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Abstract

Background—Several treatments for alcohol dependence have been tested in randomized 

clinical trials, giving rise to systematic reviews with a network of evidence, or mixed treatment 

comparisons, structure. Within the network, there are few direct comparisons of active treatments. 

Thus far, this network has not been adequately analyzed. For example, “indirect comparisons” 

between treatments (e.g., the comparison of treatments B:C obtained via estimates from A:B and 

A:C trials) have not been incorporated into estimates of treatment effects. This has implications 

for the planning of future randomized controlled trials.

Methods—We apply recent developments in Bayesian mixed treatment comparisons (MTC) 

meta-analysis to analyze the network of evidence. Using these results, we propose a methodology 

to inform, design, and power a hypothetical trial in the context of an updated meta-analysis, for 

treatments that have been infrequently compared, and therefore whose effects sizes are not well 

informed by meta-analysis.

Results—MTC meta-analysis provides more accurate estimates than pairwise meta-analysis and 

uncovers decisive differences between active treatments that have been infrequently directly 

compared. Weighting across all outcomes indicates that combination (naltrexone+acamprosate) 

treatment has the highest posterior probability of being the “best” treatment. If a new clinical trial 

were to be performed of combination therapy versus acamprosate alone, there is no feasible 

sample size that would result in a decisive meta-analysis.

Conclusions—MTC meta-analysis should be used to estimate treatment effects in networks 

where direct and indirect evidence are consistent, and to inform the design of future studies.

Background

Alcohol dependence is an important health risk factor that can lead to disability and death. 

Alcohol consumption is potentially avoidable, and effective strategies to help people who 

are dependent on alcohol to reduce excessive drinking and maintain abstinence following 

detoxification are needed. Several treatments have been tested in randomized controlled 

trials (RCTs) with various comparators of interest; thus, evidence synthesis strategies are 

needed for both decision-making, and planning new research studies based on the existing 

body of RCT literature.
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The clinical practice guidelines that inform medical decision-making should rely on 

evidence-based evaluations of treatment options, primarily systematic reviews of 

randomized controlled trials (RCTs). 1 Several systematic reviews of RCTs for 

pharmacological treatments for alcohol dependence have been conducted. 2-6 Very recently, 

two systematic reviews were published in the Cochrane data base,7,8 which represents the 

pinnacle of evidence synthesis. Cochrane reviews naturally give rise to a mixed treatment 

network of evidence structure (more technically termed an incomplete randomized block 

design of trials). Within a network, ‘direct evidence’ refers to evidence about 2 treatments 

that have been directly compared (e.g., A:B), while ‘indirect evidence’ refers to evidence 

about 2 treatments obtained from comparisons via a common comparator (e.g., the evidence 

for A:B derived from A:C and B:C trials).9 There is a growing body of literature termed 

‘mixed treatment comparison’ (MTC) meta analysis10-16 or ‘network meta-analysis’, where 

the objective is to combine all available evidence into an internally consistent set of 

estimates while respecting the randomization. The role of MTC synthesis is particularly 

clear in medical decision making where a choice must be made on which of several 

treatments to adopt in national treatment recommendations, which treatments to further 

study, and how to design those studies.

The goal of this paper is to assimilate the existing network of evidence using Bayesian MTC 

methods, and based on the findings, outline a methodology that could be followed to design 

a new trial. We first assess the assumptions of MTC, such as evidence consistency across 

direct and indirect comparisons.17-19 We then report and compare the resulting MTC 

estimates with those obtained from pairwise meta-analysis, and demonstrate improved 

efficiency of the MTC estimates. We present an overall ranking system weighted across the 

four outcomes of interest, to arrive at the “best” treatment. Finally, we use results and 

predictions from the Bayesian MTC model in a novel way to guide the planning of a 

hypothetical trial for treatments infrequently directly compared that takes into account the 

entire existing network of evidence.

