
Vol. 30 no. 24 2014, pages 3524–3531
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btu584

Sequence analysis Advance Access publication August 28, 2014

Merging of multi-string BWTs with applications
James Holt* and Leonard McMillan
Department of Computer Science, 201 S. Columbia St. UNC-CH, Chapel Hill, NC 27599, USA

Associate Editor: Michael Brudno

ABSTRACT

Motivation: The throughput of genomic sequencing has increased to

the point that is overrunning the rate of downstream analysis. This,

along with the desire to revisit old data, has led to a situation where

large quantities of raw, and nearly impenetrable, sequence data are

rapidly filling the hard drives of modern biology labs. These datasets

can be compressed via a multi-string variant of the Burrows–Wheeler

Transform (BWT), which provides the side benefit of searches for ar-

bitrary k-mers within the raw data as well as the ability to reconstitute

arbitrary reads as needed. We propose a method for merging such

datasets for both increased compression and downstream analysis.

Results: We present a novel algorithm that merges multi-string BWTs

in OðLCS�NÞ time where LCS is the length of their longest common

substring between any of the inputs, and N is the total length of all

inputs combined (number of symbols) using OðN� log2ðFÞÞ bits where

F is the number of multi-string BWTs merged. This merged multi-string

BWT is also shown to have a higher compressibility compared with the

input multi-string BWTs separately. Additionally, we explore some

uses of a merged multi-string BWT for bioinformatics applications.

Availability and implementation: The MSBWT package is available

through PyPI with source code located at https://code.google.com/p/

msbwt/.

Contact: holtjma@cs.unc.edu

Received on March 18, 2014; revised on June 26, 2014; accepted on

August 25, 2014

1 INTRODUCTION

The throughput of next-generation sequencing (NGS) technolo-

gies has increased at such a rate that it is now on the cusp of

outpacing downstream computational and analysis pipelines

(Kahn, 2011). The result is a bottleneck where huge datasets

are held on secondary storage (disk) while awaiting processing.
Raw sequence (e.g. FASTQ) files, composed of sequence and

quality strings, are the most common intermediate piling up at

this bottleneck. Moreover, the rapid development of new ana-

lysis tools has led to a culture of archiving raw sequence files for
reanalysis in the future. This hoarding tradition reflects an

entrenched notion that the costs of data generation far exceed

the costs of analysis. The storage overhead of this bottleneck

can be somewhat alleviated through the use of compression.
However, decompression generally requires additional computa-

tional stages to decompress datasets before their use, which fur-

ther impacts the throughput of subsequent analyses. This, in

turn, has led to the need for algorithms that can operate directly
on compressed data (Loh et al., 2012).

Others have previously proposed representing raw sequencing

data in a form that is more compressible and indexed in a way

that is suitable for direct queries by downstream tools (Bauer
et al., 2011; Cox et al., 2012; Mantaci et al., 2005). Our primary

contribution is a method for merging these indexable represen-
tations of NGS raw sequence data to increase compressibility

and search through all merged datasets with one query. The

entire collection of reads can be efficiently searched for specific
k-mers and the associated reads recovered.
We leverage a Burrows–Wheeler Transform (BWT) variant

that has been adapted to string collections by Bauer et al.,

2011 for representing raw sequence data. Originally, the BWT
was introduced as an algorithm for permuting a string to

improve its compressibility (Burrows and Wheeler, 1994). The
BWT of a string is closely related to a suffix array for the same

string. In fact, it is merely the concatenation of the symbols

preceding each suffix after those suffixes have been sorted.
A special ‘end of string’ symbol (commonly ‘$’) is used as the

predecessor of the string’s first symbol. The BWT increases string
compressibility because it tends to group similar substrings

together, which creates long runs of identical predecessor sym-
bols. The BWT was exploited by Ferragina and Manzini (2001)

who proposed an FM-index data structure that allows for

searches of the BWT’s implicit suffix array to be performed.
Additionally, these searches were shown to run in O(k) time

where k is the query length, meaning that the BWT’s length
does not affect the query time. Moreover, they showed that the

FM-index can be constructed ‘on-the-fly’ in a single pass over a

string’s BWT. The combination of the BWT and the FM-index
allows large strings to be compressed into a smaller searchable

form. A basic example of the BWT and the associated FM-index
is shown in Table 1.

In bioinformatics, the BWT has proven to be a useful tool for
aligning short reads. The fundamental problem of short-read

alignment is to take small strings and place them along a
larger string such that the edit distance between corresponding

letters is minimized. The BWT is most often used to represent a

reference genome so that it can be searched for smaller sub-
strings. Two prominent aligners, BWA (Li and Durbin, 2009)

and Bowtie (Langmead et al., 2009), take advantage of the BWT
for alignment.

As sequencing and alignment rises in prominence, storing bil-
lions of reads on disk has become a common problem. Recently,

several researchers have worked to apply the compression of the
BWT to these large short-read sets. The BWT can be trivially

constructed with multiple strings by simply concatenating them

with a distinguishing breaking symbol as was done by Mantaci
et al. (2005). Multi-string BWTs constructed this way generate

suffixes that combine adjacent strings. Bauer et al. (2011)*To whom correspondence should be addressed.

