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Abstract

The clinical benefits of the glutamate receptor antagonists memantine and ketamine have helped 

sustain optimism that glutamate receptors represent viable targets for development of therapeutic 

drugs. Both memantine and ketamine antagonize N-methyl-D-aspartate receptors (NMDARs), a 

glutamate receptor subfamily, by blocking the receptor-associated ion channel. Although many of 

the basic characteristics of NMDAR inhibition by memantine and ketamine appear similar, their 

effects on humans and to a lesser extent on rodents are strongly divergent. Some recent research 

suggests that preferential inhibition by memantine and ketamine of distinct NMDAR 

subpopulations may contribute to the drugs' differential clinical effects. Here we review studies 

that shed light on possible explanations for differences between the effects of memantine and 

ketamine.

Introduction

The strikingly broad involvement of N-methyl-D-aspartate receptors (NMDARs) in nervous 

system disorders has led to persistent hope that pharmacological NMDAR modulators will 

provide a rich source of pharmaceuticals. However, many NMDAR-focused drug 

development efforts have ended with failed clinical trials. Although the failures resulted in 

part from weaknesses in trial design [1-3], an important implication is that nonspecific 

NMDAR inhibition is unlikely to yield successful treatments, probably because NMDARs 

play many fundamental physiological roles. Optimism endures that NMDARs may be a 

fruitful pharmaceutical target using drugs that select for receptor subpopulations based on 

NMDAR subtype, location, and/or mechanism of activation. The encouraging but divergent 

clinical effects of the NMDAR antagonists memantine and ketamine have helped motivate 

continuing efforts to develop new drugs based on NMDAR modulation. Understanding the 

mechanistic bases of the beneficial effects of these drugs may help guide development of 
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more effective therapies based on NMDAR modulation. Here we review research that sheds 

light on the similarities and differences in memantine and ketamine actions, focusing where 

possible on research that compares memantine and ketamine directly.

NMDARs and their inhibition by memantine and ketamine

NMDARs are tetrameric ionotropic glutamate receptors found at nearly all vertebrate 

excitatory synapses. NMDARs are centrally involved in fundamental nervous system 

functions including learning and memory [3,4]. NMDAR dysfunction has been implicated in 

nervous system disorders including Alzheimer's disease, Huntington's disease, depression, 

schizophrenia, chronic and neuropathic pain, epilepsy, and neuron death following stroke 

[5-7]. NMDARs are obligate heterotetramers composed of GluN1 subunits in combination 

with GluN2 and/or GluN3 subunits [3,4,8]. The GluN1 subunit is encoded by a single gene; 

four genes encode the GluN2 subunits (GluN2A, GluN2B, GluN2C, and GluN2D); two 

genes encode the GluN3 subunits (GluN3A and GluN3B). Most NMDARs are composed of 

two GluN1 subunits and two GluN2 subunits, and their activation requires binding of 

agonists to all four subunits. The principal endogenous agonists that bind to the GluN1 

subunit are glycine and D-serine, whereas the principal endogenous agonist that binds to 

GluN2 subunits is glutamate. The open channel of NMDARs mediates permeation 

predominantly of Na+, K+, and Ca2+; the influx of Ca2+ ions through NMDAR channels is 

critical to both the physiological and the pathological effects of receptor activation. Many 

endogenous substances modulate NMDAR activity, including Mg2+, Zn2+, H+, polyamines, 

neurosteroids, and fatty acids [3]. Mg2+ is a physiologically crucial modulator that blocks 

the channel of NMDARs, conferring strong voltage dependence to NMDAR-mediated 

conductance.

Both memantine and ketamine inhibit NMDARs by occupying the NMDAR's ion channel 

and occluding current flow. Both drugs are open channel blockers: when the channel is 

closed, the drugs have little or no ability to enter an unblocked channel or to unbind after 

blocking the channel. Both drugs exhibit voltage dependence, entering the channel more 

quickly, leaving the channel more slowly, and inhibiting more effectively as a cell's 

membrane potential is hyperpolarized. The basic characteristics of NMDAR inhibition by 

memantine and ketamine, including IC50, kinetics, and voltage dependence, do not differ 

strongly [9-12]. Many studies report that ketamine inhibits NMDAR channels with slightly 

lower IC50 and slower kinetics than memantine; however, the differences are small 

(generally less than a factor of 2). However, ketamine is used in most experiments as a 

racemic mixture of two enantiomers, S- and R-ketamine; each enantiomer has somewhat 

different pharmacological properties [13,14]. Voltage dependence of memantine and 

ketamine are similar, although memantine's has been reported to be slightly greater [15]. 