Methods

Data

Two Cochrane database systematic reviews of naltrexone (NAL) and acamprosate (ACA) 

have been performed and updated as of 20087 and 2011,8 respectively. Figure 1 shows the 

RCT network structure where the bracketed number represents the number of trials reporting 

each outcome as extracted from the Cochrane Database for the return to drinking outcome 

only. The network demonstrates that all direct comparisons have been studied, but 

naltrexone and acamprosate have only been directly compared three times, and their 

combination has only been directly compared to placebo twice. For additional information, 

the reader is referred to Table 1 in the Supplementary Material, which presents summary 

data from each trial in the multi-arm network. Given that there are only 3 direct comparisons 

of ACA versus NAL in the literature, results for this comparison have been equivocal, i.e., 

neither treatment has been shown via pairwise meta-analysis to be superior. In addition, 

given only 2 direct comparisons of combined NAL+ACA with any treatment, no significant 
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effects have been found. Since few studies consider direct comparisons of active treatments, 

it is essential that meta-analysis incorporate the plethora of indirect comparisons.

Mixed Treatment Comparisons Model

We perform a random effects mixed treatment comparisons meta-analysis for the 

randomized controlled trials reported in the Cochrane database. All outcomes are modeled 

independently (univariately). We use a Bayesian hierarchical framework to model three 

binary outcomes, relapse, return to drinking, and discontinuation (R, RD, and D, 

respectively) and one continuous outcome, percent days abstinent (PDA). We use odds ratio 

to summarize the binary outcomes R, RD, and D, and mean differences to summarize PDA.

For the binary model, let the total number of events in the ith study for intervention k be 

denoted by yik, and the corresponding number of patients be denoted by nik. The probability 

of an event (pik) is given based on the observed number events in each study arm. We use 

the logistic regression difference parameterization of Lu and Ades 17 whereby each study, i, 

is assigned a reference intervention arm, b, and the corresponding log-odds for that 

intervention is denoted μib. The parameter δibk denotes the ith trial log odds ratio for 

intervention k relative to intervention, b, where δibk is assumed to be normally distributed 

with pooled mean treatment effect, dbk, and common (homogeneous) variance, σ2. The odds 

ratio model can be expressed as,

Where pik is the probability of an event in trial i under treatment k and. Taking treatment A 

as the overall MTC baseline, all relative treatment effects can be written in terms of the 

following basic parameters, the consistency equations, 17

We estimate the posterior densities of the parameters of interest using MCMC methods 

implemented in freely available WinBUGS software.19,20 We adapt the WinBUGS code 

presented in 21,22(program 1c for binary outcomes and 5a for normal outcomes). We specify 

vague prior distributions for all the parameters, allowing the data to drive inference. 

Specifically, we assign each μi and di to be N(0,10000), which are essentially quite vague 

though proper. For the log odds ratio model we assign the common standard deviation, σ, a 

Uniform (0,5) prior, which is assumed to be the same for all pairwise comparisons. This 

prior distribution provides the appropriate weight to the possibility of small or zero variance. 

For the continuous outcome (percent days abstinent), we use the specification of program 

5a,22,23 with a normal likelihood, identity link, and normal random effects (we refer the 

reader to the original paper for the model set up). We specify the prior distribution for 
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between trial variance as a Uniform(0, 10). For each outcome, we also graphically assess 

model sensitivity to other prior distributions.

Mixed Treatment Comparison Model Evaluation

To assess model convergence we use trace plots and the Brooks-Gelman-Rubin statistic. For 

each analysis we run two chains, each employing 40,000 iterations burn-in and monitoring 

an additional 40,000 iterations, basing posterior inference on every second sample to reduce 

autocorrelation in the sample. Thinning is chosen based on the observation of 

autocorrelation plots with the goal of minimizing autocorrelation in the resulting chain.