3524 � The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

https://code.google.com/p/msbwt/
https://code.google.com/p/msbwt/
mailto:holtjma@cs.unc.edu
ex.
s
prior to
,
which
; 
Bauer etal., 2011; Cox etal., 2012
,
-
-
``
''
-
n't 
effect 
``
''
very 
,
,


proposed a different multi-string BWT structure where compo-

nent strings were both lexicographically ordered and would

cycle on themselves, rather than transition to an adjacent

string, when repeated FM-index searches were applied. Both ver-

sions allow reads to be compressed and indexed to perform

searches. The Bauer et al. (2011) version was modified further

by Cox et al. (2012) to increase the compression by modifying

the order of the component strings. Both multi-string BWT con-

struction methods require a preprocessing of the entire uncom-

pressed string collection before assembling the BWT. In Bauer

et al. (2011), the string dataset must first be sorted. On large

datasets, this might require an ‘out-of-core’ or external sorting

algorithm. The Cox et al. (2012) approach uses heuristics to

choose a string ordering that maximizes the compression benefits

of the BWT; this also requires an examination of the entire

corpus.
In this article, we address the problem of merging two or more

multi-string BWTs such that the result is a multi-string BWT

containing the combined strings from each constituent multi-

string BWT. Additionally, we require the strings in the resulting

BWT to be annotated such that the origin of each string (in terms

of which input it came from) can be identified later. The reasons

for merging include adding new information to an existing data-

set (more data from a sequencer), combining different datasets

for comparative analysis and improving the compression. Others

have addressed problems related to merging BWTs, and three of

these are of particular interest.
The first is a BWT construction algorithm, which incremen-

tally constructs a BWT in blocks and then merges those blocks

together (Ferragina et al., 2012). The algorithm creates partial
BWTs in memory. These partial BWTs are not true independent
BWTs because they reference suffixes that are not included in the

partial BWT (they either were processed previously or will be
processed later). The partial BWTs are then merged into a final
BWT on disk by comparing the suffixes either implicitly or

explicitly depending on the location of the suffixes. Their algo-
rithm is primarily applicable to constructing a BWT of long
strings. However, it could be adapted by inserting one string

at a time almost as if the string set were one long string. The
memory overhead of the modified algorithm would require
reconstituting the string collections for all but one of the inputs

(the one used as the starting point), and then iteratively going
through each string one at a time until the merged result was

constructed.
The second algorithm, proposed by Bauer et al. (2011, 2013),

is also a BWT construct algorithm that creates a multi-string

BWT by incrementally inserting a symbol from each string
‘columnwise’ until all symbols are added to the multi-string
BWT. Given a finished BWT, they also describe how to add

new strings to the BWT using this algorithm. This algorithm
could be adapted to solve the proposed BWT merging problem
by keeping one input in the BWT format and decoding all of the

other inputs into their original string collections. Then, their
construction algorithm would merge each collection into the
BWT. As with the first algorithm, the main issue with this

approach is storage overhead of decoding each BWT into its
original string collection.
The third algorithm is a suffix array merge algorithm proposed

by Sir�en (2009), which computes the combined suffix array for
two inputs. These suffix arrays are actually represented as two
multi-string BWTs. The algorithm searches for the strings of one

collection in the other BWT to determine a proper interleaving
of the first suffix array into the second. Once the interleaving

is calculated, the merged BWT is trivially assembled. The algo-
rithm requires an additional auxiliary index (such as the
FM-index) to support searching. The memory overhead of an

unsampled FM-index is O(n), where n is length of the BWT.
Sampling of the FM-index impacts search performance.
Moreover, this algorithm is ill-suited to multiple datasets (more

than two) to merge. In this case, the algorithm performs multiple
merges until only one dataset remains.
Our algorithm merges two or more multi-string BWTs directly

without any search index or the need to reconstitute any string or
suffix of the input BWTs. The only auxiliary data structures
required are two interleave arrays, which identify the input

source of each symbol in the final result, so the only auxiliary
data structures used by the algorithm are stored as part of the
result. The merging is accomplished by permuting the interleaves

of the input BWTs, which we prove is equivalent to a radix sort
over the suffixes of the string collections.

2 APPROACH

As with the approaches of Bauer et al., 2011, 2013; Ferragina

et al., 2012; Sir�en, 2009, our approach also takes advantage of
the fact that a BWT and the suffix array are two related data
structures. Intuitively, when BWTs are merged, the relative order

of the suffixes within each original BWT do not change because

Table 1. A sample BWT for the string ‘ACACAC$’

Index Rotations Sorted rotations BWT Counts

$ A C

0 ACACAC$ $ACACAC C 0 0 0

1 CACAC$A AC$ACAC C 0 0 1

2 ACAC$AC ACAC$AC C 0 0 2

3 CAC$ACA ACACAC $ $ 0 0 3

4 AC$ACAC C$ACACA A 1 0 3

5 C$ACACA CAC$ACA A 1 1 3

6 $ACACAC CACAC$A A 1 2 3

Total — — — 1 3 3

Notes: The ‘$’ represents the ‘end-of-string’ symbol, which is lexicographically smal-

ler than all other symbols. All rotations of the string are shown on the left most

column. These rotations are then sorted in the second column. Finally, the BWT is

the concatenation of the predecessor symbols from each sorted rotation (the last

column of the sorted rotations), ‘CCC$AAA’. The occurrence counts of the

FM-index are also shown on the right side of this table. This is a count of the

occurrences of each symbol before (but not including) that index. Given that

the suffixes starting with ‘$’, ‘A’ and ‘C’ start at 0, 1 and 4, respectively (offsets

into the BWT), the FM-index can be used to identify the index of the suffix that

starts with the predecessor symbol for another suffix. For example, the first entry

in the BWT is a ‘C’. The corresponding position in the BWT of that ‘C’ is found by

taking the offset of ‘C’, which is 4, and adding the value of the FM-index at 0 for

‘C’, which is 0. The suffix at 0 is ‘$ACACAC’ and the suffix at 4 is ‘C$ACACA’,

which is the suffix starting with the predecessor symbol for the suffix starting

at index 0. Bold indicates that the final symbol (character) of the suffixes is equiva-

lent to the BWT.