Because both memantine's and ketamine's binding site in the NMDAR channel (Figure 1) 

overlaps with the Mg2+ binding site, Mg2+ competes with both drugs for binding to 

NMDAR channels. As a result, physiological concentrations of Mg2+ (∼1 mM) 

substantially increase the IC50, modify the voltage dependence, and alter the NMDAR 

subtype-selectivity of both memantine and ketamine [16-18].
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Despite their many similarities, the clinical effects of memantine and ketamine, and to a 

lesser extent the behavioral effects in rodents, are surprisingly distinct.

Clinical, behavioral, and circuit effects of memantine and ketamine

Human studies

There are clear differences between the clinical effects of memantine and ketamine. 

Memantine is the only glutamate receptor ligand that is approved for treatment of 

Alzheimer's disease (AD). The clinical benefits of memantine in AD patients are modest but 

broad, and include positive effects on communication, comprehension, memory, and 

activities of daily living. Memantine is very well tolerated and appears to have no abuse 

potential [19-21]. Ketamine, in contrast, is a drug of abuse that produces schizophrenia-like 

symptoms in healthy adults and exacerbates symptoms in schizophrenics [11,22,23].

Ketamine also has demonstrated impressive beneficial effects in clinical studies. Along with 

its well-established utility as a general anesthetic, ketamine has been found useful in the 

treatment of several disorders, including depression and pain. A single ketamine infusion 

has been found to alleviate rapidly and for an extended period the symptoms of major 

depressive disorder [6,24]. Ketamine also is effective in pain management [25,26]. 

Memantine, however, does not appear to be effective in treating either depression [27,28] or 

pain [29]. Thus, the differences between the effects of memantine and ketamine in humans 

appear robust and consistent.

Rodent studies

Based in part on the ability of ketamine to produce schizophrenia-like symptoms in humans, 

ketamine administration has been widely used to produce rodent models of schizophrenia 

[30,31]. Although memantine generally is not used to model schizophrenia, comparisons of 

the behavioral effects of memantine and ketamine in rodents reveal similarities as well as 

differences, with differences weaker than in human studies. Especially at lower doses (very 

approximately, and depending on route of administration, below 20 mg/kg), memantine and 

ketamine have broadly similar effects on locomotor and exploratory activity, stereotypic 

behavior, impulsive choice, and attention [32-37]. Several of those studies also found similar 

tendencies for memantine and ketamine to impair memory function, although low doses of 

memantine can improve memory [38-40], an observation not reported for ketamine. Both 

memantine and ketamine decrease ethanol ingestion by alcohol-preferring rats, but only the 

effect of ketamine is blocked by mTOR (mammalian target of rapamycin) inhibition [41]. 

Differences at low doses between the effects of memantine and ketamine were reported for 

aggressive behavior when combined with alcohol ingestion [42], and striking differences in 

antidepressant-like effects were observed [43]. At higher doses, a wide variety of differences 

between the locomotor and cognitive effects of memantine and ketamine emerged [33,36]. 

When memantine and ketamine were compared in drug discrimination studies, ketamine 

displayed complete substitution for PCP or MK-801, and memantine displayed complete 

[44] or partial [11,45] substitution.

