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Summary

In most eukaryotes, centromeres are defined epigenetically by presence of the histone H3 variant 

CENP-A [1-3]. CENP-A containing chromatin recruits the constitutive centromere-associated 

network (CCAN) of proteins, which in turn directs assembly of the outer kinetochore to form 

microtubule attachments and ensure chromosome segregation fidelity [4-6]. While the 

mechanisms that load CENP-A at centromeres are being elucidated, the functions of its divergent 

N-terminal tail remain enigmatic [7-12]. Here, we employ the well-studied fission yeast 

centromere [13-16] to investigate the function of the CENP-A (Cnp1) N-tail. We show that 

alteration of the N-tail did not affect Cnp1 loading at centromeres, outer kinetochore formation, or 

spindle checkpoint signaling, but nevertheless elevated chromosome loss. N-Tail mutants 

exhibited synthetic lethality with an altered centromeric DNA sequence, with rare survivors 

harboring chromosomal fusions in which the altered centromere was epigenetically inactivated. 

Elevated centromere inactivation was also observed for N-tail mutants with unaltered centromeric 

DNA sequences. N-tail mutants specifically reduced localization of the CCAN proteins Cnp20/

CENP-T and Mis6/CENP-I, but not Cnp3/CENP-C. Overexpression of Cnp20/CENP-T 

suppressed defects in an N-tail mutant, suggesting a link between reduced CENP-T recruitment 

and the observed centromere inactivation phenotype. Thus, the Cnp1 N-tail promotes epigenetic 
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stability of centromeres in fission yeast, at least in part via recruitment of the CENP-T branch of 

the CCAN.

Keywords

centromere; CENP-A; CenH3; histone variant; kinetochore; CENP-T; CCAN; mitosis; 
chromosome segregation; aneuploidy

Results & Discussion

Cnp1 N-Tail Variants Support Viability but Exhibit Elevated Chromosome Missegregation

To investigate the function of the 20 amino acid Cnp1 N-tail, we generated Halftail, 

Quartertail and Deltatail variants, and a Tailswap variant in which the Cnp1 N-tail was 

replaced by the N-tail of histone H3 (Fig. 1A). All tested transgenes (either untagged or with 

GFP coding sequence inserted immediately after the start codon) were inserted in single 

copy at the lys1 locus (Fig. 1A). We first assessed the ability of these variants to rescue 

lethality of cnp1Δ cells observed following 5-Fluoroorotic acid (FOA)-mediated removal of 

plasmid-encoded cnp1+ (Fig. 1B). The cnp1+, halftail, quartertail and tailswap transgenes 

rescued inviability, whereas deltatail did not (Fig. 1B). Immunoblotting indicated that 

Deltatail was not expressed well (Fig. S1A); consistent with this, overexpression of Deltatail 

rescued inviability of cnp1Δ and cnp1ts (Fig. S1B,C). Thus, the N-tail of Cnp1 is 

dispensable for viability of a cnp1Δ cell population.

We next assessed chromosome segregation fidelity using drug sensitivity and 

minichromosome loss assays. N-tail variants exhibited increased sensitivity to the 

microtubule-destabilizing drug thiabendazole (TBZ; Fig. 1C), with growth retardation 

approaching that observed for clr4Δ, a mutant of the H3K9 methyltransferase in which 

pericentromeric heterochromatin formation and cohesin enrichment are disrupted [17,18]. 

TBZ sensitivity was not rescued by overexpression of Cnp1 N-tail variants (Fig. S1D). 

Consistent with the increased TBZ sensitivity, Cnp1 N-tail variants exhibited high rates of 

loss of a non-essential 27 kb minichromosome (Fig. 1D; the minichromosome carries an 

opal suppressor tRNA that complements a chromosomal ade6-704 mutation; loss of the 

minichromosome results in red or sectored colonies [19]); this phenotype was not observed 

when endogenous Cnp1 was present (Fig. 1D).

To monitor endogenous chromosome segregation, we imaged septated cells (i.e. mostly S-

phase cells with two nuclei and calcofluor staining of the septum) harboring a GFP-marked 

LacO array insertion adjacent to the centromere of Chr II (referred to as pericen2-lacO-gfp). 

This analysis revealed elevated missegregation of endogenous Chr II in N-tail variants (Fig. 

