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ABSTRACr This paper continues an earlier one [Hill, T. L.
(1977) Proc. Nat. Acad. Sci. USA 74,3632-3636] and presents
further introductory examples. Most attention is devoted to a
closed linear chain of two-state enzyme molecules with near-
est-neighbor interactions. The one-dimensional Ising theory can
be used here. The Bragg-Williams (mean field) approximation
is introduced to deal with a one-, two-, or three-dimensional
lattice of enzyme molecules, at steady state, with an arbitrary
kinetic diagram. The behavior of the flux in a phase transition
is noted. Finally, a treatment is given for the first effect (second
"virial" coefficient) of interactions on the flux in a dilute solu-
tion of two-state enzyme molecules.

This subject was introduced in a previous publication (1). The
present paper is a continuation of the earlier one, using the same
notation, in which we examine more complicated systems. We
continue to use the non-unique rate constant convention in
equation 4 of ref. 1. This is appropriate for present purposes,
but is too restrictive for some biochemical applications.

Closed One-Dimensional Two-State Chain. As a theoretical
prototype, we study a closed linear chain (ring) ofM identical
enzyme molecules, each of which has a two-state cycle with
unperturbed (1) rate constants as shown in Fig. 1. There are
interaction free energies wil, w12, W22 between nearest-
neighbor pairs of molecules in the chain in states 11, 12 (or 21),
22, respectively. These interactions alter the unperturbed rate
constants: the instantaneous rate constant for any transition of
a given molecule will depend, in general, on the instantaneous
states (1 or 2) of its two nearest neighbors. We shall make the
symmetrical choice (1) for the "split" of inverse constants: fa
= f,6 = 1/2. Explicitly, for the three kinds of nearest-neighbor
pairs, the central molecule of a triplet of molecules is assumed
to have rate constants as follows:

111 >t 121 a = aoy12/y 1, a' = aoYII/Y12
A= 1oYII/YI2, 1' = #o3Y12/Yll

211 z=± 221 a = aoy V2/yi{2, a' = a'yi{2/y212
13 = 13oyLi2/y A2, 13' = #3y12/y12

212 z 222 a = aoY22/Y12, a' = a'YI2/Y22
1 = foY12/Y22, 1' = o3Y22/YI2,

[1]

[2]

[3]

where Yij ewi/kT. As already explained (1), the "population"
properties of this particular system at steady state will be those
of a quasi-equilibrium system. Hence we can obtain these
properties, as needed, from the well-known one-dimensional
equilibrium Ising problem (2, 3), which can be solved exactly
and easily by the matrix method (3-5).
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FIG. 1. Two-state cycle with unperturbed rate constant notation.
The counterclockwise direction is supposed dominant.

The flux per molecule, J, around the cycle in Fig. 1 but in-
cluding the effect of interactions, can be expressed in terms of
the mean numbers of triplets of various kinds, Nijk. The total
number of triplets (also pairs) in the chain is M. Using the a,
at reactions,

MJ = Ni12aao(yY2/yi)- Ni2iao(yii/Y12)
+ 2[N21jao(Y22/Yl I)I/2 -N22ja'(YII/Y22)'/2]

+ N212ao(y22/y12) -N222a0Xy2/y22). [4]

An equivalent expression can be written using the 13, 1' reac-
tions. To proceed further, we need the Nijk from the Ising
theory.
One-Dimensional Ising Theory (3-5). The grand partition

function for the ring of M molecules (regarding the system as
"open" with respect to the number N2 of molecules in state 2)
can be written as the sum of a product of contributions L from
each molecular pair in the ring:

M
-= E 11 L(am ami+1),am=1,2 m=l [5]

where am is the state index for the mth molecule in the chain
(M + 1 1). The sum is over the 2M possible states of the whole
chain (,in = 1,2; m = 1,---,M). L is a 2 X 2 matrix:

L Yii Y12X'/2) 6L

yY2X1/2 Y22X [6]
where (1) x (ao + 13o)/(flo + ao). In the notation of section 14-1
of ref. 2, x = qX. Eq. 6 gives proper weight to each kind of pair
and, in a, to each of the 2M system-states. If we perform the
sum in Eq. 5 in the order am, OJM-1,',2, we get

z = ELM(al,al) = LM(1,1) + LM(2,2) = XM + 4M, [7]
a1

Abbreviation: BW, Bragg-Williams.
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where LM represents a matrix product and Xi, X2 are the two
eigenvalues of L,

X1,X2 = (Yll + y22x +X)/2 [8]

with

v= [(Yl - y22x)2 + 4yl2x]'/2. [9]
We take Xi as the la-ger eigenvalue (+ sign).