Many NMDAR channel blockers have been found to exhibit properties thought to be 

associated with activation of brain circuits. Ketamine powerfully increases gamma (∼30 – 
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90 Hz) oscillations in cortex (for review, see [46]) and delta (∼0.5 – 4 Hz) oscillations in 

multiple brain regions [47]. Although the effects of memantine on oscillations have been 

less extensively studied, a recent article showed that memantine as well as ketamine 

increased gamma oscillations in rat cortex, whereas ketamine but not memantine increased 

delta oscillations [48]. Both memantine and ketamine increased 2-deoxyglucose (2-DG) 

uptake, a marker of neuronal activation [49]. Ketamine has been hypothesized to disinhibit 

cortical circuits [12,50,51], a process that may underlie increases in gamma oscillations and 

2-DG uptake. Similarly, memantine inhibition of NMDARs was proposed to produce 

cognitive improvements in AD patients through disinhibition [52], although memantine's 

ability to mediate disinhibition has not been directly assessed. Ketamine reduces expression 

of the important GABAergic interneuron markers parvalbumin (a Ca2+ binding protein) and 

GAD67 (a GABA synthetic enzyme) in rodents, thereby compromising inhibitory neuron 

function [53-55]. The relation of decreased interneuron function to increased oscillations, 

however, has been questioned [56,57]. Memantine and ketamine also have been proposed to 

inhibit a subpopulation of interneurons (but see [58]) as a result of the drugs' selectivity in 

physiological Mg2+ for GluN2C and GluN2D subunit-containing NMDARs [16]. Because 

GluN2D subunits are expressed predominantly by inhibitory neurons in mature cortex and 

hippocampus [59,60], preferential inhibition of GluN2D-containing receptors could mediate 

disinhibition.

Both memantine and ketamine have been shown to be neuroprotective using many in vivo 

and in vitro paradigms, and their neuroprotective actions are thought to contribute to their 

clinical benefits (for reviews, see [10,61,62]). There has been very limited comparison of the 

neuroprotective properties of memantine and ketamine. In one direct comparison of their 

ability to reduce the effects of oxygen-glucose deprivation in cultured hippocampal slices at 

equal concentrations, ketamine was found to be slightly more effective than memantine [63].

Thus, the effects of memantine and ketamine in rodent studies demonstrate both strong 

similarities and clear differences; in human studies, the drugs' effects differ conspicuously.

Mechanistic bases for differential effects of memantine and ketamine

Pharmacological differences between memantine and ketamine

We will consider several possible explanations for the differential effects of memantine and 

ketamine noted above.

Drugs with the same site of action can differ in their clinical and behavioral effects because 

of pharmacokinetic differences. The increase in serum and brain concentration, and 

subsequent elimination, is much faster for ketamine than memantine in both humans and 

rodents, a difference that could be responsible for the drugs' differential effects (see 

[9,10,36,64,65]). Several lines of evidence argue against the hypothesis that 

pharmacokinetic differences between memantine and ketamine are the principal explanation 

for their differential clinical and behavioral effects. First, numerous studies of ketamine 

action in humans have involved drug infusion protocols (e.g., [66,67]), some of which have 

been demonstrated to maintain a steady serum concentration [68]. Nevertheless, the effects 

of infused ketamine differed strongly from the effects of memantine, which is maintained at 
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stable levels in patients treated by oral administration due to its slow pharmacokinetics [10]. 

Second, phencyclidine, an analog of ketamine, has much slower pharmacokinetics than 

ketamine [69], but greater psychotomimetic effects [70]. Third, a recent study compared in 

rats the behavioral effects of memantine and ketamine at two time points: 15 min after i.p. 

injection, when ketamine concentration should be near peak but memantine concentration 

rising, and 45 min after i.p. injection, when ketamine but not memantine concentration 

should have substantially decreased. The behavioral effects of memantine and ketamine at 

low doses were similar at both time points, and differences in the drugs' effects at higher 

doses were similar at both time points [36]. The results suggested that the pharmacokinetic 

differences between the drugs do not make a major contribution to their differential 

behavioral effects in rodents. It appears likely that some of the observed differences between 

the effects of memantine and ketamine, for example sensitivity to transient inhibition of 

downstream effectors [41], could result from pharmacokinetic differences. However, it 

appears unlikely that the clinical and behavioral effects of memantine and ketamine differ 

predominantly because of the faster pharmacokinetics of ketamine.