1E). Thus, while N-tail variants of Cnp1 support viability of a cell population, they exhibit 

significantly elevated chromosome loss rates.
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Cnp1 N-Tail Variants are Normally Loaded at Centromeres and Support Outer Kinetochore 
Assembly

One explanation for the missegregation defect caused by alterations in the Cnp1 N-tail is a 

reduction in loading at centromeres. To test this possibility, we quantified the fluorescence 

at clustered centromeres of GFP-Cnp1, GFP-Halftail, and GFP-Tailswap in a cnp1Δ 

background. Both GFP-Halftail and GFP-Tailswap localized equivalently to GFP-Cnp1 at 

centromeres (Fig. 1F,S1E). In addition, equivalent localization was observed for GFP-Cnp1 

and N-tail variants, with the exception of Deltatail, in the presence of endogenous Cnp1 

(Fig. S1F). Consistent with their normal loading, overexpression of all Cnp1 N-tail variants 

rescued the temperature-sensitive growth defect of scm3-139 (Fig. S1G), which is caused by 

perturbation of the interaction between Cnp1 and its specialized chaperone Scm3 [20]. 

These results suggest that the elevated chromosome missegregation observed in the N-tail 

variants is not due to a defect in Cnp1 loading.

We next tested outer kinetochore assembly in the Cnp1 N-tail variants. First, we quantified 

centromere localization of the Ndc80 subunit of the conserved Ndc80 complex that directly 

mediates end-coupled microtubule attachments [21,22]. Ndc80 localization was unaffected 

in all tested N-tail Cnp1 variants (Fig. 1G). Second, we monitored spindle checkpoint 

activity, which requires an intact outer kinetochore to generate a signal that prevents cell 

cycle progression [23]. Analysis of the checkpoint-mediated arrest, performed using a cold-

sensitive tubulin mutation to disrupt microtubules [24], revealed normal arrest in Cnp1 N-

tail variants (Fig. 1H); in contrast, the checkpoint pathway mutant mad1Δ failed to arrest. 

Thus, Cnp1 N-tail variants cause significant chromosome segregation defects but these do 

not appear to arise from a problem in loading Cnp1 at centromeres or building an outer 

kinetochore with normal Ndc80 recruitment and checkpoint signaling activity.

Cnp1 Tail Variants Exhibit Synthetic Lethality In the Presence of an Altered Central Core 
Sequence

A clue as to the origin of the Cnp1 N-tail variant missegregation defect came from a 

serendipitous observation made while introducing N-tail variants into strains harboring 

operator array insertions. While we were able to construct strains expressing N-tail variants 

in a cnp1Δ background with operator array insertions outside the central core of the 

centromere (e.g. Fig. 1E; Cnp1 is concentrated in the central core [20, 25]), we were unable 

to obtain strains with a TetO array insertion in the central core (Fig. 2A; the strain also 

expresses a TetR-tomato fusion to label the array and is referred to as cen2-tetO-tomato 

[26]).

To assess if the N-tail variants and cen2-tetO-tomato were synthetic lethal, we used the 

mating-based random sporulation assay schematized in Fig. 2A. In this assay, synthetic 

lethality is measured by the ratio of the number of colonies at 36°C (which prevents growth 

of cnp1Δ spores that inherited the cnp1-1ts mutant transgene integrated at the lys1 locus) 

versus 25°C (where cnp1Δ spores that inherit either the cnp1-1ts mutant or a gfp-cnp1 N-tail 

transgene integrated in the lys1 locus form colonies). In the absence of a central core TetO 

array insertion and with a gfp-cnp1+ transgene the ratio was ~0.4, near the expected ratio of 

0.5. The cen2-tetO-tomato insertion in combination with gfp-cnp1+ reduced this ratio to 
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~0.2 indicating a mild synthetic defect. The gfp-tailswap transgene in the absence of a TetO 

insertion exhibited a ratio of 0.23. Strikingly, for the combination of gfp-tailswap and the 

TetO insertion, the ratio was <0.01, indicating strong synthetic lethality. Similar magnitude 

synthetic lethality was observed with cen2-tetO-tomato and gfp-halftail and gfp-quartertail 

transgenes (Fig. 2A). Importantly, neither cnp1-1ts (Fig. 2B; Fig. S2A) nor clr4Δ (Fig. 2C), 

which exhibits similar magnitude chromosome missegregation as the N-tail variants (Fig. 