3525

Merging of multi-string BWTs

,
prior to
``
''
,
,
paper
,
actually 
very 
``
''
'
-
-
-
-


they maintain a stable sort order, as discussed by both Sir�en,
2009 and Ferragina et al., 2012. This means that the merged

BWT can be defined as an interleaving of the original input

BWTs (Sir�en, 2009).
The proposed BWT merging algorithm is an iterative method

that converges to the correct interleaving of BWTs. It starts by

assuming that the interleaving is just a concatenation of one

BWT onto the other. Then, in each iteration, it adjusts the cur-

rent interleaving during a pass through the multi-string BWT
inputs. Each iteration acts as an implicit radix sort to correct

the interleaving (Knuth, 1973). After the first iteration, the first

symbols of each suffix (‘A’, ‘C’, ‘G’, etc.) are grouped. After the

second iteration, all identical dimer suffixes (‘AA’, ‘AC’, ‘AG’,

etc.) are grouped. Eventually, the interleaving converges to the

correct solution, which is detected by two consecutive iterations
resulting in identical interleavings (in other words, the interleav-

ing did not change). Finally, the two BWTs are merged based on

the converged interleaving, and the result is stored as a single

BWT. Additionally, we demonstrate that this method can be

extended to merge any number of BWTs simultaneously in

OðLCS�NÞ time where LCS is the longest common substring
(LCS) between any two BWTs and N is the total combined

length of the merged output.

3 METHODS

Amulti-string BWT is defined over a finite alphabet, S, with lexicograph-

ically ordered symbols $5c15c25. . .5c�. We define a string as a series

of k symbols from this alphabet terminated with a special end-of-string

symbol, ‘$’. Let S be a collection of such strings, S=fs1; s2; . . . ; smg. We

construct our original multi-string BWTs using the technique as described

by Bauer et al., 2011 such that a string can be reconstituted by prepending

the predecessors repeatedly until the starting index is reached (each string

forms a loop in the BWT). In a single pass through all input BWTs, we

count the number of occurrences for each symbol, and determine a list of

offsets into the final BWT for the first suffix starting with each symbol.

These counts and offsets are a tiny subset of the FM-index, but for the

unknown output BWT, rather than for the given input BWTs.

Overall, the goal of the algorithm is to construct an interleaving of the

two input BWTs such that their implicit suffix arrays are in sorted order.

It begins by constructing an initial interleave of the input BWTs that is

simply a concatenation of the inputs. Then, a series of iterations are

performed on the interleave. Each of these iterations functions like one

pass of a most significant symbol radix sort over the implicit suffix array

represented by the interleaved BWTs. After one iteration, the interleaving

will be such that all suffixes are lexicographically sorted by their first

symbol. After two iterations, the interleaving will be such that all suffixes

are lexicographically sorted by their first two symbols. The third is the

first three symbols. These iterations will continue until there is no change

in the interleaving, indicating that the implicit suffix array has converged

to a correct interleaving.

Given two BWTs, B0=msbwtðS0Þ and B1=msbwtðS1Þ, of length m

and n, respectively, we note that the target result, B2=msbwtðfS0;S1gÞ,

can be trivially constructed if the interleave of B0 and B1 is known.

As such, the primary goal of our proposed method is to calculate this

interleave. We define an auxiliary array called the interleave, I, which is a

series of zeroes and ones of length ðm+nÞ such that a zero corresponds to

a symbol in B2 originating in B0 and a one corresponds to a symbol

originating in B1. There are exactly m zeroes and exactly n ones in I.

As the merge algorithm progresses, this interleave will be corrected

until it converges to the final interleave. This I array is similar to the

interleave array in Sir�en, 2009.

Let totals be a list of numbers such that for each symbol c in S,

totals½c�=countðc;B0Þ+countðc;B1Þ. In short, totals is a combined

count of each symbol in the two BWTs. Additionally, let offsets be

defined for each symbol c such that offsets½c� is the position of the first

suffix in the merged BWT, B2, that starts with c, which can be calculated

by adding the totals for all symbols lexicographically before c. This is

equivalent to the offsets component of the FM-index for the final

merged BWT.

Finally, we will define our iteration function mergeIter as follows:

//I - the current interleave of B0 and B1

//B0 - the first BWT to merge

//B1 - the second BWT to merge

//offsets - for each symbol in S, offsets contains a value indicating the

//position of the first suffix starting with that symbol in the merged BWT

function mergeIter(I, B0, B1, offsets)

//initial conditions

INext=½null� � lenðIÞ

currentPos0=0

currentPos1=0

tempIndex=offsets

//iterate through each bit value in I

for all b in I do

//b is a bit representing the input BWT

if b==0 then

c=B0½currentPos0�

currentPos0=currentPos0+1

else

c=B1½currentPos1�

currentPos1=currentPos1+1

end if

//copy b into the next position for symbol c

INextPos=tempIndex½c�

INext½INextPos�=b

//update the tempIndex to match the FM-index

tempIndex½c�=tempIndex½c�+1

end for

return INext

end function

Repeated calls to this procedure converge to the correct interleaving

of B0 and B1 resulting in B2. To prove this claim, we first show that a

correct interleaving will not change as a result of this function.

LEMMA 3.1. Given a correct interleaving, I, of two BWTs, B0 and B1,

into a single BWT, B2, and the offsets for each symbol, c in S, into B2,

then mergeIterðI;B0;B1; offsetsÞ will return the same interleaving, I, as was

passed into it.

This lemma follows from the properties of a BWT. The lemma as-

sumes that the ordering I results in a correct BWT, B2, for a collection

of strings, S2=fS0;S1g. In the initial condition, the current positions are

both 0, and the tempIndex value corresponds to the offsets into the

merged BWT array. First, it is easily noted that after each iteration,

i=1::ðm+nÞ; currentPos0+currentPos1=i. This is because as i incre-

ments, one of the currentPos values is also incremented at the end of

the loop. Additionally, given an FM-index for the BWT represented by

I, we note that tempIndex=FM-index½i� after each iteration. At position

0, we started with only the offsets, and at each iteration, we add 1 to the

tempIndex½c� for the symbol c in that position to keep our tempIndex

identical to the FM-index. Finally, after each iteration, one value of

INext is changed corresponding to the current tempIndex½c�. As the

value changed is based on the FM-index, it is effectively setting

INext½tempIndex½c��=I½tempIndex½c��. After doing this for all values b

in I, it will have set every value in INext to its corresponding value in

3526

J.Holt and L.McMillan

-
Note that 
,
'
Since
'
'


I. Alternatively, if there exists a position, j, such that INext½j� 6¼ I½j�, then

the original assumption that I is a correct ordering must be false because

there is at least one position where the FM-index caused a string originat-

ing from B0 to think it has a previous symbol originating from B1 (or vice

versa), which cannot happen in a correct multi-string BWT.