When carrying out MTC meta-analysis, it is essential to first check the consistency of direct 

and indirect sources of evidence using a hypothesis testing framework. We assess 

consistency based on both “node splitting” and the deviance information criteria (DIC). 18,24 

Node splitting separates evidence available for a particular treatment comparison (i.e., node 

in a directed acyclical graph, DAG) into ‘direct’ and ‘indirect,’ 18 and the conflict between 

direct and indirect evidence sources is measured by comparing their posterior distributions. 

Using the methods of 18 we obtain the posterior mean treatment effect dA, B
dir, from the 

pair-wise meta-analysis of the trials comparing A and B directly, and obtain dA, B
indir from 

the MTC meta-analysis of the remaining studies, (i.e., trials including A and C and the trials 

including B and C). Note that the underlying model of node-splitting is the same as the 

model presented in the Methods, except that the trial-specific LORs δA, B are assumed to be 

drawn from N(dA,B
dir, σ2) and N(dA,B

indir, σ2) for the direct and indirect evidence, 

respectively. We then examine the posterior distribution of the inconsistency parameter, 

ωA,B = dA,B
dir − dA,B

indir to determine whether the data satisfies the evidence consistency 

null hypothesis, H0: dA,B
dir = dA,B

indir (i.e., that direct and indirect effect sizes arise from 

the same distribution). This is accomplished by fitting the model and using MCMC results to 

compute the proportion (prob) of times ωXY > 0 in the sample. The reported p-value for the 

hypothesis test of evidence consistency obtained by node splitting is p= 2 × min(prob,1-

prob). As a second evidence consistency check, we compare the DIC resulting from the full 

MTC model to that resulting from the node-split models; a reduced DIC for the node split 

model signifies a potential inconsistency between the direct and indirect sources of evidence 

on that node. Although DIC has no meaningful scale, typically differences of 5-10 (smaller 

is better) signal an improvement in fit, and this is how we interpret model comparisons in 

this paper. 24

For each outcome we also compare Bayesian MTC meta-analysis posterior mean effects and 

95% credible intervals (CIs) with those from Bayesian random effects pairwise meta 

analyses of head to head (direct) comparisons. For the outcomes relapse, return to drinking, 

and discontinuation, all results are presented in terms of posterior odds ratios (OR) (95% CI) 

where a value > 1 indicates a worse outcome. For percent days abstinent, results are reported 

in terms of posterior mean difference in percent days abstinent (95% CI). In general, a 

decisive or “significant” effect corresponds to a 95% credible interval excluding 1 for ORs 

and 0 for mean differences. As in Ades et al (2011),25 we report the standard deviation (σ) 

and its 95% CI, the posterior mean residual deviance, the effective number of parameters, 

and the DIC for each MTC model.
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Planning a new trial

The effect size used to generate the sample size for new trials is typically derived from 

observed effect sizes from previous clinical or preclinical trials, or at best, from a reported 

meta-analysis. This effect size is then used to power the trial in isolation of accumulated 

evidence. However, the empirical distribution of observed meta-analysis effect sizes should 

not be used to plan future trials since this distribution of estimates is overdispersed. New 

research suggests that basing the sample size of a future trial on the results of an updated 

meta-analysis that will include it, is more sensible than powering a future trial in isolation.26

Posterior distributions of effect sizes and posterior predictive distributions for a new 

observation are natural consequences of Bayesian estimation and sensible tools on which to 

base future studies. A predictiveeffect size, δbk(new), can be generated and given a fixed 

baseline group effect size, used to generate a new observation, yik(new), from a fixed sample 

size. However, no closed form expression for this distribution exists and hence sampling 

from it within a simulation framework such as that offered by Bayesian MCMC methods 

would appear to be the most straightforward.

We apply the following approach in the MTC meta-analytic setting adapted from (21) for 

planning a 2 arm RCT with equal patient allocation and binary outcome based on odds 

ratios, and testing H0: δbk = 0 versus H1: δbk is not equal to 0:

1. While fitting the MTC meta-analysis in WinBUGS, generate an estimate, δbk(new).

2. Given the predicted effect size δbk(new) and assumed known reference group (b) 

event rate, calculate the event rate in group k and stochastically generate a new set 

of data, yk(new) from a binomial distribution with fixed sample size, nk(new).