A second possibility is that the differential clinical and behavioral effects of memantine and 

ketamine result from differences in their action at sites other than NMDARs. Multiple other 

sites of action have been reported for each drug (e.g., [26,71,72]). For example, memantine 

inhibits multiple acetylcholine receptors subtypes [73-76] and 5-HT3 serotonin receptors 

[10,77], whereas ketamine binds to dopamine D2 and 5-HT2 serotonin receptors [12,78] and 

to HCN1 channels [79]. Although multiple lines of evidence support the hypothesis that the 

actions of memantine and ketamine depend predominantly on NMDAR binding 

[10,70,80,81], there also is strong evidence supporting the importance of other sites of action 

[79]. It seems likely that some of the differences in the drugs' effects, especially at higher 

doses, depend on action at targets other than NMDARs.

A third possibility is that the effects of drug metabolites contribute to the differential 

pharmacological effects of memantine and ketamine. The (S)- and (R)-enantiomers of 

norketamine are major metabolites of ketamine, and inhibit NMDARs, although with lower 

potency than (S)- and (R)-ketamine [14,82,83]. Similar to ketamine, (R,S)-norketamine and 

(2S,6S)-hydroxynorketamine, another ketamine metabolite [83], can increase mTOR 

function [84]. Several ketamine metabolites potently inhibit α7-nicotinic acetylcholine 

receptor-mediated currents [85]. Although, to our knowledge, no active memantine 

metabolites have been reported, differences in the activity of metabolites of ketamine and 

potentially memantine at NMDARs or at non-NMDAR sites could underlie some of their 

differential clinical and behavioral effects.

A fourth possibility is that memantine and ketamine block overlapping but distinct 

populations of NMDARs. NMDARs play diverse roles in nervous system function, and 

differential inhibition of receptors involved in distinct functions could lead to divergent 

clinical and behavioral effects. Although memantine and ketamine bind to overlapping sites 

on NMDARs, there are multiple mechanisms by which they might inhibit distinct receptor 

subpopulations. In the next section we will focus on studies that address the hypothesis that 

memantine and ketamine inhibit distinct subpopulations of NMDARs.
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Differential inhibition of NMDAR subpopulations by memantine and ketamine

Current understanding of the mechanisms of action of memantine and ketamine do not 

permit a confident determination of whether, and if so how, they inhibit distinct 

subpopulations of NMDARs. However, data pointing to an important dichotomy in the 

NMDAR subpopulations inhibited by memantine and ketamine have emerged.

Many recent studies suggest that the important NMDARs inhibited by memantine are 

predominantly extrasynaptic, whereas the important NMDARs inhibited by ketamine are 

synaptic. The significance of differential relative inhibition of synaptic and extrasynaptic 

NMDARs derives from a hypothesis particularly relevant to neurodegenerative diseases: 

that synaptic NMDAR stimulation activates cell survival pathways, whereas extrasynaptic 

NMDAR stimulation activates cell death pathways [86-88]. Activation of extrasynaptic 

NMDARs by ambient glutamate mediates tonic NMDAR current [89-91], and augmented 

extrasynaptic receptor activation has been hypothesized to compromise neuron health in 

nervous system disorders [86-88]. However, it is important to note that there is no consensus 

on the differential implications of synaptic and extrasynaptic NMDAR activation 

[6,24,92-95].

Memantine has been found to inhibit extrasynaptic NMDARs more potently than synaptic 

NMDARs ([96-102]; but see [63,93,94]). However, memantine inhibition of synaptic 

NMDARs can increase with increasing intensity of synaptic stimulation [93,103]. 

Memantine can restore long term potentiation impaired by tonic NMDAR activation 

following reduction of Mg2+ in hippocampal slices [104]; since tonic NMDAR current 

depends mainly on extrasynaptic NMDARs [89], these data are generally consistent with the 

idea that memantine preferentially inhibits extrasynaptic NMDARs. In Huntington's disease 

model mice, memantine reduced functional extrasynaptic NMDAR expression, reversed 

aberrant activation of cell death pathways by suppressing p38 MAPK activation and 

increasing nuclear CREB signaling, and reversed disease-associated deficits [98,100,102].