So given a correct interleaving, its correctness can be verified by

executing this function once and comparing the resulting Ii with the

input interleave Ii�1.

The function,mergeIterð:::Þ, performs one iteration of the merge of two

BWTs. To apply this function for a full merge requires simple setup and

an outer loop to test for convergence. The following pseudocode for

bwtMerge operation is presented below:

//B0 - the first BWT to merge

//B1 - the second BWT to merge

//S - lexicographically ordered valid symbols in the BWTs

function bwtMerge(B0, B1, S)

//initial pass to calculate offsets

off=0

for all c in S do

totals½c�=countðc;B0Þ+countðc;B1Þ

offsets[c]= off

off=off+totals½c�

end for

//initialize the ret array to zeroes followed by ones

I= null

ret=½0� � lenðB0Þ+½1� � lenðB1Þ

while I 6¼ ret do

//copy the old interleaving and re-iterate

I= ret

ret=mergeIter(I, B0, B1, offsets)

end while

return ret

end function

As mentioned earlier, the BWT implicitly represents a sorted suffix

array. The BWT can be used to generate partial suffixes as well, which

is the first i symbols (i-mer prefix) of the suffix. We will refer to these as

i-suffixes. Given a BWT string, it can be sorted using a radix sort to

recover all 1-suffixes in lexicographic order. Then, if the BWT is pre-

pended to the sorted 1-suffixes and sorted again using only the prepended

BWT characters, all 2-suffixes in the BWT are recovered in lexicographic

ordering. If this process is repeated for i iterations, all i-suffixes in the

BWT can be recovered. This is fundamentally equivalent of doing a least

significant symbol radix sort of all i-suffixes in the suffix array. As the

algorithm is sorting the prefixes of the suffixes by increasing the prefix

length, it is really performing a most significant symbol radix sort on the

full suffixes.

The iterations of the while loop in bwtMerge are equivalent to per-

forming this radix sort. The I array indicates the current interleaving

of symbols at the start of an iteration. Then, the bits are placed into

the next available location for their corresponding symbol using the

tempIndex. With each iteration in the loop, the sorting of suffixes is

extended by one symbol until I converges to a correct interleaving. The

actual suffixes are never explicitly reconstructed or stored. In the example

executions in Tables 2 and 3, the suffixes are shown after each iteration

for illustration only. The final merged BWT is created trivially using the

interleave from bwtMerge.

LEMMA 3.2. Given an initial interleaving, I, of two BWTs, B0 and B1, such

that all zeroes come before all ones, after k executions of mergeIter, all

corresponding suffixes are stably sorted up to their first k symbols.

Using induction, consider the initial condition, k=0. In this base case,

all 0-suffixes are identical (empty string) and the ordering is all zeros

followed by all ones. Now, consider iteration k= i where the interleaving,

I, is a stable sort of the first i symbols of the suffixes of the corresponding

BWTs. In the next iteration, the algorithm performs a passover I retriev-

ing the corresponding predecessor symbol for each bit in I. If two suffixes

Table 3. The above table shows the state after each iteration, i, for mer-

ging three BWTs, each containing one string: ‘ACAC$’, ‘CAAC$’ and

‘ACCA$’ respectively

Iteration 0 Iteration 1 Iteration 2 Iteration 3 Iteration 4

I S B I S B I S B I S B I

0 C 0 $ C 0 $A C 0 $AC C 0

0 C 1 $ C 2 $A A 2 $AC A 2

0 $ 2 $ A 1 $C C 1 $CA C 1

0 A 0 A C 2 A$ C 2 A$A C 2

0 A 0 A $ 1 AA C 1 AAC C 1

1 C 1 A C 0 AC C 0 AC$ C 0

1 C 1 A A 0 AC $ 1 AC$ A 1

1 A 2 A C 1 AC A 0 ACA $ 0

1 A 2 A $ 2 AC $ 2 ACC $ 2

1 $ 0 C A 0 C$ A 0 C$A A 0

2 A 0 C A 1 C$ A 1 C$C A 1

2 C 1 C A 0 CA A 2 CA$ C 2

2 $ 1 C $ 1 CA $ 1 CAA $ 1

2 C 2 C C 2 CA C 0 CAC A 0

2 A 2 C A 2 CC A 2 CCA A 2

Notes: Their respective starting BWT strings are ‘CC$AA’, ‘CCAA$’ and ‘AC$CA’.

At each iteration, the table shows the interleaving, I, the i-suffix, S, and what the

merged BWT, B, is with that interleaving. Each iteration corrects the suffix interleave

by one symbol, which can be seen in the S columns of each iteration. After three

iterations, the ordering is correct. The I of iteration 4 is shown on the far right simply

to show the termination detection when the interleave stops changing. Bold text was

to indicate that the final symbol (character) of the suffixes is equivalent to the BWT.

Table 2. The above table shows the state after each iteration, i, for merging

two BWTs each containing one string, ‘ACCA$’ and ‘CAAA$’, respectively

Iteration 0 Iteration 1 Iteration 2 Iteration 3

I S B I S B I S B I S B

0 A 0 $ A 0 $A A 0 $AC A

0 C 1 $ A 1 $C A 1 $CA A

0 $ 0 A C 0 A$ C 0 A$A C

0 C 0 A $ 1 A$ A 1 A$C A

0 A 1 A A 1 AA A 1 AA$ A

1 A 1 A A 1 AA C 1 AAA C

1 A 1 A C 0 AC $ 0 ACC $

1 A 0 C C 0 CA C 0 CA$ C

1 C 0 C A 1 CA $ 1 CAA $

1 $ 1 C $ 0 CC A 0 CCA A

Notes: Their respective starting BWT strings are ‘AC$CA’ and ‘AAAC$’. At each

iteration, the table shows the interleaving, I, the i-suffixes, S, and what the merged

BWT, B, is with that interleaving. After the first iteration, there are three bins of

zeroes followed by ones representing the three i-suffixes of length one: ‘$’, ‘A’ and

‘C’. The second iteration puts all 2-suffixes in their correct bins, and at this point it

happened to converge to the correct solution early. Iteration three will detect no

change in the interleaving, and the merged BWT in bold is stored as the final

solution. Note that in each iteration the i-suffixes are in sorted order and i-suffix

group containing both zeroes and ones have all zeros before all ones.