1D), exhibited synthetic lethality with cen2-tetO-tomato. In addition, the observed synthetic 

lethality is not due to temperature sensitivity, as it was also observed in plasmid shuffle 

assays performed at 30°C (Fig. 2C). Finally, synthetic lethality was not observed when N-

tail variants were combined with an operator array integrated outside the central core (Fig. 

S2B; Table S1). Thus, N-tail variants of Cnp1 exhibit strong synthetic lethality with a 

centromeric DNA sequence harboring an operator array insertion in the central core.

Rare Survivors Expressing Cnp1 N-Tail Variants and Harboring an Altered Central Core 
Sequence Exhibit Centromere Inactivation

While the majority of cells expressing GFP N-tail variants in the presence of cen2-tetO-

tomato were inviable, a small number of survivors were recovered (0.5-1.0%; Fig. 2A). To 

determine how these cells maintained viability, we imaged >10 independent survivor 

colonies for two variants and found that the TetO-tomato focus was dissociated from the 

GFP focus and devoid of GFP signal (Fig. 2D), suggesting loss of the N-tail variant Cnp1 

from cen2. In agreement with the imaging data, anti-GFP ChIP-PCR (Fig. S2C) and ChIP-

Seq analysis of a rare gfp-tailswap;cen2-TetO-tomato survivor colony showed complete loss 

of Cnp1 at the central core of cen2 (Fig. 2E). In addition, evidence for a neocentromere on 

Chr II was not observed in the ChIP-Seq data, suggesting that these cells survive due to 

fusion of centromere-inactivated Chr II with one of the other two chromosomes, as 

previously observed following excision of a centromere [27]. To test this possibility, we 

performed pulsed-field gel electrophoresis, which indicated that Chr II had fused with Chr I 

in independent survivor colonies harboring different GFP-fused N-tail variants (Fig. 2F; 

S2D).

Thus, combination of a Cnp1 N-tail variant with an array insertion at the central core results 

in centromere inactivation that in the majority of cases is lethal but in rare cases is tolerated 

through chromosome fusion. Similar synthetic lethality is not observed with cnp1-1ts or 

clr4Δ, both of which compromise chromosome segregation. These observations suggest that 

Cnp1 N-tail variants increase the probability of centromere inactivation and that this effect is 

magnified by insertion of the TetO array in the central core.

Heterochromatin Occupies Inactivated Centromeres But is Not Required for Centromere 
Inactivation

As the Cnp1-containing central core is flanked by pericentric heterochromatin, one possible 

mechanism for centromere inactivation is that heterochromatin encroaches into the N-tail 

variant-containing central core. ChIP analysis revealed high levels of H3K9 methylation in 

the inactive centromere central core of the rare survivors (Fig. 3A); in addition, a marker 

cassette inserted in this region was hyper-silenced in the survivors (Fig. S3A,B). To test if 

heterochromatin was required for centromere inactivation, we performed the mating-based 
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assay in Fig. 2A, but with clr4Δ in both strains. No significant suppression of lethality was 

observed with clr4Δ (Fig. 3B). Thus, heterochromatin is not required for centromere 

inactivation but elevation of H3K9me2 in the central core provides an easy-to-measure 

readout for centromere inactivation events in a cell population.

Evidence for Centromere Inactivation in Cnp1 N-Tail Variant Cell Populations Without 
Alterations in the Central Core Sequence

To test if centromere inactivation occurs with Cnp1 N-tail variants in the absence of any 

insertions in the central core, albeit with lower penetrance, we first performed ChIP 

followed by quantitative PCR for presence of H3K9me2. This approach revealed a 

significant 2 to 4-fold increase in H3K9me2 in the central core in the presence of N-tail 

variants (Fig. 3C, Fig. S3C). Based on the analysis in Fig. 2, we suggest this elevation 

reflects inactivation of endogenous centromeres in a subset of the cell population that 

presumably leads to eventual lethality of the cells in which the inactivation event has 

occurred.

