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Abstract

Positive allosteric modulators of ionotropic glutamate receptors have emerged as a target for 

treating cognitive impairment and neurodegeneration, but also mental illnesses such as major 

depressive disorder. The possibility of creating a new class of pharmaceutical agent to treat 

refractive mental health issues has compelled researchers to redouble their efforts to develop a 

safe, effective treatment for memory and cognition impairments. Coupled with the more robust 

research methodologies that have emerged, including more sophisticated high-throughput-screens, 

higher resolution structural biology techniques, and more focused assessment on 

pharmacokinetics, the development of positive modulators of AMPA receptors holds great 

promise. We describe recent approaches that improve our understanding of the basic physiology 

underlying memory and cognition, and their application towards promoting human health.

INTRODUCTION

Ion channels are transmembrane proteins that facilitate communication between cells to 

allow the intake of information from the environment and output an appropriate response to 

change. The glutamate receptor family of ion channels binds to synaptically-released 

glutamate, and in turn, initiates either a change in second messenger signaling (via the 

metabotropic glutamate receptors) or permit ions (sodium, potassium, chloride, calcium) to 

flow between the intracellular and extracellular compartments, via electrochemical signaling 

[1]. The family of ionotropic glutamate receptors (iGluRs) includes the N-methyl-D-

aspartate receptors (NMDARs, GluN1-3), the alpha-amino-3-hydroxy-5-methyl-4-isoxazole 

propionic acid receptors (AMPARs, GluA1-4), the kainate receptors (GluK1-5) and the 

“orphan” receptors (GluD1-2) [2]. Here, we focus on recent developments in the positive 

allosteric modulation of the AMPAR family of ionotropic glutamate receptors.
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AMPARs are considered an appropriate target for drug discovery and development efforts 

because they play a critical role in synaptic plasticity, the cellular mechanism that is thought 

to underlie learning and memory, including long term potentiation (LTP) and long term 

depression (LTD) (reviewed in [3]). Perhaps the single most important demonstration of the 

importance of AMPAR in drug development was the finding in 2008 that AMPAR were 

implicated in the cellular mechanisms underlying the observed antidepressive effects of 

subanesthetic doses of ketamine [4]. In the present review we consider the research findings 

over the past 2–3 years regarding synaptic physiology, AMPAR structure and function, drug 

discovery and development, and neuropharmacology. The results from basic and clinical 

research, as well as the progress from PHARMA, offer a hopeful perspective on the future 

of this class of compound.

The Role of AMPAR in Synaptic Plasticity

Cellular and network plasticity require activation of the NMDAR and subsequent elevation 

of intracellular calcium, followed by upregulation of AMPAR activity and subsequent 

induction of long term potentiation (LTP) [3]. LTP has several components, including local 

CaMKII activation leading to triggering of signaling cascades and the subsequent activity-

dependent phosphorylation of AMPAR, which regulates AMPAR channel conductance. 

Perhaps the most intriguing new information about AMPAR’s role in synaptic plasticity 

relates to the dynamic regulation of its trafficking inside the neuron and to the cell surface. 

The concept of “silent” synapses being mobilized is a critical feature in thinking of how 

these receptors can be upregulated to maintain LTP [5]. Auxiliary proteins (transmembrane 

AMPAR regulatory proteins, TARPs), such as stargazin and scaffolding proteins, appear to 

be dynamically regulated, and it remains unclear how mobilization of silent synapses is 

impacted by positive allosteric modulators, although preliminary experiments seemed to 

suggest an important impact of TARP binding on the pharmacology of AMPAR positive 

allosteric modulation [6]. Recent experiments that map the sites of protein-protein 

interaction between AMPAR and TARPs suggest that at least one site of interaction overlaps 

a positive allosteric modulatory binding site on AMPAR [7].

