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Abstract

Theory and simulations show that variables affecting the outcome only through exposure, known 

as instrumental variables (IVs), should be excluded from propensity score (PS) models. In 

pharmacoepidemiologic studies based on automated healthcare databases, researchers will 

sometimes use a single PS model to control for confounding when evaluating the effect of a 

treatment on multiple outcomes. Because these “full” models are not constructed with a specific 

outcome in mind, they will usually contain a large number of IVs for any individual study or 

outcome. If researchers subsequently decide to evaluate a subset of the outcomes in more detail, 

they can construct reduced “outcome-specific” models that exclude IVs for the particular study. 

Accurate estimates of PSs that do not condition on IVs, however, can be compromised when 

simply excluding instruments from the full PS model. This misspecification may have a negligible 

impact on effect estimates in many settings, but is likely to be more pronounced for situations 

where instruments modify the effects of covariates on treatment (instrument-confounder 

interactions). In studies evaluating drugs during early dissemination, the effects of covariates on 

treatment are likely modified over calendar time and IV-confounder interaction effects on 

treatment are likely to exist. In these settings, refitting more flexible PS models after excluding 

IVs and IV-confounder interactions can work well. The authors propose an alternative method 

based on the concept of marginalization that can be used to remove the negative effects of 

controlling for IVs and IV-confounder interactions without having to refit the full PS model. This 

method fits the full PS model, including IVs and IV-confounder interactions, but marginalizes 

over values of the instruments. Fitting more flexible PS models after excluding IVs or using the 

full model to marginalize over IVs can prevent model misspecification along with the negative 

effects of balancing instruments in certain settings.
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1 Introduction

1.1 Instrumental variables in studies of multiple outcomes

The propensity score (PS), defined as the conditional probability of treatment or exposure 

given a set of observed covariates, has become a standard tool used to control for 

confounding in epidemiologic research (Rosenbaum and Rubin, 1983; D’Agostino, 1998; 

Stürmer et al., 2006). Variable selection for the PS model influences the efficiency and 

validity of effect estimates. Previous studies have shown that controlling for variables that 

affect treatment and are unassociated with the outcome except through treatment 

(instrumental variables or IVs) increases the variability of effect estimates (Brookhart et al., 

2006; Myers et al., 2011). Studies have further shown that in the presence of unmeasured 

confounding, controlling for IVs can increase bias (Bhattacharya and Vogt, 2007; 

Wooldridge, 2009; Pearl, 2010; Myers et al., 2011).

In pharmacoepidemiologic studies based on automated healthcare databases, researchers 

will sometimes use a single PS model to control for confounding in multiple studies. For 

example, in studies focusing on drug safety and monitoring health events, researchers will 

often evaluate the effect of a treatment on multiple outcomes (Platt et al., 2009; Stang et al., 

2010; Schneeweiss 2010). In these settings, it is often preferred to simplify the analysis by 

using a single PS model to simultaneously control for confounding for each of the outcomes 

(LoCasale et al., 2011;Wyss et al., 2013). Because these models are not constructed with a 

specific outcome in mind, researchers will generally be conservative and construct a model 

that includes a large number of covariates (a full model) to ensure the inclusion of all 

relevant risk factors for each of the outcomes. While using a single PS model for multiple 

outcomes can increase computational efficiency, these models are also prone to include IVs 

for any individual outcome since a covariate can act as a confounder for one outcome and an 

instrument for another. If researchers subsequently decide to evaluate a subset of the 

outcomes in more detail, they can construct reduced outcome-specific models that exclude 

IVs for the particular outcome(s) to improve the precision and validity of those estimates.

Reduced models that exclude IVs can be constructed by refitting a more flexible model as a 

function of the reduced set of covariates using an iterative process of fitting the model and 

checking covariate balance until an acceptable degree of balance is achieved (Imai et al., 

2008). When using parametric regression models (e.g., logistic regression), however, this 

iterative process can be computationally inefficient and time-consuming when the number of 

reduced models is large. More flexible non- or semi-parametric methods can be used to 

model complex non-linear relationships between the reduced set of covariates and treatment 

(Lee et al., 2009; Harder et al., 2010; McCaffrey et al., 2004; Setoguchi et al., 2008). 

However, medical researchers often prefer parametric models (e.g., logistic regression), as 

these models are easy to implement and provide explicit information regarding the effects of 

covariates on treatment that is easy to interpret (Glynn et al., 2006).