To assess centromere inactivation in single cells, we imaged GFP-Tailswap septated cells 

harboring a TetO array inserted adjacent to cen1 (referred to as pericen1-tetO-tomato), 

which is not synthetically lethal with N-tail variants (Fig. S2B; Table S1). We observed a 

significant frequency of two phenotypes: missegregation of cen1 (12/262) and declustering 

of cen1 from the other centromeres (33/262). Following missegregation, one of the two cen1 

foci was always declustered (12/12; Fig. 3D). Notably, the missegregated and declustered 

centromeres exhibited highly reduced GFP signal, compared to the amount expected, 

indicating loss of Cnp1 from that centromere (Fig. 3D). In a complementary approach, we 

imaged fields of cells over time. No missegregation of the pericen1-tetO-tomato labeled 

chromosome was observed from imaging 175 GFP-Cnp1 divisions. From 457 GFP-

Tailswap divisions, we could unambiguously score 6 events where both chromatids for Chr I 

segregated into one cell (Fig. 3E; the low signal-to-noise of the pericen1-tetO-tomato 

marker makes this number an underestimate). In all 6 cases, one of the TetO-marked 

centromeres was declustered and did not exhibit GFP signal (Fig. 3E, arrow), suggesting 

inactivation of the centromere on that chromatid.

Overall, both H3K9me2 ChIP-qPCR and imaging of single cells indicate that there is an 

elevated frequency of centromere inactivation events in the presence of Cnp1 N-tail variants 

even in the absence of any alterations in central core sequence.

Cnp1 N-Tail Variants Selectively Reduce Centromeric Accumulation of the Cnp20/CENP-T 
Branch of the Inner Kinetochore

The increased probability of centromere inactivation in the absence of a loading defect led 

us to investigate the effect of Cnp1 N-tail variants on the chromatin-proximal region of the 

kinetochore. CENP-A nucleosomes primarily recruit Cnp3/CENP-C via their C-tail [28, 29] 

and, by an unknown mechanism, recruit the Cnp20/CENP-T branch of the CCAN [30]. 

Cnp3/CENP-C localization at centromeres was only mildly affected by the tested N-tail 

variants (Fig. 4A,B); in contrast, there was a striking and consistent reduction in Cnp20/

CENP-T at centromeres (Fig. 4A,B). We next monitored localization of Mis6/CENP-I and 
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found that its reduction was comparable to Cnp20 reduction (Fig. 4B, Fig. S4A). Thus, the 

CENP-T branch of the CCAN appears to be selectively diminished at centromeres in the 

Cnp1 N-tail variants, which likely underlies the increased probability of centromere 

inactivation and high rates of missegregation. As Ndc80 localization is unperturbed in the 

N-tail variants (Fig. 1G,H), and cnp20 mutants do not affect Ndc80 recruitment [31], this 

defect is potentially unrelated to the role of CENP-T family proteins in direct recruitment of 

the Ndc80 complex [32,33].

We next test if overexpression of Cnp20/CENP-T suppressed phenotypic defects of N-tail 

variants. We overexpressed Cnp20/CENP-T in the Quartertail and Tailswap variants (in a 

cnp1Δ background) and monitored H3K9me2 accumulation at the central core and TBZ 

sensitivity to assess suppression. Cnp20 overexpression suppressed elevation of H3K9me2 

in the central core in the presence of Quartertail (Fig. 4C; Fig. S4B) and reduced TBZ 

sensitivity (Fig. 4D). In contrast, we did not observe suppression of Tailswap by Cnp20 

overexpression (Fig. S4C,D). As Quartertail shares all of phenotypic features of the N-tail 

variants described here, these results suggest that the observed defects are primarily derived 

from reduced centromeric levels of the CENP-T branch of the CCAN. Tailswap may not be 

suppressed under the conditions tested either because it is more penetrant or because the 

presence of an H3 tail, a substrate for many modifications, has additional consequences.

Conclusions

The work described here implicates the N-tail of CENP-A in fission yeast in recruitment of 

the CENP-T branch of the CCAN and suggests that cooperation of Cnp1/CENP-A and 

Cnp20/CENP-T is important for stable centromere inheritance (Fig. 4E). While a prior study 

in human cells suggested that substitution of the CENP-A N-tail with the N-tail of H3 did 

not perturb CENP-T recruitment [11], this result may be due to a redundant contribution 

from the human centromeric alpha satellite sequence-specific DNA binding protein CENP-B 

[11,34-36].

