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ABSTRACT  The microscopic theory of irreversible pro-
cesses that we developed is summarized and illustrated, using
as a simple example the Friedrichs model. Our approach com-
bines the Poincaré’s point of view (dynamical interpretation of
irreversibility) with the Gibbs-Einstein ensemble point of view.
It essentially consists in a nonunitary transformation theory
based on the symmetry properties of the Liouville equation and
dealing with continuous spectrum. The second law acquires a
microscopic content in terms of a Liapounov function which
is a quadratic functional of the density operator. In our new
representation of dynamics, which is defined for a restricted
set of observables and states, this functional takes a universal
form. We obtain, in this way, a semi-group description, the
generator of which contains a part directly related to the mi-
croscopic entropy production. The Friedrichs model gives us
a simple field tﬁeoretical example for which the entropy pro-
duction can be evaluated. The thermodynamical meaning of
life-times is explicitly displayed. The transition from pure states
to mixtures, as well as tsge occurrence of long tails in thermo-
dynamic systems, are also briefly discussed.

1. Introduction

Is there a microscopic theory of irreversible processes? Since
the very formulation of the second law, this question remains
a widely discussed problem in theoretical physics. The aim of
this article is to indicate why an affirmative answer can now
be given to this question and to provide a simple example for
which such a microscopic theory can be constructed. A few
historical remarks will help to put the problem in the proper
perspective.

The simplest dynamic realization of entropy would be a
microscopic phase function, say N(g,p). However, Poincaré (1)
has shown, in the frame of classical mechanics, that such a phase
function, with the necessary properties, does not exist. In con-
trast to Poincaré, Boltzmann turned to probabilistic assumptions
to derive his celebrated #-theorem. Some of the difficulties
inherent to Boltzmann’s approach are well known (the classical
“paradoxes”) and have been discussed elsewhere (2). In addi-
tion, the computer results by Wainwright et al. (3) for the
Green-Kubo integrand of the self-diffusion coefficient clearly
show the inadequacy of Boltzmann’s equation in this context.
Instead of the expected exponential decay, one finds a “long
tail” depending on the dimensionality of the system. The in-
terpretation of this effect in terms of mode-mode coupling
theories has been abundantly discussed in the literature (4). We
shall come back to this effect later on and indicate why our
approach bypasses this difficulty.

To avoid the shortcomings of Boltzmann’s approach, Gibbs
(see ref. 2 for a recent discussion) has introduced an ensemble
approach in terms of the distribution function in phase space
(or density operator in quantum language). The evolution of
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p is given by the so-called Liouville-von Neumann equation

. 0p

e Tl
where the Liouville superoperator L is either the Poisson
bracket i{H, } or the commutator [H, |- with the hamiltonian
H.

The entropy would be related to a convex functional of the
distribution function. However, any universal functional Q of
p (i.e., which does not explicitly depend on the dynamic char-
acteristics of the system) may be shown, under quite general
conditions, to remain constant in time

dQ

at 0.
(Examples of such functionals are the Gibbs entropy —k f p In
pdT and —k f p%dT.)

As a result, most subsequent attempts have been based on the
replacement of p by some “coarse grained” distribution, or the
projection of the p-state into some subspace. This idea has not
been successful, as its meaning is not clear: no unambiguous
prescription for the operation of “coarse graining” has ever been
formulated.

The point of view taken by our group is different. It combines
a strictly dynamic point of view (temporal group property, no
stochastic assumptions) with the ensemble point of view of
Gibbs. Because of the linear form of the Eq. 1.1 for the distri-
bution function, we look for a quadratic functional

[1.1]

[1.2]

Q=Trp*Mp>0 [L.3]
with a nonincreasing time derivative
dQ
— <0. 14
a (1.4]

The most important and somewhat unexpected result is that
the hermiticity of the dynamic operator L does not preclude
the validity of [1.4]. In this way dynamics and thermodynamics
become compatible. Of course the existence of the superoper-
ator M requires conditions on the dynamics of the system. For
example, if the Liouville superoperator L has a purely discrete
spectrum, no functional Q of this type can exist.