In contrast, the NMDAR subpopulation of central importance to the rapid anti-depressant 

effects of ketamine was proposed to be synaptic, and possibly a subgroup of NMDARs 

predominantly activated by spontaneous synaptic vesicle release [6,43,105,106]. Acute 

inhibition of synaptic NMDARs by ketamine at doses sufficient to produce antidepressant 

behavioral effects in rodents deactivated eukaryotic elongation factor 2 (eEF2) kinase, 

reducing eEF2 phosphorylation, relieved block of BDNF translation, and increased surface 

expression of AMPARs [105,106]. A recent study found that in the presence of 

physiological Mg2+, ketamine inhibited synaptic NMDARs in hippocampal pyramidal 

neurons much more effectively than memantine [43]. The same study showed that in the 

absence of Mg2+, inhibition of synaptic NMDARs by memantine and ketamine was 

indistinguishable, consistent with previous findings [63]. These results suggest that Mg2+, 

which has been excluded in many basic studies of memantine and ketamine action on 

NMDARs, could play a key role by influencing relative inhibition of NMDAR 

subpopulations by memantine and ketamine.
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Potential mechanisms of differential inhibition

We next will consider mechanisms by which a channel blocker could differentiate NMDAR 

subpopulations. There are at least three ways inhibitors could distinguish synaptic from 

extrasynaptic NMDARs: (1) by differential inhibition of NMDAR subtypes expressed 

synaptically versus extrasynaptically; (2) by differential inhibition based on the 

concentration of glutamate that activates receptors; (3) by differential inhibition based on the 

time course of receptor activation.

There is evidence for differential expression of NMDAR subunits by subcellular location. 

GluN2B-containing NMDARs have been reported to be preferentially localized 

extrasynaptically, and GluN2A-containing NMDARs to be preferentially localized 

synaptically in cortical and hippocampal neurons ([107-109]; but see [110,111]). However, 

neither memantine nor ketamine distinguish strongly between GluN2A- and GluN2B-

containing NMDARs [14,16]. A caveat is that memantine and ketamine inhibition of 

triheteromeric receptors, which are highly expressed in the brain (see [4]), has not been 

characterized. Newly developed approaches for study of isolated triheteromeric receptors 

will facilitate determination of possible differential drug selectivity [112]. There also is 

evidence for preferential extrasynaptic expression of GluN2D-containing NMDARs in 

multiple brain regions [113,114], including hippocampus [115,116]. Because memantine 

and ketamine preferentially inhibit GluN2C- and GluN2D-containing NMDARs in 

physiological Mg2+ [16], extrasynaptic localization of GluN2D-containing NMDARs could 

underlie the drugs' enhanced inhibition of extrasynaptic receptors.

There also is evidence that memantine inhibits NMDARs more effectively at higher agonist 

concentrations ([117], but see [15,118]). However, this observation would not explain 

preferential inhibition of extrasynaptic receptors, since extrasynaptic NMDARs are activated 

by much lower glutamate concentrations than synaptic receptors.

Whether NMDAR inhibition by memantine and/or ketamine depends on the duration of 

agonist exposure has not been directly investigated. If memantine but not ketamine were to 

preferentially inhibit NMDARs tonically activated by the extracellular glutamate to which 

extrasynaptic receptors are exposed, then only memantine would preferentially inhibit 

extrasynaptic NMDARs. As described above, there are conflicting data on whether 

memantine distinguishes synaptic and extrasynaptic receptors in 0 Mg2+, but evidence that 

differential actions of memantine and ketamine appear in the presence of physiological 

Mg2+ [43]. Although initially the powerful effect of Mg2+ on inhibition by channel blockers 

was suggested to affect memantine and ketamine similarly [16], subsequent data suggest that 

the effect of Mg2+ may differ among channel blockers [18]. Further characterization of 

memantine and ketamine inhibition of NMDAR responses in the presence of physiological 

Mg2+ is warranted.