3527

Merging of multi-string BWTs

-
-
 the
Since
Note that 


have different start symbols, then those suffixes are automatically ordered

correctly because each will be placed into the appropriate bin for that

symbol. As a property of the radix sort, all ði+1Þ-suffixes starting with

the same symbol, c, are placed sequentially in the output in lexicograph-

ical ordering. Given that the i-suffixes are already stably sorted, if the

symbol c is found at two indices, x and y where x5y, then the corres-

ponding ði+1Þ-suffixes must be of the form cX and cY where X is an

i-suffix that lexicographically precedes the other i-suffix Y. This implies

that the corresponding ði+1Þ-suffixes are also in sorted order.

THEOREM 3.3. Given that the LCS of two BWTs, B0 and B1, is of length k,

and that the initial ordering, I, is a single series of zeros followed by ones,

then the bwtMerge algorithm will converge in k+ 1 or fewer iterations.

Additionally, this convergence can be detected by iterating until I stops

changing.

Using Lemma 3.2, it is known that after k+1 iterations, all ðk+1Þ-

suffixes will be lexicographically sorted. If the LCS is of length k, then it

follows that after k+1 iterations the suffixes will be sorted up to their

first ðk+1Þ symbols. This means that further iterations should not change

the sort order of the suffixes, and the interleaving has converged.

Additionally, we know from Lemma 3.1 that convergence can be detected

through an additional iteration.

In terms of memory, this algorithm usesO(N) bits of memory owing to

the creation of I and INext. Assuming a fixed alphabet, all other variables

are constant sized. For practical purposes, all large arrays (B0, B1) are

actually stored on disk because of their size.

The algorithm will detect convergence after at most LCS+1 iter-

ations. If all strings are of length L, the algorithm will converge after

at most L+1 iterations. This algorithm does allow for variable length

strings. In fact, it is completely unaware of the string lengths present in

either BWT. However, the one caveat to Theorem 3.3 is the determin-

ation of LCS when the input strings are of variable length. In some

instances, there are string collections that can result in iterations up to

2 � L+1 iterations because of the contents of the strings. The reason for

this is the cyclic nature of strings in the BWT and the similarity between

two BWTs. Consider two strings ‘AA$’ and ‘AAA$’. At first glance, the

LCS=3, ‘AA$’. However, because of the cyclic nature of the strings

when represented in a BWT, the true LCS=5, ‘AA$AA’, which can

be generated by starting from the first symbol in the first string and the

second symbol in the second string and cycling back through when

there are no more symbols. For the real-data experiments presented in

this article, all strings were of identical length, so this caveat was not an

issue even in the presence of identical strings in each input BWT.

An example of an entire execution of bwtMerge is shown in Table 2.

For this basic example, only two single-string BWTs were used in the

merge. Iteration 0 represents the initial condition, and all subsequent

iterations are the result from executing the mergeIter function once.

After three iterations, the algorithm has converged and verified the

convergence.

Until now, the algorithm has only been discussed and demonstrated

using exactly two input BWTs and a bit-vector to distinguish the origi-

nating BWT for each position in the merged BWT. A basic extension

of this technique repeatedly merges F input BWTs according to any

binary tree resulting in a single merged BWT at the tree’s root. This

requires F – 1 merges. However, the faster way is to extend the I array

to multiple bits allowing for multiple BWTs to be merged simultaneously.

For example, a byte array supports the merging of up to 256 multi-string

BWTs simultaneously. Given F input BWTs, the above proofs can be

extended by starting with an initial I consisted of a series of 0s, series of

1s, . . . , series of (F – 1)s as the initial condition and an initial offsets

calculated in a pass over each input. Additionally, variables correspond-

ing to a specific BWT (such as B0, currentPos1, etc.) can be condensed

into arrays of length F that can be indexed by the interleave value, b,

at each position. Then, the algorithm can iterate as before until

convergence is reached. This extension of the algorithm allows for an

arbitrary number of multi-string BWTs to be merged simultaneously by

using OðN� logðFÞÞ bits of storage for I. An example execution of this

extension is shown in Table 3.

The merged BWT is a complete interleaving of the multiple BWTs into

a single dataset. As distinguishing the source of a particular BWT symbol

is important, the I array is stored as an auxiliary component to the

merged BWT. Alternatively, if only the source of a particular string is

required, the length of the I array can be truncated as described in Section

4.3. This allows for a merged dataset to differentiate the source BWT for

a particular string in later analyses.

We summarize the algorithm complexities for merging two BWTs in

Table 4. The performance of this algorithm is not directly affected by

string length or the number of strings. For a constant N, increasing string

length and decreasing the number of strings will not effect runtime unless

there is also an increase in the LCS between the two BWTs. Furthermore,

the memory and disk requirements for this algorithm are relatively low.

In memory, the algorithm requires only O(N) bits for each interleave. The

algorithm also requires OðLCS�N� logð�ÞÞ bits input from disk, but as

the final merged BWT is only written once, it only writes OðN� logð�ÞÞ

bits to disk.

An alternative to BWT merging is to construct the BWT directly from

the raw strings. For comparison purposes, we assume the construction

uses the technique as described by Bauer et al., 2011. This method re-

quires as input the full string collection in sorted order. Therefore, we

need either the original strings or to decode them from the input BWTs.

In either case, the strings would then need to be sorted before the start of

the construction. For a collection of m strings with a maximum string

length of k, they report the CPU time for their algorithm as Oðk�mÞ.