If we define 0 = N2/M, then because each of the 2M states
in _ is weighted properly,

0 = LM(2,2)/_. [10]

If we sum over aM,--,a3 in Eq. 5,

,,=E EL(l,ac2) LM-1 (U2,al). [11]
L 2

Therefore, as in Eq. 10,

Nrla2/M = L(acrF2) LM-l(Cy2,91)/Z [12]

Similarly, for triplets,

NarlxrVasM = L(o1,o2)L(a2, a3)LM-2(fual)a1) [13]

To use Eqs. 10, 12, and 13, we need also (ref. 5, equation
2.80)

Ls(oa') = X k1(o)4j(o') + XAs02(o)k2(o'), [14]

where 41 and 402 are the eigenvectors belonging to X, and X2,
respectively. For example,

+1() = (Yi - y22x + )A
01(2) = 2y12x'/2A1, [15]

where the normalization constant is given by

A =2= 2[(yii -Y22X)2 + 4y2x + (Y1 - Y22X)\§]. [16]

Eqs. 4 and 13 provide the flux J for any finite value ofM >
3. However, the algebra is quite involved except in simple
special cases (e.g., equations 25 of ref. 1 with x = 1).

Fortunately, the case of most interest, M -, 00, is easy to
handle because the smaller eigenvalue X2 can be ignored. We
find from Eqs. 10, 12, and 13,

0 = 2yl2x/ (Y11 -Y22X + A) [17]

N111M = Y11(Y11 - Y22x + )/v( [18]
N12M = 2yl2x//( )

NqM/M = y22x(y22x- Yii +

Nq,11M = yl2l(yll-Y22x + F)/x7 ]
N211/M= YlY22X+ V ]qllM= 2y,12yx/F

9121/M = Y12x(y11 -y22x + v :/' ] [19]

=y 2 yy22/[!q212/M =y22X(Y22X - Y1 + < /

9221/M = 2Y22 12x/[]

N222/M = y22x2(y22x- Y1 + F)/x7 ],

where

( y1 + y22x +

= Y11 + 2y12x + y22x2 + (Y1 + y22x)V.
Symmetrical pairs and triplets are omitted above (Nij, etc.).
The Steady-State Flux. Though exact, the N0j and Nijk obey

simple "quasi-chemical" relations (see the Appendix). These

permit Eq. 4 for J to be rewritten as

MJ = [(aoflo - ac'o)/(flo + a')]PqI11(Y121YI1)
+ 2N2ll(y22/y1)1/2 + N212(yY2/y12)].

Using Eqs. 19, this becomes, finally,
J = [(aof34 - a'j3)/(g0 + ao)][(Yll - y22X)2

+ 4(y1y22))1/2y12x + (Y11 + Y22X)NP]Y12/V[ I.

[20]

[21]
An expression for J/jo, where Jo is the unperturbed flux
(equation 10 of ref. 1), is obtained by replacing the aoj,3o bracket
[ I (in the numerator) by 1 + x.

Special Cases. There are many'special cases of Eq. 21, We
consider a few. Suppose, for example, that y2 = Y11Y22, which
might be expected for nonspecific van der Waals forces be-
tween the molecules. Then we find

J/Jo = (Ylly22) /2(l + x)/(yll + y22x). [22]
The distribution of states 1 and 2 along the chain is random,
with 0 = y22x/(Y11 + y22x)

Suppose W11 = W22 = -W12 (e.g., state 1 has a charge -1 and
state 2 a charge +1). Then y"i = Y22 and Y12 = l/Y22. If Y22 is
small as well (w22/kT - 00),

J/Jo ~ Y2I (1 + xl/2)2 (1 + x)/2x - 0. [23]

