on similarity 

in their baseline covariates. Pair-matching will protect study credibility. Combining subject 

matter knowledge with modern matching algorithms (e.g. nbpMatching [33]) is likely to 

result in studies, where pair-matching substantially improves study power. We recommend 

specifying the intervention effect in terms of the conditional parameter, which considers the 

covariate distribution as fixed and obviates its estimation, resulting in less variable 

estimators. We also recommend adjusting for baseline variables as the data allow. 
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Simulations, such as those presented here, can help inform the practitioner as to the optimal 

adjustment set. Future work will involve the use of cross-validation to data-adaptively select 

for the adjustment set. We also plan to formally study the asymptotic and finite sample 

properties of analysis approaches based on covariate-adjusted residuals for estimation and 

inference of the CATE [17, 29, 46]. We will also investigate the impact of adaptive 

stratification on estimation and inference for both the population and conditional average 

treatment effect. While our work was motivated by a cluster randomized trial with the 

outcome of cumulative incidence, the results are generally applicable to other trials with 

binary or continuous outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Summary of the true value of the exposure-specific effects ψ0(a) = 1/n Σi E0(Yi | Ai = a, Wi, Zi) and the target 

parameter ψ0 over 5,000 simulations of n = 32 communities. The rows indicate the setting with Simulation A 

corresponding to a rare outcome and Simulation B corresponding to a more common outcome. Recall the true 

value is dependent on the sample.

ψ0(1) ψ0(0) ψ0 = ψ0(1) – ψ0(0)

min mean max min mean max min mean max

Simulation A 0.018 0.024 0.031 0.023 0.032 0.043 −0.012 −0.009 −0.005

Simulation B 0.038 0.050 0.061 0.050 0.061 0.069 −0.013 −0.011 −0.007
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Table 2

For Simulation A (rare outcome) and Simulation B (more common outcome), summary of the estimator 

performance over 5,000 simulations of n = 32 communities. The rows indicate the estimator and the columns 

the performance metric.

Bias
a

Std. Dev.
b

Std. Error
c

t-stat
d

CI Cov.
e

Power
f

Simulation A No Matching

Unadj. −0.00011 0.0054 0.0053 −1.6 96 34

TMLE linear for Z −0.00008 0.0034 0.0032 −2.7 94 72

TMLE logit for Z −0.00008 0.0033 0.0030 −2.9 94 78

TMLE linear for (W, Z) −0.00011 0.0033 0.0027 −3.2 91 82

TMLE logit for (W, Z) −0.00013 0.0031 0.0024 −3.6 90 88

Adaptive Pair-Matching

Unadj. −0.00004 0.0034 0.0035 −2.5 96 64

TMLE linear for Z −0.00004 0.0030 0.0030 −2.9 96 74

TMLE logit for Z −0.00006 0.0030 0.0028 −3.2 94 80

TMLE linear for (W, Z) −0.00004 0.0030 0.0029 −3.1 95 79

TMLE logit for (W, Z) −0.00008 0.0029 0.0026 −3.5 93 84

Simulation B No Matching

Unadj. −0.00007 0.0063 0.0062 −1.8 95 38

TMLE linear for Z −0.00009 0.0035 0.0033 −3.4 94 88

TMLE logit for Z −0.00013 0.0037 0.0036 −3.1 95 84

TMLE linear for (W, Z) −0.00015 0.0032 0.0026 −4.2 91 96

TMLE logit for (W, Z) −0.00037 0.0036 0.0031 −3.7 91 91

Adaptive Pair-Matching

Unadj. −0.00007 0.0036 0.0036 −3.1 96 80

TMLE linear for Z −0.00008 0.0030 0.0030 −3.8 96 92

TMLE logit for Z −0.00011 0.0031 0.0033 −3.4 97 89

TMLE linear for (W, Z) −0.00010 0.0029 0.0028 −4.1 95 95

TMLE logit for (W, Z) −0.00023 0.0031 0.0032 −3.6 96 90

a
average deviation between the point estimate & sample-specific true value

b
square root of the variance of the point estimates

c
average standard error estimate based on the influence curve

d
average value of the test statistic (point estimate divided by standard error estimate)

e
proportion of intervals containing the true parameter value (in percent)

f
proportion of studies correctly rejecting the null hypothesis (in percent)
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