As N-tail variants support viability, unlike a cnp20 mutant [31], and do not eliminate Cnp20/

CENP-T centromere localization, there must be additional Cnp20/CENP-T localization 

mechanisms. Recent work suggests that monomethylation of lysine 20 on histone H4 

(H4K20me1) of CENP-A nucleosomes may be a mark for CENP-T recruitment in 

vertebrates [37]. However, deletion of the only known H4K20 methyltransferase in fission 

yeast does not cause increased TBZ sensitivity [38] and H4K20me1 is not enriched at the 

CENP-A containing central core domain of the centromere (P. Svensson and K. Ekwall, 

personal communication). Future work is needed to assess if this modification of CENP-A 

nucleosomes plays a role in CENP-T recruitment outside of vertebrates. In addition, it will 

be important to elucidate the biochemical nature of the Cnp1/CENP-A N-tail – Cnp20/

CENP-T connection, as well as determine the precise timing and mechanisms responsible 

for the inactivation events observed in the N-tail variants with reduced Cnp20/CENP-T 

recruitment.
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Experimental Procedures

Details on strain and plasmid construction, genetic analysis, imaging, and chromatin 

immunoprecipitations are provided in the Supplemental Experimental Procedures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Cnp1 N-tail variants support viability, centromere loading, and outer kinetochore 
formation yet exhibit elevated chromosome missegregation
A. Schematic of the Cnp1 N-tail variants used in this study. All transgenes were integrated 

at the lys1 locus.

B. Plasmid shuffle assay, employing 5-fluorooritic acid (5-FOA) to select against plasmid-

encoded wild-type Cnp1, to analyze rescue of cnp1Δ cells by indicated transgenes. A ten-

fold dilution series is shown for each condition.
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C. Sensitivity of cnp1Δ cells expressing indicated Cnp1 N-tail variants to the spindle poison 

thiabendazole (TBZ). Growth was assayed at 30°C using 10-fold serial dilutions plated on 

rich YES medium with (right) or without (left) 10 μg/ml TBZ. clr4Δ serves as a TBZ-

sensitive control.

D. Minichromosome (pNBg) maintenance assay in wildtype and cnp1Δ (indicated as + or Δ, 

respectively) cells expressing Cnp1 N-tail variants. clr4Δ serves as a control with elevated 

missegregation. Cell with a minichromosome generate white colonies; minichromosome 

loss results in red or sectored colonies. >900 colonies were scored per condition.

E. Segregation of Chr II marked with a pericentromeric LacO array labeled with LacI-GFP 

(pericen2-lacO-gfp). Septation was determined by calcofluor staining. Error bars are 95% 

confidence interval. Scale bar is 3 μm.

F. Images of cnp1Δ cells expressing GFP-tagged Cnp1 or Tailswap (left). The graph (right) 

plots the mean signal intensity of the GFP centromeric focus measured in large (lateG2) 

cells, normalized relative to wild-type GFP-Cnp1, for the indicated variants. Error bars are 

the standard deviation. Scale bar is 5 μm.

G. Images of Ndc80-GFP in cnp1Δ cells expressing untagged Cnp1 or Tailswap. The graph 

(right) plots the mean signal intensity of the Ndc80-GFP centromeric focus measured in 

large (late G2) cells of the indicated variants, normalized relative to wild-type Cnp1. Error 

bars are the standard deviation. Scale bar is 5 μm.

H. (left) Assay used to monitor spindle checkpoint-dependent arrest. Cold-sensitive nda3-

KM311 (nda3cs) strains, containing indicated deletions and integrations, were grown at 

30°C, shifted to non-permissive 18°C, and samples were fixed and processed for DAPI 

staining every 2 hours for 8 hours. (right) Graph plotting the percentage of cells with 

condensed chromatin, a marker for mitotic arrest, at different times following shift to the 

non-permissive temperature.
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Figure 2. Cnp1 N-tail variants are unable to propagate a centromere harboring a repetitive TetO 
array insertion in the central core
A. Schematic and results of mating and sporulation assay employed to assess synthetic 

lethality between GFP-tagged Cnp1 N-tail variants and the TetO array (cen2-tetO-tomato) 

insertion in the central core of centromere 2. Note that both partners in each mating harbored 

either unaltered cen2 or cen2-tetO-tomato.

B. TetO array insertion in the central core does not enhance TBZ sensitivity of cnp1-1ts. 

Serial dilutions (10-fold) of indicated strains were plated on rich YES medium containing 10 

μg/ml TBZ and grown at 30°C.
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C. Plasmid shuffle assay (10-fold serial dilutions) performed on the indicated strains. clr4Δ 

in combination with cen2-tetO-tomato and wildtype Cnp1 is shown below.