In this case the molecules tend to alternate their states:
1212--X.
The main special case we consider (1) is w11 = tW12= 0 and

W22 $ 0. That is, y"l = Y12 = 1. Incidentally, this could mean
physically (as in a real aggregate of enzymes), that w1I, say, is
chosen as the arbitrary zero of interaction free energy and that
W12= uW1 while w22 # wt11. Actually, relative to infinite sep-
aration, w I, would presumably be negative. For simplicity of
notation, we write y Y22. Then

(aoo -at/0\ [(1-yX)2 + 4yl/2x + (1 + yx)x7]
\3o+a0 / X [1 +2x + y2x2 + (1 + yx)]'

[24]
where

xf= [(1 - yX)2 + 4x]1/2.
Eq. 24 will be illustrated numerically below. When y - 0(22
pairs excluded),

(aoo -a(ofo0'
= \/3+ ao /

[1 + (1 + 4x)1/2]
(1 + 4x)1/2[1 + 2x + (1 + 4x)1/2]

[251
In this case, from Eq. 17, an alternative expression is

J = (aofo - a~O3)0/(ao + fo), [26]
which is the same as equation 26 of ref. 1 (for small M).
When y - co in Eq. 24 (strong attraction between state 2

neighbors),
J (aoo - ao-)/(ao + f3)y [27]

J/JO( +x)/y.

Almost all molecules are in state 2 (0 - 1); the flux is small.
Excluded 22 Pairs (y = 0). There is an alternative way to

obtain Eq. 26, which we digress to consider. This is based on the
finiteM approach in ref. 1. E(M) is the grand partition function
for a closed chain (Eq. 5); we denote the same function for an
open chain by Zo(M) (we used subscripts cl and op, respec-
tively, in ref. 1). For finite M the flux in Eq. 25 becomes (1)

J = [(ao'3o - a'oo)/(3o + ac)]Zo(M - 3)/_(M). [28]
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FIG. 2. Effect of interaction parameter y on relative flux J/Jo at
constant x (x = 1). TheM = - curve is for a one-dimensional system
with wII = W12 = 0. TheM = 2 curve (dotted) is for a pair of inter-
acting enzyme molecules with w11 = W12 = 0. The BW curve (broken)
is for the Bragg-Williams approximation (see Fig. 4). BW followsM
= X closely for y > 1. All three of these curves approach 2/y asymp-
totically as y - a. The lowest curve (i,M = a) is for the noncom-
parable case w11 = W= -w12 (Eq. 38).

The , quotient here can be seen directly (1) to be equal to O/x.
But we follow a more devious path. Using the relation (that can
be observed in equations 25 of ref. 1; see also the Appendix)

O (M) = #(M) + x2o(M-4) [29]
we have for the , quotient in Eq. 28:

= fZo(M - 3)quotient [30(
ZO(M) - X2 0'0(M-4) [0

In the limitM - c, the subscript can be dropped because open
and closed chains have the same properties. Thus,

_ quotient 21[ (M-3)/Z(M)] [31]

Now, from Eqs. 8 and 17,

(in Z)/M = In XI = lnj[1 + (1 + 4x)1/2]/21
= ln[(l-0)/(1 - 20)]. [32]

Also, we need the Taylor expansion

J,(M-m)= EM) + am (-m) +2! M2

[33]
where x and T are constant in the derivatives. Because In , is
an extensive property,

anP. (din A) n _ In a): n
amnam m ~~~~~~~~[34]

Thus, it follows from Eq. 33 that
M-m)/ (M) = exp 1-m[(In )/MM]}

= [(1- 20)/(1 - 0)]m. [35]
We substitute this result (for m = 3 and 4) into Eq. 31 and
use

x = 0(1 - 0)/(1 - 20)2 [36]

from Eq. 32, to obtain, finally,

quotient = (1 - 20)2/(1 - 0) = d/x. [37]
Some further properties of and Zo are given in the Ap-

pendix.
Numerical Examples. The effect of the interaction free

energy w22 on the flux is illustrated in Fig. 2. Here the solid
curve M = o is a plot of J/Jo, from Eq. 24, as a function of y
= ew22/kT with x held constant at x = 1 (i.e., there is no bias

I_E__!
0.1 02 03 04 0.5

FIG. 3. One-dimensional M = - system (Eq. 24) with one-way
cycle: J/f30 as a function of x (ligand concentration), with y constant.
See text for further details. The BW curve (Fig. 4) is for compari-
son.

with respect to state 1 or 2). Either attraction or repulsion be-
tween state 2 molecules reduces the flux below Jo. When y is
large, J/Jo o 2/y (Eq. 27). When y -O 0, J/Jo - 20 = 1 -
5-1/2 = 0.553 (Eq. 26).