This procedure may also be considered as the natural ex-
tension of the “direct method of Liapounov” (5) to partial
differential equations with continuous spectrum. Therefore,
we shall call Q a Liapounov functional. Its existence is closely
tied to the microscopic formulation of the second law.

* Concurrently with the Center for Statistical Mechanics and Ther-
modynamics, The University of Texas, Austin, Texas.

t The relation between the construction of M and classical ergodic
theory has been investigated recently by B. Misra (unpublished), who
has shown that mixing is a necessary and K-flow a sufficient condition
for the existence of at least one superoperator M. However, the sit-
uations studied by our group do not refer to ergodic systems which
we consider as too restrictive to be of physical interest.
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The quadratic character of the functional [1.3] permits us to
link the construction of M to the determination of a new rep-
resentation for the distribution function p. Because the su-
peroperator M is positive, we may express it as the product of
a superoperator A~! [we use the notations used in our earlier
works (2, 6, 7)] and its hermitian conjugate

M= (A")*A~L [1.5]

Inserting Eq. 1.5 in Eq. 1.3, we get
Q=Trp*p with p=A"lp [1.6]

In the new representation, we obtain therefore a universal ex-
pression for the Liapounov function. Dynamics enters only in
the transformation A~!. We recover in this way the basic fea-
tures of the approach pioneered by Boltzmann and Gibbs. As
the consequence of [1.4], and assuming the existence of the
inverse transformation A, we have also in this representation
a contractive semi-group (instead of a group) corresponding
to the equation of motion

op .
f —— = l.
i >t &p [1.7]
with '
&= A-1LA. (L8]

The mathematical problem involved in this approach is
therefore to relate a group to a semi-group through a (nonuni-
tary) similitude. The general requirements discussed in Section
2 will further restrict the class of nonunitary transformations
to the so-called starunitary transformations. For the dynamical
systems and the class of states (and observables, we discuss this
further in Section 2) for which such a Liapounov function can
be constructed, there exists a long-time distribution (the equi-
librium distribution) which acts as an attractor for the initial
distribution function. The existence of such an attractor gives,
of course, its very meaning to the entropy (8, 9). Therefore, our
construction establishes a relation between entropy and the
microscopic superoperator M.} The second law then acquires
a purely dynamical content. Though our approach has been
presented elsewhere (2, 7), we find it useful to summarize in
Section 2 some of the basic problems involved, with the em-
phasis on Liapounov functions. We then in Section 3 consider,
as an explicit example, the so-called Friedrichs model. This
model, which has been extensively studied (10-13), provides
us with an example of a quantum system for which the second
law can be formulated in microscopic terms. Our method also
permits us to discuss the meaning of quantization and the
definition of quantum states for unstable particles. However,
this aspect will not be treated here, but in a separate paper. In
Section 4, we turn then to a few general conclusions and discuss
the relevance of our result to the basic problems of the dis-
tinction between pure states and mixtures in quantum me-
chanics (14).

In summary, our approach seems to us to provide the
“missing link”” between microscopic reversible dynamics and
macroscopic irreversible thermodynamics, in accordance with
the scheme:

Microscopic reversible dynamics (group) = microscop-
ic dynamics including irreversibility (semi-group) =
macroscopic irreversible thermodynamics.