3. Using the standard hypothesis testing framework, run 1000 simulations whereby 

each data set generated under a fixed sample size, nk(new) is included in an updated 

MTC metaanalysis.

4. The percentage of times the meta-analytic finding is decisive (or “significant”), in 

the new MTC meta-analysis is the proposed power of the study. Thus, power is 

calculated by adding the study to the MTC meta-analysis for each simulation 

iteration, and assessing the proportion of times which the MTC meta-analytic 

estimate for k:b is decisive (i.e., 95% credible interval excluding 1).

5. Repeat 1-4 for user-specified fixed sample sizes with range [0,2000].

Results

Mixed Treatment Comparison Model Evaluation

The exact p-values for the test of the null hypothesis of evidence consistency formulated by 

node splitting comparisons of direct and indirect evidence, as well as node splitting and full 

model DICs are reported in Table 1. All hypothesis tests of evidence consistency are non-

significant at the .05 alpha-level, indicating consistent directionality of evidence and 

therefore, the appropriateness of MTC meta-analysis for this treatment network. Further, the 
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DICs reported for the full MTC model are consistently lower than those reported from the 

node-split model, which provides additional evidence of consistency.18

Table 1 also shows that for the binary outcomes, the posterior mean standard deviation is 

moderate-sized (range = [0.25,0.43]), and different from zero for all three binary outcomes 

but within an expected range as per previous reports (e.g.,25). For the continuous outcome 

PDA, the posterior mean SD is also moderate-sized. Global goodness of fit tests including 

posterior mean of the residual deviance, DIC, and effective degrees of freedom (pD), are 

also reported in Table 1. Figure 2 shows that the posterior mean estimate of σ for a range of 

uniform priors remains unchanged for the log odds ratio model, and also remains unchanged 

for upper bound greater than or equal to 10 for the continuous model. Thus, we use a prior 

distribution of U(0,10) for the continuous outcome .

Mixed Treatment Meta-Analysis Results

Figure 3 presents results of the pairwise meta-analysis of head to head trials (left) and MTC 

meta-analysis (right) for all possible treatment comparisons. MTC and pairwise results are 

directionally similar, which is expected given confirmed evidence consistency. However, for 

infrequently compared active treatments, 95% CIs are much narrower for the MTC model. 

The MTC model clearly benefits from greater precision since common comparator 

information available from the network of evidence is utilized to improve estimates.

Of primary interest is how ACA compares to NAL since only 3 direct comparisons of these 

treatments have been performed, resulting in not statistically significant pairwise meta-

analytic findings. From MTC meta-analysis, ACA increases the odds of relapse versus NAL 

(OR=1.64 [1.10,2.56]). This effect previously was not found to be significant, although was 

in the same direction.7,8 Similarly, ACA increases the percent days abstinent over NAL 

(mean difference=7.14[4.13, 10.11]), which was also not previously detected as significant 

in pairwise meta-analysis. These findings are consistent with the clinical literature, which 

posits naltrexone as a treatment for relapse and acamprosate for the maintenance of 

abstinence.27 Thus, MTC analysis confirms that these treatments appear to have beneficial 

effects on different aspects of drinking behavior.

Figure 3 also indicates that combined NAL+ACA versus placebo reduces the odds of 

returning to drinking (OR=0.42[0.16,0.84]). While this is a greater estimated effect size than 

either NAL or ACA versus placebo, MTC results indicate that combination treatment is not 

better than either NAL or ACA alone; however, combination treatment has rarely been 

directly compared with active treatments.