However, the disk I/O is Oðm� k2 � logð�ÞÞ bits because a partial BWT

is written to disk at each iteration. As a result, one large string in the

collection causes disk I/O to rapidly increase because of the k2 term.

In contrast, the merge algorithm will be less affected by long strings

simply because the LCS typically does not grow at the same rate as k.

In summary, when disk output speed is a limiting factor and/or LCS5k,

the merge algorithm can be faster than constructing the combined BWT

from the strings.

4 RESULTS

4.1 Merge times

As reported earlier, the runtime for this algorithm is

OðLCS�NÞ. To demonstrate this, we performed an experi-

ment using real reads from mouse data provided by Sanger

(ftp://ftp-mouse.sanger.ac.uk/REL-1302-BAM-GRCm38).

We chose two samples, WSB/EiJ and CAST/EiJ, to use for the

merge. From these samples, we extracted all reads from each

Table 4. The asymptotic runtime, maximum memory use and disk I/O

for the merge algorithm of two BWTs

CPU time OðLCS�NÞ

Max memory bits O(N) – two interleaves

Disk I/O bits OðLCS�N� logð�ÞÞ – Input BWTs

OðN� logð�ÞÞ – Output merged BWT

O(N) –Output final interleave

Notes: LCS is the longest common substring between the two input BWTs, N is

the total number of symbols, and � is the number of symbols in the alphabet

(including ‘$’).

3528

J.Holt and L.McMillan

longest common substring
'
longest common substring (
)
due
due to
'
due to
paper
'
'
'
'
Since
Notice, 
e
ince
prior to
i
due to
e
ftp://ftp-mouse.sanger.ac.uk/REL-1302-BAM-GRCm38


dataset that were aligned to the mitochondria (the reason for this

choice becomes apparent in Section 4.2). The annotated mouse

mitochondria is �16 299bp long, and between the two samples,

there were41.6 million reads with each read being 100 bp long

(over 10000� coverage combined). We sampled reads from each

set proportionally, created separate BWTs (one for WSB/EiJ,

one for CAST/EiJ) and performed a merge of the two BWTs.

The results of the merge execution times with respect to the total

number of input sequences are shown in Figure 1.

4.2 Compression

One motivation for merging BWTs is to improve the compres-

sion. The redundancy of genomic data results from two factors.

The datasets themselves are over-sampled, and the genomes of

distinct organisms tend to share genomic features reflecting

a common origin. Originally, the BWT was proposed as a

method for data compression because it tends to create long

runs of repeated symbols that can be used by many compression

schemes (Burrows and Wheeler, 1994). If the two BWTs contain

similar substrings, the potential for compression should increase.

To measure compressibility, an average run-length (RL) metric is

used. RL is defined as S
R where S is the number of symbols in the

BWT and R is the contiguous symbol runs in that BWT

(including runs of length 1). This metric basically represents

the compression potential of a BWT where it is better to have

a larger average run length. This metric emphasizes the impact

of merging rather than any subsequent compression methods

used (e.g. move-to-front transforms, variable-length coding,

Lempel-Ziv, etc.).
To demonstrate compressibility, we used the high-coverage

mitochondria data described in Merge Times. We sampled

each dataset at lower coverages to track how it impacted the aver-

age RL (see Fig. 2). In this experiment, we see faster growth at

lower coverages before leveling off into linear growth at higher

coverages.

We also performed three other merge experiments using full

RNA-seq datasets from different biological samples. The first

combined two mouse biological replicates, which were both

WSB/EiJ (HH) inbred samples. The second was performed on

two samples from diverse mouse subspecies CAST/EiJ (FF)

inbred and PWK/PhJ (GG) inbred mouse samples. The final

experiment merged eight biological replicates, all of type

CAST/EiJ (FF). In all three experiments, the strings were

100bp paired-end reads.
Each BWT file was analyzed both separately and as a merged

BWT file as shown in Table 5. In all three scenarios, the com-

pressibility was improved. Even GG1240, which had a relatively

high average run length, showed improvement when merged with

FF0683, a divergent mouse sample. The main reason for this

is the lengthening of preexisting runs as more data are added.

To show this, the distributions of RLs for the eight-way merge

both before and after the merge are plotted in Figure 3. In this

plot, we see a decrease in the number of short runs accompanied

by an increase in longer runs after the merge.

4.3 Interleave storage

Thus far, we have ignored the storage requirements for the inter-

leave vector. The interleave can be stored as the I array from the

merging algorithm that requires OðN� log2ðFÞÞ bits of space,

where N is the number of symbols and F the number of input

BWTs.
After the merge finishes, the portion of the interleave array

corresponding to suffixes starting with the ‘$’ is the only thing

necessary to associate every read with its origin. In other words,

you only need one interleave value per string. A particular sym-

bol’s origin can be recovered by tracing backward through the

BWT until the ‘$’ symbol is found, so the trade-off to reduce

the I size is runtime speed. Using this smaller index means

that the space for the I array will be OðR� log2ðFÞÞ where R is

the number of strings. Finding the origin of a symbol will take

O(L) time instead of O(1) where L is the length of the string.

Fig. 1. This plot shows the relationship between the size of the data being

merged and the wall-clock time to execute the merge. Each data point is a

merge between two multi-string BWTs (CAST/EiJ and WSB/EiJ) where

each BWT contains a randomly sampled collection of read sequences of

length 100bp aligned to the mouse mitochondria. In general, the time for

completion follows a linear trend with the combined size of the inputs

Fig. 2. This plot shows the average length of runs used for RL encoding

at different levels of coverage. Note that as the coverage is increasing, the

average RL increases with it. This effectively means greater compressibil-

ity with respect to the original data size. Note that there is faster growth

at lower coverages before it eventually settles into a linear growth at high

coverages

3529

Merging of multi-string BWTs

the 
Compression 
approximately 
ase 
airs
over 
ase 
airs
x
,
'
x
ase
air
-
is
run-length
is
 plotted in Figure 3
which
s
-


Compressing the interleave without increasing lookup times is

the subject of ongoing research.