1 To relate Q to “thermodynamic” entropy, supplementary conditions
have to be required (2) (such as additivity and relation between
equilibrium entropy and phase).
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2. General requirements on the Liapounov functional

Let us consider the expression [1.3] for the Liapounov func-
tional. Using the formal solution of the Liouville equation [1.1]
we require that the following inequalities are satisfied:

Q(t) = Tr [p*(0)e'LtMe Lt p(0)] > 0 [2.1]
and

éd-? = —Tr [p*(0)e'Lti(ML — LM)e~*Ltp(0)] < 0. [2.2]
The microscopic “entropy superoperator” M can therefore not
commute with L. The superoperator

D=iML—-LM)=0 [2.3]

represents the microscopic “entropy production.”
When the transformation to the new representation-is per-
formed (using Egs. 1.6 and 1.8), we obtain for the entropy

production

‘fi—? = =Tr [p*(0)e'®*t(® — &+)e~®p(0)] < 0. [2.4]

This implies that

i(®— %)= 0. [2.5]
We observe that the existence of a Liapounov function requires
the nonhermiticity of the dynamic operator ®. Therefore, the
transformation A cannot be unitary. To make the problem of
the determination of A more definite, we introduce two more
requirements (2, 7): (a) For the observable A, the transforma-
tion has to preserve the average value (A ), for states p that are
in the domain of A~L. In other words, we require that

(A) =TrA*p=TrA*p. [2.6]

Using Eq. 1.6, this implies
A=(A")*A (2.7]

and the observable A must be in the range of (A~!)*. For these
observables, states satisfying Eq. 2.6 will be the ones that give
rise to a decreasing Liapounov functional and therefore are in
the domain of attraction of the asymptotic equilibrium distri-
bution. Note that our transformation theory is based on the
invariance [2.6], which is a weaker requirement than the in-
variance of Tr|a) (a|-|8) (8] = | («|B) |2, where |a) and |8)
are arbitrary state vectors in a Hilbert space. Therefore, we are
not confined within the limits of unitary (or anti-unitary)
transformations (15, 16). (b) We admit transformations that are
functionals of the operator L. The reason is the following. Eq.
1.1 has the L-t symmetry: if we change both L into —L and ¢
into —¢, Eq. 1.1 remains invariant. [In classical systems the
transformation L — —L corresponds to velocity inversion (2).]
On the contrary, all phenomenological equations describing
approach to equilibrium present a broken L-t symmetry.§ A,
which connects the group [1.1] to the semi-group [1.7], must
permit the symmetry-breaking. Now the evolution in time can
be formulated in terms of the state, Eq. 1.1, or alternatively in
terms of observables, following the equation

dA _ _
,dt =—LA [2.8]

which differs from Eq. 1.1 by L-inversion. To preserve the

§ This is easily seen on the simplest examples such as the relaxation
equation for the one-particle distribution function (3f/dt) +
0(3f/dx) = —(f — f°)/(7), = > 0 where the right-hand side is in-
variant in respect to L-inversion, while the left-hand side is not.
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equivalence between the two descriptions, we require that to
each transformation A(L) on p, there corresponds a transfor-
mation A(—L) on A (7, 17). Combining this with Eq. 2.7 we
deduce

(A™YL))* = A(-L) [2.9]
or
AL)A*(-L) =1. (2.10)

This condition replaces the usual conditions of unitarity for a
change of representation.

In earlier works (2, 6, 7) we have introduced the abbrevia-
tion

A*=A*(-L) [2.11]

and called A a “starunitary” transformation. Eq. 2.10 then
defines the subclass of nonunitary transformations to which A
belongs.

It can now be verified easily that the operator [1.8] is star
hermitian (6), that is,

(i®)* = [id(=L)]* =id. [2.12]

The starhermiticity of an operator can be realized in two ways;
the operator may be hermitian and even under L-inversion
(superscript ¢) or antihermitian and odd (superscript 0). It can
thus be written

i®=(i®) + (i®) (2.13]
and the condition of dissipativity [2.5] becomes
(i®)=0. (2.14]

This even part gives directly the “entropy production,” [2.4]
or [2.2].

The evolution generator at the microscopic level is now split,

in Eq. 1.7,
- o e

Beli®) + G ) [2.15]
into a reversible part, which does not contribute to the change
of the Liapounov functional and an irreversible part, which
determines this change. As mentioned in Section 1, we obtain
a microscopic formulation of dynamics (at the level of distri-
bution functions or states) that displays explicitly irreversibility
(semi-group property).