D. Images of cnp1Δ cen2-tetO-tomato strains expressing GFP-Cnp1 (left) or GFP-Tailswap 

(right); the GFP-Tailswap and other N-tail variant strains analyzed were rare survivors 

isolated from the experiment in Fig. 2A. Scale bar is 5 μm; images on the bottom are 

magnified a further 2-fold. Graph on right plots percentage of cells displaying delocalization 

of green (GFP) and red (Tomato) foci. 5 independent GFP-Halftail and GFP-Tailswap 

survivors were analyzed; error bars are the standard deviation.

E. GFP ChIP-Seq of a control (GFP-Cnp1) and a GFP-Tailswap survivor in the cnp1Δ cen2-

tetO-tomato background. All three S. pombe chromosomes are displayed. The y-axis plots 

normalized read counts, with normalization relative to the number of mapped reads; the x-

axis is chromosomal position. The centromere regions (boxed) are enlarged on the right. 

Conventional duplex ChIP-PCR was also performed (see Fig. S2C). The signal detected at 

the ura4 locus (ura4*) in GFP-Cnp1 is due to mapping of reads from the ura4 marker 

inserted adjacent to cen2-tetO-tomato; as this centromere is inactivated in the GFP-Tailswap 

survivor, no ura4 reads are mapped.

F. Undigested chromosomal DNA samples from the indicated strains analyzed by pulsed-

field gel electrophoresis. See also Fig. S2D.
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Figure 3. Evidence for centromere inactivation in Cnp1 N-tail variants in the absence of any 
alterations in centromeric DNA sequence
A. H3K9me2 ChIP-PCR analysis for the indicated strains. Centromere 2 (cc2) and 

heterochromatic outer repeats (otr) products were compared to non-centromeric controls 

fbp1 and leu1, respectively. A clr4Δ control, which lacks H3K9me2, is also shown.

B. Analysis of the effect of clr4Δ on synthetic lethality of GFP-Tailswap and cen2-tetO-

tomato, conducted as in Fig. 2A.
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C. H3K9me2 ChIP-qPCR for the indicated strains harboring unaltered centromeres. The 

normalized ratio between qPCR products from Cnp1 domains (central core 1&3; cc) and 

heterochromatic outer repeats (otr) is shown. Error bars represent the SD (n=3). See also 

Fig. S3C.

D. Images of septated cells expressing GFP-Tailswap in a cnp1Δ background with a 

pericentromeric TetO array insertion (pericen1-tetO-tomato) on chromosome 1. The three 

classes of cells observed are indicated with the numbers for each class shown below the 

images. The yellow arrow marks the TetO-tomato focus that is declustered and has low GFP 

signal. In cells with missegregation and declustering, GFP intensity was measured at each 

red (TetO-Tomato) focus and the indicated ratios are plotted below. The expected ratio, 

assuming equal amount of GFP-Cnp1 is present at each centromere, is shown with a red 

dashed line. Scale bars are 3 μm.

E. Representative time-lapse images providing evidence for centromere inactivation. Arrow 

indicates a TetO-tomato focus that has very low GFP signal. Scale bar is 3 μm.
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Figure 4. Cnp1 N-tail variants selectively reduce centromeric accumulation of the Cnp20/CENP-
T branch of the CCAN
A. Representative images of Cnp20-GFP and Cnp3-tomato in the indicated strains. Scale bar 

represents 5 μm. See also Fig. S4A.

B. Integrated fluorescence intensity of Cnp20-GFP, Mis6-GFP and Cnp3-tomato foci was 

measured and plotted for the indicate strains as in Fig. 1F&G. Error bars represent the 

standard deviation.
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C. ChIP-qPCR with H3K9me2 antibody for the indicated conditions. The normalized ratio 

of products from Cnp1-enriched regions (cc) and heterochromatic outer repeats (otr) is 

displayed. See also Fig. S4B. Error bars represent the SD (n=3).

D. Serial dilutions of indicated strains harboring empty or Cnp20-overexpressing multicopy 

pREP1 plasmid were plated on minimal medium lacking leucine (PMG –LEU), with or 

without 15 μg/ml TBZ, and grown at 33°C. A ten-fold dilution series is shown for each 

strain.

E. Schematic summary of key findings. The Cnp1/CENP-A N-tail is required to recruit the 

Cnp20/CENP-T branch of the CCAN, which in turn is required for stable epigenetic 

propagation of centromeres (left). Cnp1 N-tail variants are normally loaded and support 

outer kinetochore assembly but the CENP-T branch of the CCAN is selectively reduced, 

increasing the probability of centromere inactivation and chromosome missegregation 

(right).
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