5 DISCUSSION

One motivation for merging BWTs is to improve on the com-

pression achieved by separate BWTs. Depending on the types of

data being merged, the merged BWT and its associated interleave
are also useful for asking certain biological questions. The most
basic benefit is performing a single query in place of multiple

queries to separate datasets. For example, the comparison algo-
rithm proposed by Cox et al., 2012, performs two queries to
separate BWTs to find splice junctions. In their method, one

dataset contained DNA and the other contained RNA for
the same sample. As the sequences in each dataset are natur-
ally similar, the combined version should compress well.

Furthermore, as separate files, the algorithm needs OðF� kÞ
time to search F BWTs for a given k-mer, which is reduced to
O(k) when a merged BWT is used instead. In this regard, the

merging provides a speedup in downstream analyses in addition
to the compression.
BWTs in general can also be applied to de novo sequence

assembly. In fact, some existing assemblers use the BWT as the

underlying data structure (Simpson and Durbin, 2010, 2012).
Several de novo assembly techniques currently use the
De Bruijn graph as the underlying data structure (Butler et al.,

2008; Pevzner et al., 2001; Salikhov et al., 2013; Simpson et al.,
2009; Zerbino and Birney, 2008). BWTs can be used as efficient
and compact De Bruijn graph representations with enhanced

functionality. The presence, count and sample origin of individ-
ual k-mers are determined using the BWT’s FM-index. The
k-mer size can be varied without any modifications to the

BWT, and the surrounding context (i.e. the containing read frag-
ment) of each k-mer is accessible. A De Bruijn graph constructed
from a merged BWT for a species would include separate paths

for haplotypes, thus representing a pan genome of the merged
population (Rasko et al., 2008).
Merged multi-string datasets constructed from biological rep-

licates can be used to increase statistical power in de novo assem-
bly and other analyses as well. Such datasets can also be used to
examine the consistency between replicates as well as the variants

between diverse samples without the overhead of aligning.
Robasky et al. (2014) discuss the advantages of using replicates
to help reduce errors and biases in experiments. With the eight-

way merge of biological replicates from Table 5, the merged
BWT and the corresponding interleave can be used to calculate
the abundance and variance of a given k-mer for all replicates

simultaneously. Robasky et al. (2014) also mention how using
replicates from different platforms can be useful to reduce bias.
In addition to this benefit, we think that combining different

datasets in de novo assembly is useful for extending contigs.
For example, a BWT consisting of short reads (such as
Illumina) could be merged with long reads (such as PacBio) to

produce a merged BWT with the ability to query both datasets.
Alignment is another common use for reads. Given a reference

genome, a BWT can be used to search for evidence of the

genome in the reads. In this situation, the counts from the
query would be similar to pileup heights from an alignment.
Regions with lower than expected counts can be reexamined

by selecting reads from nearby regions and generating a consen-
sus, and thereby detecting variants including SNPs and indels, as
if we were aligning the genome to the reads instead of the reads

to the genome. Additionally, there is potential for algorithms
that merge BWTs from raw sequencing files with a BWT of
the reference genome. Ideally, this would lead to a merged

BWT where strings from the genome are located near similar

Table 5. Table showing the RL encoding metrics for RNA samples

before and after merging

BWT(s) Symbols RLE Entries Average RL

HH1361 individual 6:68� 109 1:13� 109 5.902

HH1380 individual 6:32� 109 0:926� 109 6.825

HH1361+HH1380 13:00� 109 2:05� 109 6.317

HH’s Merged 13:00� 109 1:83� 109 7.086

FF0683 individual 8:94� 109 1:11� 109 8.000

GG1240 individual 14:20� 109 1:36� 109 10.401

FF0683+GG1240 23:14� 109 2:48� 109 9.320

FF merged with GG 23:14� 109 2:20� 109 10.475

FF0683 individual 8:94� 109 1:11� 109 8.000

FF0684 individual 7:97� 109 1:48� 109 5.361

FF0685 individual 13:11� 109 1:47� 109 8.890

FF0727 individual 7:98� 109 1:58� 109 5.019

FF0728 individual 13:64� 109 1:65� 109 8.267

FF0754 individual 18:36� 109 2:04� 109 8.957

FF0758 individual 13:13� 109 1:92� 109 6.816

FF6136 individual 10:34� 109 2:00� 109 5.146

FF total individuals 93:46� 109 13:3� 109 7.026

FF’s Merged 93:46� 109 9:47� 109 9.865

Notes: Experiments are grouped into blocks. Each experiment compares the merged

results (in bold) to the totals for separate files. Note that in all experiments there is a

decrease in the number of RL entries and increase in average RL when moving from

individual files to a single merged file indicating that the merged version is more

compressible than separate files.

Fig. 3. Plot showing the distribution of RLs for eight separate FF sample

files (higher first, then lower) and a merged file containing all eight sam-

ples (lower first, then higher). Note that for the merged file, there are

more runs of longer length and fewer runs of shorter length. This is

because the merged BWT has brought the similar components of each

BWT together leading to longer runs

3530

J.Holt and L.McMillan

up
Since
; Zerbino and Birney, 2008
; Salikhov etal., 2013
,
is
aligning. Robasky etal., 2013 
replicates simultaneously. Robasky etal., 2013 
-
'


strings from the sequenced read fragments, making interleave the
basis for alignment.
In some situations, researchers are only interested in a specific

local effect instead of global analysis. A classic example is de-

signing primers for targeted sequencing. Both BLAST (Altschul
et al., 1990) and BLAT (Kent, 2002) search for k-mers within a
database of strings allowing for small errors. Similar algorithms

could be executed using the merged multi-dataset BWT as the
database of strings. This would allow for queries for k-mer evi-
dence among all of the datasets in a merged BWT

simultaneously.
Thus, replacing raw sequencing files (i.e. FASTA) with BWTs

has several advantages beyond improving compression. The

indexing capabilities of the BWT increase the inherent utility of
the data by allowing it to be searched and quantified.
Furthermore, the interleave vector generated by merging BWTs
enables finding both sequence similarities and differences be-

tween datasets without needing to align. Finally, as the BWTs
are purely data driven, they are unaffected by new genome
builds.