In addition, the operators of motion appearing in the phe-
nomenological equations have in common that they derive from
star hermitian superoperators. For example, the flow term in
the Boltzmann equation corresponds to a star hermitian su-
peroperator which is antihermitian and odd under L-inversion
and the collision term to a superoperator which is hermitian and
even.

There are of course other important aspects of transformation
theory that we do not include here (for example, preservation
of hermiticity; see refs. 2 and 7). Let us now turn to an exam-
ple.

3. Example: The Friedrichs model

We shall now consider a simple model for which the transfor-
mation A leading from a group to a semi-group description has
been explicitly constructed. Our aim here is not to present
calculations (see refs. 10-12), but to discuss qualitatively some
of the characteristic features of the construction of A without
entering into problems of a more technical nature.
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The hamiltonian in second quantization formalism is

H=wa*a; + % wiak tax

+ A Zk: (Viaytar + Viarta). [3.1]

a ,a are the usual creation and destruction operators. The in-
teraction Vj is assumed to be of order L=3/2, where L3 is the
volume of the quantization box. In the infinite volume limit,
the wx spectrum becomes continuous (0, ) and w lies within
the continuum (w; > 0). The strength of the interaction is such
that, in the one particle sector we restrict ourselves to, there is
no bound state. The system is fully determined when the be-
havior of the various matrix elements of the states p and ob-

“servables A in the infinite volume limit is specified:

p11,A11,Axc  are taken independent of the volume L3
P1k-A1k behave like L—3/2
Pkk,Pkk» Ak are of order L3,

This volume dependence is preserved in time by the Liouville
equation [1.1] and all the terms appearing in Tr A*p (Eq. 2.6)
are finite in the limit L3 — .

The Green’s function of the particle 1

(z —1 H) no ﬁ (3.2]

_Vil?
(z — wr)
is of particular importance since, as well known, it is associated
with the dispersion equation. In the infinite volume limit, the
function n71(z) is analytic except for a cut along the positive
real axis. n+(z)~1/n~(z)7}, its analytic continuations in the
lower/upper half plane, have conjugate poles w; + {/w; + §°¢
which go to w; when A — 0. We call A/ A ;°¢ the residues of
the Green’s function at these poles. The matrix elements of the
superoperators A and A™! are obtained (see refs. 10~12) in terms
of ¢ ¢c¢, A 1,A1°6,7(z), and other simple functions, as well as
various distributions defined through their analytic continua-
tions. In this construction no claim of strict unicity is made.
There may be other starunitary transformations but the qual-
itative remarks we shall present apply as well to them.

The explicit form of the matrix elements of 5(0) in terms of
p(0) can be obtained, and also the evolution operator & [1.8].
Eq. 1.7 is easily solved to give p(t) in terms of 5(0). The im-
portant point is that each element of 5(t) that contributes, in
the construction of the Liapounov function [1.6], has an expo-
nential time dependence of the form

elia+b)t [3.4]

with a, b real, b < 0. To get this time dependence, we have to
add elements of p weighted by suitable coefficients (given
precisely by the transformation operator A™!). Such expressions
for p can only be obtained if suitable restrictions on p(0) are
imposed. In the limit of a large volume, as summations over k
become integrations, we have integrals of Cauchy’s type

* V(k)pl(k) dk

0 2+ w; — wk

where

72)=2—w — Zk: [3.3]

[3.5]

computed for Im z > 0 and continued analytically through the
cut, to { in the lower complex plane. This procedure requires
well-known conditions on the smoothness of V(k)p1(k) and on
its behavior at infinity (18).

In the case of classical mechanics, such conditions rule out
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delta-like distribution functions representing single trajectories.
It isn’t hard to conceive that indeed a single trajectory for
Hamiltonian systems could not be associated with a Liapounov

functional.
__ Similar restrictions apply to the construction of observables

A in the new representation (see Eq. 2.7). Therefore, the
equivalence condition [2.6] can only hold for a restricted class
of states and observables.