Also included in Fig. 2 is a solid curve labeled i,M = oo. This
is for the case wil = w22 = -w12 (compare Eq. 23) with y Y22
and x = 1. Here we find

J/Jo = 4y2/(l + y2)2. [38]

This curve has symmetry with respect to y and y-.
The dotted curve in Fig. 2 is the x = 1 case for a pair of

molecules only (M = 2), with w1I = W12=0 and w22 # 0 as in
Eq. 24 for M = ao. From equation 19 of ref. 1,

J/Jo = 2(1 + y)/(3 + y2), [39]
where here y = y 12 = e-W22/2kT. The general definition of a
comparable variable for any system of this type (22 interactions)
is y = et '22/2'* where z = number of nearest neighbors (this
is used in the next section). WhenM 2, z = 1. Eq. 39 also gives
J/Jo -- 2/y for y A o, but J/Jo 2/3 for y - 0. There is
surprisingly little difference between the M = 2 and M = X
curves.

As a final example, we consider Eq. 24 as a function of x, with
y constant. To attach an explicit physical significance to the x
variation, one can suppose that (Michaelis-Menten): #3' is
negligible; 10 and a' are held constant; and ao = (do + ao) x is
a pseudo-first-order rate constant that is proportional to the
concentration of a ligand that is bound in the a0 (1 - 2) process.
That is, x is proportional to ligand concentration.

It is convenient to plot J/fBo as a function of x. For the un-
perturbed system (y = 1), Jo/fo = x/(l + x) = 0 (Michaelis-
Menten kinetics). For arbitrary y, J(x)/fo is given by Eq. 24
if we replace the aO,#O parentheses ( ) in that equation by x.
Fig. 3 shows J(x)/lo for y = 0, y = 1, and y = 10. The y = 0 and
y = 1 curves are also plots of 0(x) (above, and Eq. 26). The y =
1 curve saturates at a value 1, the y = 0 curve at 1/2 (Eq. 36).
The y = 10 curve corresponds to fairly strong attraction. In the
Bragg-Williams (BW) approximation (next section), there is
a phase transition at this y (the broken BW curve in Fig. 3 is
taken from Fig. 4). As y gets larger, the J(x)/fo curves become
flatter and lower, J/O -:l/y (Eq. 27), except for small x,
where J/ob_ x _ 0. Note the dominant qualitative fact that
this flux (l/y) is very small compared to the maximum flux
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Jo/13o -h 1 (as x -- co), because the ,3 transition 2 -- 1 occurs
against the attraction of two neighbors in state 2.
The two y = 10 curves in Fig. 3 are fairly similar in magni-

tude, though the BW curve has a discontinuity in slope. As is
well known, this one-dimensional system will not show a phase
transition (discontinuity) at any y.

Qualitatively (solid y = 10 curve), attractive interactions
increase the flux, compared to Jo/do, at small x but decrease
it at larger x. Computer calculations show that small repulsive
interactions decrease the flux for x < I and increase it for x >
1.
Bragg-Williams Approximation. This equilibrium ap-

proximation (2, 6, 7), also known as the mean field approxi-
mation, is extended here to steady states (8-12). It can be ap-
plied to one-, two-, and three-dimensional lattices (but may
predict a nonexistent phase transition in one dimension). The
basic idea is that the fluctuating instantaneous environment of
a given molecule, emphasized in ref. 1, is here replaced-as an
approximation-by a steady average environment. There is no
need, in this approach, to enumerate or consider the system-
states. It suffices to study a single (average) molecule in the
system and its states i (1).