The posterior probabilities of being among the kth best treatments are presented as 

rankograms in Figure 4.25 The 4 panels show the probability of being the first, second, third, 

and fourth best treatment for each outcome. While these estimates should not be interpreted 

conclusively (because they are close in value due to the considerable uncertainty in 

inference about relative treatment effects, as demonstrated in Figure 3), they are potentially 

informative for deciding which treatments to further study. It is notable that placebo is never 

the best treatment. Naltrexone appears to be superior for reducing the odds of relapse (mean 

probability of being the best = 0.59) while ACA appears to be superior for percent days 
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abstinent (mean probability of being best = 0.82). With respect to discontinuation, all 

treatment groups appear to be equivalent. We further estimate a weighted rank across the 

four outcomes using an equal weighting scheme in the absence of prior information as to 

which outcome is more important (0.25 for each outcome). The posterior probability of 

being the best treatment is 0, 0.35, 0.24, and 0.41 for PLB, ACA, NAL, and NAL+ACA, 

respectively. Although MCT meta-analysis is able to provide decisive estimates of treatment 

effects when pairwise meta-analysis cannot, the posterior rankings for the 3 active 

treatments are still inconclusive.

Planning a New Trial

There is some indication by the weighted (omnibus) posterior rankings, that the treatment 

combination of NAL+ACA has the highest posterior probability of being the best treatment. 

This finding is driven by the outcomes RD and relapse. However, decisive effects of the 

combination treatment versus ACA alone are not detected by MTC meta-analysis (MTC OR 

= 0.81[0.31,1.58] for RD and 0.69[0.32,1.14] for relapse); however, few head to head trials 

of combined therapy with any comparator exists. A decisive effect is also not detected in 

pairwise meta-analysis, a result based on only 2 head to head trials (Figure 1). Specifically, 

one of these head to head trials did not 27 and one did 28 show a significant effect of 

combined therapy over ACA monotherapy. Importantly, the trial that did not show 

significance was 10 times larger than the one that did, thus it provides the majority of the 

weight in meta-analysis.

Given the equivocal results in light of very little direct evidence for this comparison, subject 

matter researchers might still question whether there is any benefit of the treatment 

combination over ACA. In fact, studies are currently underway to detect such effects. 29,30 

As a result, we plan a hypothetical new 2-arm trial for RD and relapse powered in the 

context of an updated MTC meta-analysis to further investigate these interventions. Since 

most RCTs favor the 2 arm approach, we consider this case for ease of presentation, 

although the approach easily could be extended to any number of treatment arms. The 

following serves as an example of how such a study might be planned.

For the outcomes relapse and RD, we obtain predictive estimates for the effect size (log 

OR), δNAL+ACA:ACA(new), where the event rate of ACA (the reference group) is assumed 

known from the 24 placebo-controlled trials of acamprosate (Figure 1). The distribution of 

1000 sampled predictive effect sizes for the outcomes is shown in Figure 5. Following the 

methodology outlined in the Methods, Figure 6 shows the power curve for the hypothetical 

trial designed in two ways: 1.) in isolation, as a single new clinical trial that is not part of the 

network of evidence, and 2.) in the context of the network of evidence presented in Figure 1, 

which after the trial’s completion, would be subject to a new MTC meta-analysis. Designing 

this trial in isolation requires a feasible sample size to obtain 80% power to detect a 

significant effect on either outcome; however, obtaining 80% power to detect a decisive 

effect in a new MTC meta-analysis is infeasible, as the power curve asymptotes at 

approximately 0.60 and 0.18 for relapse and RD, respectively, for any reasonable sample 

size. The reason for this is that irrespective of the size of the new study, its influence in 

random effects meta-analysis is limited by the degree of heterogeneity in the analysis. In 
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fact, the sample size directly depends on the amount of heterogeneity in the existing network 

of trials, as the weight of the ith study in classical random effects meta-analysis is 

where  is the estimated variance of the effect size in the ith (i.e., new) study. 26 In our 

MTC meta-analysis, the posterior estimate σ2 is moderately large (Table 1), which means 

the contribution of the new study is proportionally down-weighted. The result is that 

designing a trial in isolation using the observed random effects meta-analytic effect size will 

underestimate the size of the trial that needs to be performed to add to the existing network 

of evidence. This process was repeated by breaking up the new study into several smaller 

studies. While power improves slightly, 80% power is still not achieved.