Now the Liapounov functional

AUt) = pu(tP+2 % [ (2)|? + kal | e (£)]2 [3.6]

takes the form
Qt) = e~ 2E=Ny) 4 2e—HE=Ny, 4 yg [3.7]

u),us,us being positive quantities.

In the particular case in which, at the initial time, we have
a pure state corresponding to the “bare” particle, p;1(0) is unity
and all other components for the initial density matrix in the
original representation vanish.

Then u},us,us can be easily computed to give

uy = Ay A, (3.8]
ug = (A A *)/2 (3.9]
ug=1. (3.10]
We have simply
Qt) = (|Arle™t + 1) [3.11]

where v = i({ — {¢¢) is the inverse of the lifetime of the particle.
If the particle would be stable, | A;| would be the square of the
usual “renormalization constant” of the particle, i.e., the
probability of finding the bare particle in the physical one-
particle state. But, in that case, the expressions for u,u3 are no
longer given by Eqs. 3.8 and 3.9 and Q(t) reduces to unity.

The purely exponential decay of the Liapounov functional
is due to its definition [3.6] and to the exponential time de-
pendence [3.4] which is ultimately linked to the roots of the
dispersion equation.

On the other hand, if we compute averages (A ) in the new
representation, we can expect, in general, a nonexponential
behavior. Indeed, for instance, =i 51x(¢)Ax: leads to

j; ” = Hor+t-ont (k) dk (3.12)

the long time dependence of which is determined by the precise
form of f(k) for small wave-numbers k.

A specific feature of the Friedrichs model is that the damping
is wave-number independent. This contrasts with collective
phenomena as encountered in hydrodynamics, where, for long
wavelength modes, the damping is proportional to k2. Then the
summation in [3.6] would give rise to the well-known long tails
discovered by Wainwright et al. (3).

Of importance is the following remark discussed in more
detail elsewhere (M. de Haan, C. George, and F. Mayné, un-
published data): while the transformation operator A or the
generator of the semi-group i® n.ay, under suitable conditions,
be expanded in powers of the coupling parameter A, M cannot
be obtained in a straightforward way as the product of the
perturbation expansions of (A1)* and (A™!) (see Eq. 1.5). This
is essentially due to the fact that A contains distributions and
the product of the perturbation expansions appearing in
(A~1)*A~1is ill defined as long as no partial resummation is
performed.
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As an example, the explicit expression of the matrix element
M )11 of the microscopic entropy operator (see Eq. 1.5) is (see
Egs. 3.7-3.10)

Mu,u =u1+2u2+u3=(|.>41| +1)2. [3.13]

This expression, in the limit A — 0, takes the value 4. In con-
tradistinction (A~1)* and A~! being unity in that limit, their
product would give M 1; = 1, but each successive power in
the development in A would be divergent.

The even part of i® is directly related to the entropy pro-
duction (see Eqs. 2.4 and 2.5). It has a simple physical meaning
in the Friedrichs model, since it is due to the decay of the un-
stable particle.1 There appears therefore a simple relationship

~ between decay and entropy, as we have (see Eq. 3.11)

4 1
P u=v= 7 At (LM — ML)ijep Avjn [3.14]

The lifetime = y~! is determined by the commutator of L
with the microscopic “entropy” superoperator M.
Let us now discuss a few features that are of general inter-

est.

4. Duality of dynamic description

Approach to equilibrium always involves in some way or other
the occurrence of a mixture [think about the canonical en-
semble, even if we would start with a pure state (19)]. Is this
statement in contradiction to the basic quantum mechanical

_result that a pure state is preserved by the Schrédinger equation

(“linearity” of quantum mechanics, see ref. 14)? This question
can be reformulated as follows: to what extent is the existence
of an entropy production linked to the appearance of a mixture?
A first interesting observation is that, in going to the semi-group
description, no distinction between pure states and mixtures
has to be made as the relation p2 = p is not conserved by the
nonunitary and nonfactorizable transformation A.