Let pi (an unknown, to begin with) be the probability of any
state i for the "central" molecule. The same pi applies to the
nearest neighbors. The interaction free energy between the
central molecule in state i, and its z nearest neighbors, is then
Whe = Z2kPkWik, in which the sum is over all possible states k.
Similarly, if the central molecule is in state j, Wje = Z 2kPkWjk.
Thus, the altered rate constants for the arbitrary transition pair
ij of the kinetic diagram are, from equation 4 of ref. 1,

aj = ao exp [zfj Pk(Wtk - wjk)/kT]
[401

a1j = ao exp [z(1 - fq) E Pk (W'k - Wik)/kT].

The steady-state probabilities pi of the central molecule can
now be expressed, in the same way as for an independent
molecule (13), in terms of the rate constants ar of the kinetic
diagram. But the at values in the present problem themselves
depend on the pi (Eq. 40). Thus, we have a set of implicit
equations in the pi, together with lipi = 1, from which a self-
consistent set of pi must be found (numerically). The flux is then
calculated from the acj and the pi as for independent molecules
(13).

Two-State Cycle. As an explicit example, consider the two-
state cycle in Fig. 1 (an advantage of the BW approximation
is that arbitrarily more complicated kinetic diagrams than this
can also be handled numerically). The rate constants, from
equations 40 and 11 of ref. 1, are

a = aoYfa, a' = aoYfc'
= Oy-f3, Ai = f°Yl-fb, [41]

where
Y = (Y12/Y11)z(Y11Y22/Y 2)zO [42]

and 0 = P2 = 1 -P1: Also, P2 = 0 as a function of rate constants
is (13)

0=((a+f')/(a+ O'+3+ a'). [43]

Eq. 43 is the one implicit equation, here, in the one unknown
0. Having calculated 0 from Eq. 43, the flux per molecule is
given by (13)

In the special case fa + f,6 = 1, in this two-state system (1),
Eq. 43 takes the equilibrium form

0 = Yx/(1 + Yx)
or [45]

Yx=O/(1-0).

As is well known (2), this equation can produce a phase transi-
tion. Also, Eq. 44 becomes

J/Jo= Yf(1 + x)/(1 + Yx), [46]
where Jo is given by equation 10 of ref. 1. We takef = 1/2,
as usual (1).
We turn now to the special case w11 = W =2 0, for which Y

= YA. We define y = yz2 (see the sentence following Eq. 39).
Then Y = y20 and

y20x = 0/(1-0)

J/Jo = y0(1 + x)/(1 + y20x) [47]

When w22/kT is very small (y - 1),

J/Jo - 1 + (ZW22/2kT)0o(20o- 1) +.-., [48]
where 0o = x/(1 + x). The linear correction term here is zero
in Fig. 2 because 0o= 1/2 (x = 1).

Eq. 48 agrees with equation 20 of ref. 1 (z = 1) and with Eq.
24 (z = 2) in the limit y - 1. It is well known (2) that BW is
exact, in equilibrium systems, in the limit y - 1. It appears that
BW is also exact for any two-state, steady-state lattice system
with fa = fd = 1/2 (despite the additional kinetic instantaneous
d average environment assumption).
Numerical Examples. The broken curve in Fig. 2 is a plot

of Eq. 47 (J/Jo as a function of y) with x = 1. At large y, again
J/jo -- 2/y. The slope of J(y)/Jo becomes infinite as y -O 0 (the
BW approximation is especially unrealistic in this limit). Gen-
erally, the three top curves in Fig. 2 (M = 2, M = co, BW) are
very similar.
We next consider J as a function of x, with y constant, as in

Fig. 3. As in the preceding section, we take O' = 0 and ao = (Ao
+ ac)x. We have here

J(x)/0o = yOx/(1 + y20X). [49]
Fig. 4 shows J(x)/ 3o and 0(x)/10 for a number of choices of y.
The critical curve, with a cusp in the flux, is y = e2. There is a
phase transition for y > e2, for example, for y = 10. At the phase
transition, there is a discontinuity in 0(x) but only a discontinuity
in the slope of J(x) (the broken regions in the y = 10 curves are
metastable or unstable). That is, the flux is the same in the two
phases (as can be verified analytically). For large y, J/f0o -I l/y
(except at very small x, where J/03 _ x 0_ ). This is the same
asymptotic behavior as in the one-dimensional chain
(above).