Chemotypes of Positive Allosteric Modulators

Most AMPAR positive allosteric modulators to fall into four major classifications: the 

benzamides (including aniracetam [8] and its derivatives, the CX ampakines such as CX516 

[9], CX614 [10], CX717 [11], CX929 [12] and Org 26576 [13]); the benzothiadiazines 

(including cyclothiazide [14], IDRA-21 [15], S 18986 [16], and BPAM-97 [17,18]); the 

biaryl propylsulfonamides (including LY404187 [19], LY451395 [20], (R,R)-2a, and -2b, or 

PIMSD [21], PEPA [22], and CMPDA and CMPDB [23]), which recapitulate structural 

features of the first two classes; and the 3-trifluoromethylpyrazoles (including a series of 

compounds developed by Ward et al. [24,25] and Jamieson et al. [26–28] (Figure 1). Pirotte 

et al. [29] document, from their review of patents filed between 2008–2012, that two smaller 

classes, including pyrrole/thiophenecarboxylic acids described by Lilly and 

phenyliminothiazoles described by GlaxoSmithKline may be further developed but currently 

do not seem to represent a major discovery target. The limited number of chemotypes is 

perceived to be an impediment to getting compounds to the clinical trials pipeline [30].
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Mechanisms of Action

AMPAR are ~1000 amino-acid, transmembrane proteins, with an extracellular glutamate 

binding site, which assemble as either homo- or hetero-tetrameric receptor complexes [31]. 

A significant advance that stimulated the development of new positive allosteric modulators 

was the crystallization of the isolated ligand-binding domain (LBD) to which both agonist 

(glutamate) [32] and positive allosteric modulators bind. The secondary structures within a 

polypeptide chain form a dimer of dimers with the neighboring polypeptide chain, through 

protein-protein interactions between subunits; however, the ATDs interact with one subunit 

whereas the LBD interacts with another subunit, likely as a mechanism to enhance allosteric 

action.

The LBD is shaped as an open “clamshell”, with an upper and lower lid, joined by “hinges”. 

Activation of an AMPAR occurs when glutamate enters the clamshell and forms interactions 

with the upper lobe of the clamshell, which drives the movement of the lower shell away 

from the lipid bilayer and towards the upper shell. This clamshell closure drives subsequent 

rearrangements at the transmembrane pore to permit ion flow [33]. Agonist can dissociate, 

allowing the receptor complex to deactivate and return to rest. Like many ligand-binding 

receptors, prolonged exposure to agonist can also lead to a refractory state, desensitization, 

in which agonist presumably remains locked within the closed clamshell, but the pore 

returns to the closed state. Receptor desensitization occurs through a major rearrangement 

and subsequent disruption of the dimer interface, allowing uncoupling of the LBD and the 

ion-conducting pore [34,35]. Recent work suggests that receptor desensitization causes 

global rearrangement of the AMPAR quaternary structure, such that the ATD is pulled down 

towards the LBD, compressing the extracellular structure, and that LBD itself becomes 

flattened, inducing a mechanical pulling force on the transmembrane domains [34]. 

Interestingly, there is accumulating evidence that the desensitized state is characterized by 

substantial conformational heterogeneity [36]. The allosteric modulators discussed here all 

bind at the interface between two LBDs, in a solvent-accessible pocket formed by residues 

from each of the two dimers.

AMPAR positive allosteric modulators exert their effect by slowing the conformational 

transitions that permit rearrangement of the dimer interface, thereby slowing the 

macroscopic rate of receptor desensitization, and in some cases, receptor deactivation. RNA 

splicing results in heterogeneity within this pocket (at the Ser/Asn site; [37]), such that 

positive allosteric modulators can be splice isoform selective (for either the flip or flop 

isoform) or non-selective [38]. Recent work [39] delineates five subdomains of the 

modulator binding pocket, and provides careful structure-function analysis with derivatized 

benzothiadiazine modulators to understand potency and efficacy [18,40]. Modulators have 

been shown to bind in three “modes” related to occupancy of this pocket [35]: 1) two 

molecules of modulator binding perpendicular to the 2-fold axis of symmetry of the LBD 