Note, however, that starting at the initial time with a bare
particle pure state, we can obtain 5(0), and use the semi-group
equation [1.7]. At any time ¢ > 0, we may go back to p(¢) and
verify that it is still a pure state. This is in fact a general feature
which illustrates the completeness of the starunitary transfor-
mation theory. The “equivalence” between the two represen-
tations (as long as the states and observables belong, respectively,
to the domain of A~! and A*) applies for all times, however
large but finite. That p(t) is still a pure state is in agreement with
the quantum mechanical result. Now the variables (states and
observables) to be considered in the theory form a restricted set.
In the case of the Friedrichs model, we had to require “Cauchy
integrality.” It is only in connection with this specific set that
we can speak of irreversibility (in the sense of the existence of
a Liapounov function). Indeed, the asymptotic limit can be
properly defined in the new representation and obeys &3 = 0.
The asymptotic state 52 serves as an attractor for various initial
states that were pure states or mixtures in the original repre-
sentation. There is no reason for the asymptotic state to be a
pure state in this original representation.

We believe that this scheme can be extended to situations
more general than the Friedrichs model. These remarks are of
obvious importance for the theory of quantum mechanical
measurement (“reduction of the wave packet”) (see refs. 14 and
20), but will not be pursued further here. Let us now turn to
thermodynamic systems. As a characteristic feature, they admit
both a dynamic description in terms of the Liouville-von

1 There is also a contribution to entropy production due to scattering
(10), which can be neglected in the limit of infinite volume.
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Neumann equation [1.1] and a semi-group description [1.7].
The important point is that we can go from one description to
the other through the transformation A. This is of special in-
terest for computer simulation problems (8), where the initial
condition is given in the dynamic description while the time
evolution is ultimately described in terms of thermodynamic
?o)ncepts [as, for instance, in mode-mode coupling theories
4)]

Here the weakness of the usual Boltzmann-type approach
becomes manifest. The notion of collision requires the semi-
group description. Boltzmann’s equation or similar master
equations are at most approximations (21, 22) for the evolution
of the diagonal components of 5 (we note 5o these elements) and
say nothing about correlations (the off-diagonal components).
Now, for the complete dynamic description, the complete  is
needed. Even if one starts in the original representation with
a p that is assumed to be diagonal, in the new representation all
correlations are excited, because L and M cannot be simulta-
neously diagonal (see Eq. 2.2) and A~! connects diagonal and
off-diagonal components of the density matrix. This is true
whatever the coupling constant X or the concentration. So, even
for simple dynamic situations, we have to take into account all
components of 5. That leads to nonexponential behaviors in (A)
and long tails.

We believe that these considerations [together with the fact
that we can easily deal with the classical “paradoxes” (2)] show
that our microscopic derivation of irreversibility goes far be-
yond any method using a probabilistic approach.

There appears to be a complete similarity between the
meaning of irreversibility on the macroscopic level and its
meaning on the microscopic level. To the forgetting of initial
macroscopic conditions resulting from the semi-group prop-
erties of macroscopic equations (such as Fourier’s equation)
corresponds the forgetting of initial microscopic conditions on
distribution functions or observables through the microscopic
semi-group equations which form the essential content of our
theory.

Here we have mainly emphasized “thermodynamic” con-
siderations. There are other equally interesting aspects related
to the very definition of unstable particles, a problem which
attracts, today, a great deal of interest. We shall treat this aspect
in a separate paper where we shall show that dynamics incor-
porating explicitly irreversible processes leads to a physically
most appealing new formulation of quantum field theory. This
is not so astonishing because at the very start of quantum me-
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chanics, particles or quanta of energy have been introduced in
correspondence with the approach of physical systems to
thermodynamic equilibrium (23, 24).
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