This phase transition effect in J is interesting physically but
rather unlikely biologically. Note that whereas 0(x) allows the
usual single hysteresis loop (ref. 2, p. 251), J(x)/1o would exhibit
a corresponding "double loop" (like a bow tie).

In less symmetrical, non-quasi-equilibrium BW cases, the
flux is not the same in the two phases (part four, to be pub-
lished).

Dilute Two-State Enzyme in Solution. This problem will
be considered more extensively elsewhere. Here we state a few
results, without a detailed proof. We consider the simplest
possible case: we take fa, = fjg= 1/2 so that the steady-state
molecular distributions are as at equilibrium; -we assume ra-
dially dependent distributions only; also, we find only the sec-
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FIG. 4. Plots of J/#o (upper set) and 0/10 (lower set) as function
of x in the BW approximation with a one-way cycle and w11 = W12 =
0. This corresponds to Fig. 3 for a one-dimensional system. There is
a phase transition for y > e2. See text for further details.

ond "virial" coefficient for the flux. Infinite separation (r = co)
is chosen as the zero of interaction free energy for all pairs
(compare Eq. 24).
The interaction free energies are wi0 (r), with i, j = 1, 2. We

use the grand partition function method employed in equations
(15-78) and (15-79) of ref. 2 for the polarization of an imperfect
gas in an electric field. For the second "virial" coefficient, we
need consider only one molecule in the macroscopic volume
V (with flux J1, denoted by Jo above) and two molecules in V
(total flux J2 for the two molecules, including interaction ef-
fects). From the above two equations (replacing the electric
moment MN by JN), we find

J/JO = 1 + (Z2/J1V) (2J2-J1)P +* , [50]
where p is the total enzyme number density (N/V) and Z2 is the
configuration integral (2) for two molecules in V (see
below).
To find J2, we have to take into account the probability the

two molecules are in states ij, then the probability that they are
a distance apart between r and r + dr, and finally the instan-
taneous transition probabilities (equations 11 of ref. 1). We
obtain from these considerations

J2/2 = (JVIZ2),fj [(1 - 0o)(Y11Y12)"/2
+ 0o(Y22y12)'/2]4rr2dr. [51]

The explicit expression for Z2/V (2) is
00

Z2/V = [(1 - Oo)2Yn + 20o(l - Oo)Y12 + 02y22]4rr2dr,

[52]

where 00= x/(1 + x). Thus, finally, on substituting Eqs. 51 and
52 in Eq. 50, we have

Jij0 = P1 + 10 - o)(Y11Y12)/2 +Oo(y22y12)1/2]
-[(1 - 0o)2Yii + 20o(l - Oo)Y12 + 0Oy22]j47rr2dr + * .. [53]

The integral is the second "virial" coefficient for the flux.

APPENDIX
Inspection of Eqs. 18 and 19 shows the following "quasi-
chemical" relations (2), mentioned in the text:

NjjN221N1.2N2 -= Y11Y22/Y12
N121IN111 = Y12X/y i, N221/N211 = Y22X/Y11
N222/N212 = Y22X/YI2, N212N1j1/N 2l = 1.

Alternative combinations are possible.
Relations involving _ and 0o (Eqs. 28 and 29) are:

0 = M-1 dln Z/dln x = x Zo(M - 3)/Z(M)

[54]

[55]

[56]
x (M - 2) + _(M - 1) = -(M) (or ZO for Z throughout)

[57]
x Zo(M - 3) + Zo(M - 1) = Z(M) [58]

M(M -3)x2 + M(M-4)(M-5) 3O'.4m)+ x +
2! X+ 3!

+ M(M-5) ...(M -7)4+ [59]

Zo(M)=1+Mx+ (M -1)(M-2) 2
. 2!

+ (M-2) *. (M-4) x3 + . . . [60]

Eqs. 59 and 60 are polynomials that break off at the first zero
term (1). Eq. 29 follows from Eqs. 57 and 58.
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