dimer, such as cyclothiazide; 2) two overlapping conformations of modulator within the 

central site (subsite A), such as CX614; and 3) chemically symmetrical compounds that bind 

to subsite A with a single conformation, such as CMPDA. Structure-function work on 

positive allosteric modulators that interact with this site consistently reveal that 

modifications of either moieties on the compound or the amino acid sidechains on the 
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receptor, which alter the number of contacts or the strength of the interactions between the 

compounds, water molecules and protein sidechains within the five subsites, determine both 

efficacy and affinity [10,41]. However, our understanding of the interactions had not seemed 

robust enough to allow completely accurate predictive modeling of the activity of newly 

synthesized compounds. Recently, (R, R)-2b, was used in a groundbreaking series of 

mechanistic studies demonstrating that positive allosteric modulators that are structural 

“hybrids” of CTZ and aniracetam permit both the stabilization of the dimer interface, 

preventing receptor desensitization, and interact with the “hinges” between the two 

clamshells, stabilizing the LBD in an agonist-bound conformation [34].

An interesting development in the area of protein-protein interactions at the dimer interface 

relates further to modulator stoichiometry. Increasing the number and strength of molecular 

interactions between amino acids of adjacent subunits through mutations of specific amino 

acids of glutamate receptors slows the kinetics of deactivation and/or desensitization [42–

44], similar to allosteric modulators. Norholm et al. (2013) [45] have synthesized a new 

benzothiadiazine compound, PIMSD, by optimizing its structure into a forced dimer, and 

then facilitating its testing by using the L483Y AMPAR mutation to promote a stable dimer 

of LBDs and therefore optimize the modulator binding pocket. This compound showed 

submicromolar binding affinity, as assessed by the increasingly popular method of 

measuring the thermodynamics of modulator-receptor binding using isothermal titration 

calorimetry (ITC). Testing compounds with forced LBD dimers may enhance high through-

put screening of modulators. In a complementary study, Ptak et al. (2013) [46] used small-

angle X-ray scattering (SAXS) to detect subtle differences in protein structure in the 

presence of cyclothiazide and other benzothiadiazines, and this study revealed that 

manipulating the stoichiometry of the modulator permitted enhanced dimerization of the 

protein. They suggest a novel use for AMPAR positive modulators in driving glutamate 

receptor dimerization, essentially allowing for the ready isomerization of the protein to an 

activated state. They propose that this strategy could have broad implications in medicinal 

chemistry.

A recent patent review on AMPAR modulators showed that this receptor is quite actively 

being pursued as a drug target [29]. The authors’ interpretation of patented compounds and 

their activities was that rational drug design to optimize potency and efficacy in vitro led to 

larger and more complicated molecules, for which further development was constrained by 

poorer performance on pharmacokinetic profiles and in vivo efficacy. These authors 

predicted a return to the development of lower molecular weight molecules with perhaps 

lower in vivo efficacy, but for which pharmacokinetics were more favorable. This may be 

consistent with an emerging trend to design small molecules that can modulate multiple 

receptor types within a behavioral circuit. Strategies to control protein dimerization, the use 

of robust FLIPR technology to facilitate rapid screening of activity [47], structure based 

drug design [28], and approaches to co-test efficacy with bioavailability and 

pharmacokinetics [25] are technological advances that should increase the discovery of new 

lead compounds.
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Modulation of Activity – Modulation of Behavior

The consequence of binding a positive allosteric modulator by an AMPAR is, by definition, 

an enhanced net charge transfer. Either by slowing receptor deactivation, desensitization, or 

both, the net influx of positive ions into the post-synaptic neuron increases due to the 

modulator. What is the downstream consequence of enhanced current flow into the 

postsynaptic cell, and how does that change translate to a change in behavior? There is not a 

good consensus in the field regarding this important point. In order to change behavior, the 