Conclusion

Mixed treatment evidence structures are more common than pairwise structures, 17 and 

research supports refining evidence synthesis by incorporating both direct and indirect 

treatment comparisons to better inform health care decisions. 9,16,17,31,32 The role of MTC 

synthesis is particularly clear in medical decision making where a choice must be made on 

which of several treatments to adopt in national treatment recommendations, as well as 

which treatments to further study and how to design those studies. We have shown that 

consistency of evidence is established for treatments for alcohol dependence, which 

indicates that a relatively homogenous internal structure exists. We have shown that utilizing 

MTC evidence allows for the detection of significant effects for treatments that are 

infrequently directly compared (e.g., ACA vs NAL and NAL+ACA vs Placebo), tighter 

credible intervals when indirect effects are exploited, and posterior rank ordering of 

treatments.

The results of our MTC analysis can assist planning and decision-making by determining 

which treatment comparisons lack direct and/or indirect evidence, and need to be further 

compared. Specifically, this is achieved by determining effect sizes from a new trial using 

posterior or posterior predictive estimates from MTC meta-analysis, and then designing the 

trial in the context of a new MTC meta-analysis. We have presented a methodology for 

using Bayesian MTC meta-analysis results to determine which treatments should be further 

studied, for generating predicted clinical trial data, and for powering the new study in the 

context of refitting the meta-analysis. The simulations show that the power for designing a 

trial in isolation versus in the context of meta-analysis can be dramatically different, and 

depends both on the number of direct comparisons and between trial heterogeneity.

Although we did not pursue it in this paper, the value of information (VoI) may also be used 

for to design and prioritize future trials. 33 This methodology involves evaluating the 

likelihood that the decision will change following the new study, as well as the net benefit in 

performing the new study. These quantities of interest depend on source of variation in the 

current meta-analysis and the predictive heterogeneity. Greater certainty and smaller study 

bias result in larger value of information. VoI can be evaluated for a range of different types 

of studies, for example, muti-arm and multi-center, in order to prioritize the RCT to perform 

next.
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Our approach easily could be extended to designing a study for any number of treatment 

arms, which is a scenario of importance due to the difficulty of such designs. In general, 

when planning a >2 arm clinical trial, identifying a priori the correlation structure between 

several treatment effects can be difficult. In the context of a heterogeneous MTC model for 

multi-arm networks of evidence, the correlation among treatment groups within a study 

would be propagated through the Bayesian MTC meta-analytic model to the posterior 

predictive estimates of effect size for a new study; thus, this correlation structure would 

automatically be taken into account when designing the new study.

Limitations of the current study along with further research directions must be addressed. 

Firstly, our analysis of several outcomes likely inflates the type I error rate. Rather than 

enforcing a strict correction for multiple comparisons, this could be addressed in future 

research via a multivariate MTC meta-analysis, which would help control the type I error 

rate by exploiting correlation in outcomes, and by borrowing information in light of missing 

outcomes. Secondly, while naltrexone decreases relapse and acamprosate improves percent 

days abstinent, which is consistent with their biochemical nature, when taking all 4 

outcomes into consideration simultaneously, there is no consensus as to which treatment is 

best.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 

DeSantis and Zhu Page 12

Med Decis Making. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



DeSantis and Zhu Page 13

Med Decis Making. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



DeSantis and Zhu Page 14

Med Decis Making. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



DeSantis and Zhu Page 15

Med Decis Making. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. 
Posterior mean and 95% credible intervals for pairwise (left) and MTC (right) meta-analysis. 