If memantine and ketamine do inhibit distinct populations of NMDARs, then there must be 

an underlying difference in the drugs' mechanism of interaction with NMDARs. One 

difference that has been described is memantine's ability to bind to a superficial site on 

NMDARs to which ketamine does not bind. Memantine binding to the superficial site 

contributes to partial trapping of memantine, a phenomenon that has been proposed to 
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reduce inhibition of synaptic receptors [15,119-122]. The impact of the superficial 

memantine binding site on inhibition in the presence of Mg2+ is unexplored. Another 

possibility is that occupation of the channel by memantine or ketamine may differentially 

affect transition rates between NMDAR states (e.g., between open and closed, agonist-

bound and agonist-unbound, and/or desensitized and undesensitized states) of blocked 

receptors [123-126]. The presence of a blocker in a channel can powerfully influence gating 

transitions, as suggested by Figure 1(b); the M3 α-helices, which surround the blockers, are 

centrally involved in channel gating [3]. “Foot-in-the-door” blockers, which do not permit 

channel closure when bound [127], provide an extreme example of how channel blockers 

can affect channel gating. Some NMDAR channel blockers act as foot-in-the-door blockers 

[124,128], but others accelerate channel closure [125] and agonist unbinding [126]. The 

effect of a channel blocker on transitions between blocked states influences many 

characteristics of inhibition, including dependence of inhibition on agonist concentration 

[129] and on duration of agonist presentation (NG Glasgow and JW Johnson, abstract in Soc 

Neurosci Abstr 2014, 501.08). Thus, there are biophysically plausible explanations for why, 

despite their similarities, memantine and ketamine could inhibit distinct populations of 

NMDARs.

Conclusions

The divergent clinical and behavioral effects of memantine and ketamine could be a 

consequence of multiple differences between the drugs. Their very different 

pharmacokinetics along with differences in their actions at binding sites other than 

NMDARs are likely to make some contribution to differences in the drugs' clinical and 

behavioral effects. There is considerable evidence, however, that the important NMDAR 

subpopulations inhibited by memantine and ketamine differ: many recent studies have 

attributed the beneficial effects of memantine to preferential inhibition of extrasynaptic 

NMDARs, whereas the rapid antidepressant effects of ketamine have been attributed to 

inhibition of synaptic NMDARs. Although the validity of this dichotomy has been 

questioned and a mechanistic basis for differential NMDAR inhibition by memantine and 

ketamine is not established, there are plausible biophysical explanations that remain to be 

tested. More extensive direct comparison of the effects of memantine and ketamine at 

multiple experimental levels will provide critical insight into the important mechanisms 

responsible for the clinical benefits of these NMDAR antagonists.
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Highlights

• Memantine and ketamine block open NMDAR channels via apparently similar 

Mechanisms

• Memantine is a very well-tolerated drug approved for treatment of Alzheimer's 

disease

• Ketamine has rapid antidepressant effects, but replicates symptoms of 

schizophrenia

• The drugs' differential effects may require inhibition of distinct NMDAR 

populations
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Figure 1. 
Images of NMDAR channel blocked by memantine and ketamine. (a) Two nearly complete 

X-ray crystal structures of NMDARs composed of GluN1 and GluN2B subunits recently 

were published [130,131]. Here, one of the structures (Protein Data Bank (PDB) code 4TLM 

[131]) is shown with a red dot at the likely approximate location of memantine and ketamine 

binding sites. The black box indicates the area of the receptor blown up in (b). (b) Top, the 

structure of memantine (left) and ketamine (right). *, ketamine, which has two enantiomers 

((S)- and (R)-ketamine), is depicted without chirality in this planar representation. Bottom, a 

view of the channel region of an NMDAR composed of GluN1 and GluN2A subunits with 

memantine (left) and with (R)-ketamine (right) blocking the channel. The structure of the 

NMDAR channel region is based on the homology model of [132]; the memantine structure 

is from www.edinformatics.com; the (R)-ketamine structure is from PDB code 4F8H [133]. 

There are no structures of NMDARs with a resolved channel blocker; memantine and 

ketamine are placed with the charged nitrogen close to the critical NMDAR channel 

asparagines [121,134,135]. GluN1 subunits are shown in green and GluN2 subunits in blue. 

Structural images were prepared using the molecular visualization program VMD [136].
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