AMPAR modulator must have an impact on the circuits that regulate that behavior. This 

concept was recently modeled by Bouteiller at al. [48], who demonstrate how a change in 

receptor kinetics changes the firing pattern of a single neuron, and ultimately, the activity of 

a network of neurons, using multiscale modeling. Starting with a 16-state kinetic model 

from the Howe group [49], simulating the actions of a positive allosteric modulator (CX614) 

on single cells, to a network of hippocampal neurons, their model predicts that CX614 

would have complicated effects on neuronal excitability, with both a shifting of neuronal 

spike timing and an increase in the number of evoked spikes. At higher concentrations, 

continuous spiking was seen, suggesting the possibility of the formation of epileptiform 

activity.

There is considerable interest in understanding the relationship between the induction of 

LTP, the maintenance of LTP, and morphological changes in synaptic connections within a 

specific circuit. It seems clear that a critical consequence of the increased electrical activity 

caused by modulators is a subsequent involvement in neurotrophin-mediated, especially 

BDNF-mediated, sculpting of postsynaptic spines [50]. In fact, BDNF itself has emerged as 

target for development in the treatment of cognitive deficits. There are a number of studies 

demonstrating a positive effect of AMPAR positive modulators on behavior in animal 

models, including a fairly wide sampling of different AMPAR positive modulator 

chemotypes. Kramar et al [51] demonstrated an important proof of concept in a model of 

middle aged, ovariectomized rats. Actin polymerization in spines, reduced in ovariecomized 

rats, was restored by infusion of BDNF or by daily injections of the positive modulator, 

CX929 [12]. The most parsimonious explanation for these results was that the ampakine 

treatment recapitulated infusion by BDNF because it directly upregulated BDNF or a factor 

very similar to BDNF.

S 18986, a Servier benzothiadiazine, enhanced AMPAR currents (EC50 =130 micromolar), 

increased induction and maintenance of LTP, as well as expression of BDNF, and improved 

cognition in procedural, spatial, episodic, working and declarative memory in young and 

middle aged rats [16]. Rats that received a single dose of S 18986 infused into the prelimbic 

cortex enhanced acquisition and retention of an odor-reward association [52]. The dimeric 

modulator, PIMSD, which was shown to have promising in vitro attributes at an EC50 = 0.73 

micromolar, was used in a rat scopolamine-induced impairment model [53]. Place learning 

using a water maze was tested 25 minutes after subcutaneous injection, and PIMSD was 

found to partially alleviate the symptoms of the scopolamine-induced impairment. Org 

26576 was injected intraperitoneally in a rat 6-hydroxydopamine lesion-induced 

hyperactivity model (an animal model of attention-deficit hyperactivity disorder) [54]. In the 

rat model, a dose-dependent inhibition of locomotor hyperactivity was found. Another 
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important proof-of-concept animal model study, using intraperitoneal injections of CX929 

(5 mg/kg), was performed in a mouse model of the human neurodevelopment disorder, 

Angelman Syndrome (AS) [55]. Mice with abnormal expression of an E3 ligase and a 

transcriptional co-factor, genes deleted in human AS, exhibited abnormal dendritic spine 

morphology and impairment of LTP. When treated with the ampakine CX929 (twice a day 

for five days) the mutant mice demonstrated WT-like LTP, theta-burst stimulation-induced 

actin polymerization within dendritic spines, and long-term memory scores in fear 

conditioning. Another ampakine, CX1739, was tested in a mouse model of autism, and was 

found to reduce the sociability deficit in these animals [56]. A third ampakine, BCP-1, was 

tested in mice using daily intraperitoneal injections for two weeks in a model of exercise-

induced fatigue, and found to increase swim times to exhaustion, thereby extending the 

endurance capacity and facilitating recovery from fatigue [57]. Thus, recent progress in 

animal models of modulating different types of animal behavior, using different chemotypes 

of AMPAR positive modulators, continues to show promise. And yet, there are differing 

views on whether positive results in animal models will be predictive of positive results in 

human clinical trials [30,58–60].