An OR < 1 and a positive % days abstinent (PDA) both favor the first treatment in the 

comparisons.
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Figure 3. 
Posterior mean standard deviation (y-axis) for a sensitivity analysis to prior specification for 

the standard deviation parameter, σ (x-axis).

DeSantis and Zhu Page 17

Med Decis Making. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4. 
Treatment rankings: probability that each treatment is the kth best (k=1,2,3,4) on reducing 

relapse, return to drinking, discontinuation, and increasing percent days abstinent.
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Figure 5. 
Sampled effect sizes for relapse (left) and return to drinking (right).
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Figure 6. 
Power and sample size curves for a study of naltrexone+acamprosate versus acamprosate 

designed in isolation (dashed line) and a study designed to detect significance in a new MTC 

meta-analysis (solid line) for the outcomes relapse (top) and return to drinking (bottom).
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Table 1

Goodness of fit statistics for Node splitting models. Dbar = posterior mean of the residual deviance, 

DIC=Deviance Information Criteria, pD=effective degrees of freedom.

Treatment
Comparison

Node splitting
Posterior mean
SD (95% CI)

Dbar DIC pD
MTC

Posterior mean
SD (95% CI)

Dbar DIC pD Inconsistency
(p-value)

Relapse:

 NAL:PLB 0.23(0.01,0.52) 291.4 328.5 37.1 0.14

 ACA:PLB 0.25(0.01,0.51) 290.7 328.0 37.3 0.87

 NAL+ACA:PLB 0.25(0.01,0.25) 291.8 329.7 37.9
0.25(0.02,0.58) 177.7 199.8 22.1

0.45

 ACA:NAL 0.23(0.01,0.52) 291.0 328.3 37.3 0.16

 NAL:NAL+ACA 0.26(0.01,0.54) 291.0 329.1 38.1 0.39

 ACA:NAL+ACA 0.25(0.01,0.54) 291.7 329.5 37.8 0.64

Return to
Drinking:

 NAL:PLB 0.47(0.28,0.69) 503.7 578.7 75.0 0.84

 ACA:PLB 0.46(0.27,0.68) 504.6 579.1 74.5 0.16

 NAL+ACA:PLB 0.49(0.30,0.71) 503.1 578.4 75.3
0.43(0.21,0.66) 398.8 456.0 57.2

0.50

 ACA:NAL 0.47(0.29,0.69) 503.9 578.9 75.0 0.77

 NAL:NAL+ACA 0.49(0.31,0.70) 503.1 578.5 75.4 0.71

 ACA:NAL+ACA 0.48(0.29,0.70) 503.7 578.6 74.9 0.30

% Days
Abstinent:‡

 NAL:PLB 8.59(6.45,9.93) 341.7 394 52.1 0.49

 ACA:PLB 8.56(6.41,9.93) 340.7 393 52.0 0.70

 NAL+ACA:PLB 8.49(6.26,9.93) 342.0 394 51.8
7.29(5.05,9.69) 246.2 290.7 44.4

0.08

 ACA:NAL 8.60(6.47,9.94) 341.2 393 52.0 0.34

 NANL:NAL+ACA -- -- -- -- --

 ACA:NAL+ACA 8.50(6.29,9.93) 343.4 397 53.3 0.86

Discontinuation:

 NAL:PLB 0.41(0.27,0.58) 546.8 624.6 77.8 0.63

 ACA:PLB 0.41(0.26,0.57) 547.3 624.8 77.5 0.28

 NAL+ACA:PLB 0.41(0.27,0.58) 546.9 624.7 77.8
0.39(0.24,0.57) 459.5 523.4 66.9

0.62

 ACA:NAL 0.41(0.27,0.58) 547.3 625.5 78.2 0.58

 NAL:NAL+ACA 0.42(0.27,0.58) 546.6 624.4 77.8 0.59

 ACA:NAL+ACA 0.41(0.27,0.58) 546.9 624.5 77.6 0.29
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