6 CONCLUSION

Multi-string BWTs improve on raw genomic read storage by
reformatting the data such that it is searchable and more com-

pressible. In this article, we presented a novel algorithm to merge
multiple BWTs into a single BWT in OðLCS�NÞ time. The
benefits of merging include a further increase in compressibility

over the separate files accompanied by the ability to simultan-
eously search all merged datasets for a given k-mer. With the
merge algorithm, new data can be merged into preexisting data
as it becomes available. This is naturally useful for combining

lanes from a sequencer, but it can also be extended to using
replicates. Once these datasets are merged, one can then perform
queries over all of the datasets simultaneously to look for

common and/or differentiating signals in the read strings.
In our results, we showed that the improvement in compress-

ibility extends to both biological replicates and to samples

that are diverse subspecies. Additionally, we showed that as
the coverage increases, the compressibility increases as well. We
also discussed how the merged BWT and its associated interleave

array can be used for de novo assembly, alignment and other
analyses.
Currently, we have a publicly available Cython package that

includes our implementation of the merge algorithm along with

supporting query functions. Future improvements to this pack-
age will improve on the compression of both the BWT and the
interleave. We currently do not address the quality strings asso-

ciated with each read. We are aware of some work to compress
quality strings such as that of Janin et al., 2014, but we have not
yet explored the impact of quality string compression with

respect to merging. Other ongoing research with this package
includes developing applications such as de novo assembly and
alignment techniques.

ACKNOWLEDGEMENTS

They thank Fernando Pardo Manuel de Villena for his advice
and the University of North Carolina Bioinformatics group for

their support in this work. They would also like to thank the

three anonymous reviewers for their insightful questions and

comments.

Funding: The authors thank the Jackson Lab Center for Genome

Dynamics: Evolution, Organization and Function (NIH

P50GM076468) and the University of North Carolina Center

for CISGen: Systems Genetics of Psychiatric Disorders (NIH

P50HG006582, P50MH090338) for their funding.

Conflict of interest: none declared.

REFERENCES

Altschul,S.F. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215,

403–410.

Bauer,M. et al. (2011) Lightweight BWT Construction for Very Large String

Collections. Comb. Pattern Matching, 6661, 219–231.

Bauer,M.J. et al. (2013) Lightweight algorithms for constructing and inverting the

BWT of string collections. Theor. Comput. Sci., 483, 134–148.

Burrows,M. and Wheeler,D. (1994) A Block-Sorting Lossless Data Compression

Algorithm.

Butler,J. et al. (2008) ALLPATHS: de novo assembly of whole-genome shotgun

microreads. Genome Res., 18, 810820.

Cox,A. et al. (2012a) Large-scale compression of genomic sequence databases with

the burrows-wheeler transform. Bioinformatics, 28, 1415–1419.

Cox,A. et al. (2012b) Comparing DNA sequence collections by direct comparison of

compressed text indexes. In: Algorithms in Bioinformatics. Springer Berlin,

Heidelberg, pp. 214–224.

Ferragina,P. et al. (2012) Lightweight data indexing and compression in external

memory. Algorithmica, 63, 707–730.

Ferragina,P. and Manzini,G. (2001) An Experimental Study of an Opportunistic

Index. In: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete

Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA,

USA, pp. 269–278.

Janin,L. et al. (2014) Adaptive reference-free compression of sequence quality

scores. Bioinformatics, 30, 24–30.

Kahn,S. (2011) On the future of genomic data. Science (Washington), 331, 728–729.

Kent,W.J. (2002) BLAT-the BLAST-like alignment tool. Genome Res., 12, 656–664.

Knuth,D.E. (1973) The Art of Computer Programming. Vol. 3, pp. 170–178.

Langmead,B. et al. (2009) Ultrafast and memory-efficient alignment of short DNA

sequences to the human genome. Genome Biol., 10, R25.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with burrows-

wheeler transform. Bioinformatics, 25, 1754–1760.

Loh,P.R. et al. (2012) Compressive genomics. Nat. Biotechnol., 30, 627–630.

Mantaci,S. et al. (2005) An extension of the burrows wheeler transform and appli-

cations to sequence comparison and data expression. Comb. Pattern Matching,

3537, 178–189.

Pevzner,P. et al. (2001) An Eulerian path approach to DNA fragment assembly.

Proc. Natl Acad. Sci. USA, 98, 9748–9753.

Rasko,D.A. et al. (2008) The pangenome structure of Escherichia coli: comparative

genomic analysis of E. coli commensal and pathogenic isolates. J. Bacteriol.,

190, 6881–6893.

Robasky,K. et al. (2014) The role of replicates for error mitigation in next-gener-

ation sequencing. Nat. Rev. Genet., 15, 56–62.

Salikhov,K. et al. (2013) Using cascading Bloom filters to improve the memory

usage for de Brujin graphs. In: Algorithms in Bioinformatics. Springer Berlin,

Heidelberg, pp. 364–376.

Simpson,J.T. and Durbin,R. (2010) Efficient construction of an assembly string

graph using the FM-index. Bioinformatics, 26, i367–i373.

Simpson,J.T. and Durbin,R. (2012) Efficient de novo assembly of large genomes

using compressed data structures. Genome Res., 22, 549–556.

Simpson,J.T. et al. (2009) ABySS: a parallel assembler for short read sequence data.

Genome Res., 19, 1117–1123.

Sir�en,J. (2009) Compressed suffix arrays for massive data. In: String Processing and

Information Retrieval. Springer, Berlin Heidelberg, pp. 63–74.

Zerbino,D. and Birney,E. (2008) Velvet: algorithms for de novo short read assembly

using de bruijn graphs. Genome Res., 18, 821–829.

3531

Merging of multi-string BWTs

the 
st
ince
-
up
'
paper
-
which
,
up
'