Human Clinical Trials

A broad approach for therapeutic impact has been taken against the glutamatergic network 

as a whole, including agents for major depressive disorder, bipolar disorder [61] and 

schizophrenia [62]. In addition, there are a number of clinical trials reported in both 

clinicaltrials.gov and the International Clinical Trials Registry Platform for compounds with 

a direct action on AMPAR. Most of the trials are closed, but emerging publications report 

positive, if not robust, results. For example, Phase 1 trials of the safety, tolerability and 

pharmacokinetic data on healthy and depressed humans were useful, particularly in 

supporting that Org 26576 was well-tolerated at higher dose in depressed patients than in 

healthy volunteers [63]. The in vivo assessment of Org 26576 led to the Phase 1b trial on 

depressive symptomology, cognition, BDNF and endocrine responses, as well as to the 

assessment of relevant biomarkers [64]. All treatment groups (including placebo control) 

showed a mean improvement in depressive symptomology and key biomarkers, and changes 

from baseline tended to be higher in the treatment group, but these findings were not 

conclusive. This may be a reflection of the work that needs to be done by the field in 

determining what should be measured if one wishes to demonstrate enhanced cognition (see 

below).

Another clinical use for AMPA modulators relates to attention, alertness and sleep. Org 

26576 was tested in human ADHD adults, but again, the suggestion of therapeutic benefit 

was not confirmed by a clear dose-response. High doses of CX717 (whose structure has not 

been published, apparently due to DARPA restrictions) were found to counteract the effects 

of sleep deprivation on attention-based tasks in healthy human volunteers [65]. Again, 

although the findings were not robust, they suggest an improved performance on some 

attention-based tasks. CX717 is not currently listed on the Cortex Pharmaceuticals Product 

Pipeline website (http://www.cortexpharm.com/product/index.html), although CX1739 

appears to be advancing for multiple studies.
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The Future

Given that there are advances in technology that may hasten the discovery of new lead 

compounds, and promising preclinical and clinical results on a few compounds, it is clear 

that the assessment of efficacy of a potential new ampakine needs to be done at the level of 

the receptor, the synapse, the dendrite, the circuit, and the behavior (Figure 2). More 

importantly, perhaps, is appropriate consideration of the questions posed by Lynch et al. 

(2014) in a recent review on pharmacological enhancement of memory and cognition in 

normal human volunteers [66]. What is the relationship between memory and cognition in 

normal subjects, and in what types of behavior (circuits)? Without a clear definition of 

terms, appreciation of circuitry underlying different behaviors, and rigor of using 

appropriate animals to measure appropriate behaviors, it is not clear that new lead 

compounds will become new treatments. There seems to be much wisdom in the immediate 

goal of combining network mapping with localization of specific synaptic changes in order 

to understand the effects of a compound on network substrates of specific cognitive 

operations.
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Highlights

• Better AMPAR positive allosteric modulators are being developed

• New methodologies and approaches enhance the analysis of their activity in 

vitro

• AMPA positive modulators show promise in healthy volunteers

• Mental illnesses such as major depressive disorder and schizophrenia are targets
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Fig. 1. Chemotypes of AMPAR positive allosteric modulators
The structures shown provide a representative snapshot of past and present AMPAR positive 

modulators that have been studied (originating references are provided in the text).
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Fig. 2. Screening of new AMPAR positive allosteric modulators
Recent improvements in how new lead compounds are tested suggest that initial in vitro 

tests may include electrophysiology, calcium imaging and structure-based design. The 

modulator may then be tested in cells or slices, using electrophysiology, 

immunocytochemistry and biomarker biochemistry. It is now more common to see the in 

vitro work accompanied by a battery of pharmacokinetics, as well as analysis of 

morphology, circuitry and behavior in vivo. Thus, even initial reports of new lead 

compounds have an impressive array of methodologies supporting the further development 

of that compound. In this cartoon, the red images represent the expected experimental results 

in the presence of a putative new AMPA positive allosteric modulator.
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