In this study we explore ways of using parametric regression models to estimate PS 

functions that do not condition on IVs in settings where researchers initially fit a 

conservative (full) PS model (e.g., single PS model for multiple studies). In Section 1.2, we 

first discuss why the exclusion of IVs from non-linear parametric PS models (e.g., logistic 
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regression) can result in misspecified PSs. We discuss how refitting the model as a more 

complex function of a reduced set of covariates after excluding IVs can improve model 

specification. Because refitting multiple reduced PS models can be tedious when the number 

of studies/outcomes is large, we then propose an alternative method that does not require 

researchers to refit the initial (full) PS model. This method simply extends conventional 

logistic regression by estimating the full PS model, with main effects and interactions, and 

then simultaneously marginalizing (averaging) over the empirical distribution of the 

assumed set of IVs. In Section 1.3 we discuss practical situations involving calendar time-

modified PSs where model misspecification can result from excluding IVs. In Section 2 we 

use simulations to illustrate the discussed concepts. In Sections 3.1 through 3.3 we use the 

National Ambulatory Medical Care Survey (NAMCS) data to compare the performance of 

the discussed methods in their ability to accurately estimate the probability of statin use 

without controlling for the instrument calendar time. In Sections 4.1 and 4.2 we conclude 

and discuss limitations.

1.2 Exclusion of IVs from non-linear PS models and PS model misspecification

The PS, formally denoted as E[T|X|, where T is a binary treatment and X a set of measured 

baseline covariates, can be thought of as a balancing function that changes depending on the 

set of covariates on which it is conditioned. Rosenbaum and Rubin (1983) formalized PS 

methods and showed that a PS function conditioned on a set of measured covariates is 

sufficient to balance the distributions of those covariates across treatment groups through the 

implementation of PS matching or stratification. Robins (1998, 1999) extended the 

application of PSs through the development of inverse probability of treatment weighting 

(IPTW). He showed that weighting observations by the inverse of the probability of 

treatment actually received is also sufficient to balance treatment groups on the marginal 

distributions of the covariates upon which the PS function is conditioned.

When modeling the PS, it is necessary to specify the correct functional form of the 

associations between the variables included in the PS model and treatment. One of the 

benefits of PS methods is the ability to explicitly check the validity of the functional form of 

the specified PS model by observing the balance of covariates across treatment groups after 

matching, stratifying, or weighting on the estimated PS (Rosenbaum and Rubin, 1984; 

Glynn et al., 2006; Austin, 2009).

In medical studies utilizing large medical databases, researchers will sometimes fit an initial 

PS model that is a function of a large set of covariates to control for confounding in analyses 

of multiple outcomes. If the initial (or full) PS model successfully balances covariates across 

treatment groups, then it can reasonably be assumed that this specified model is a good 

approximation for the true PS function that conditions on the same set of variables as the 

specified full model. As discussed previously, researchers may subsequently decide to 

exclude variables that are thought to act as IVs when evaluating a subset of the outcomes in 

more detail. If the full PS model is correctly specified and follows a non-linear parametric 

model (e.g., logistic regression), however, simply excluding instruments (or any set of 

variables) from this initial model can result in misspecified relationships between the 

covariates and treatment.
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To illustrate, consider the causal structure shown in Figure 1. According to Pearl, an IV is 

associated with treatment and conditionally independent of the outcome, except through 

treatment, after conditioning on a set of covariates that are unaffected by treatment (Pearl, 

2009). In pharmacoepidemiologic studies, however, researchers will usually consider a more 

strict definition of IVs described by Pearl (2009) and assume that instruments are associated 

with treatment and independent of both the outcome and all variables that have an influence 

on the outcome that are not mediated by the treatment (Rassen et al., 2009; Brookhart et al., 

2010). The reason for using a more strict definition is that unmeasured confounding is a 

fundamental obstacle in studies using automated healthcare databases. If a variable is 

associated with measured confounders, it is likely that the variable is also associated with 

unmeasured confounders and, therefore, should not be treated as an IV since it is not 

possible to condition on the unmeasured set of covariates.

Under this stricter definition, only the variable X7 in Figure 1 would be considered an IV 

since it affects treatment and is associated with the outcome only through treatment. Let E[T|

x1, …,x7] represent the full PS model as a function of X1 through X7 and E[T|x1, …,x6] the 

reduced PS model as a function of X1 through X6. The reduced PS function can be expressed 

as

(1)

In other words, the reduced model that does not condition on the IV, X7, is equal to the full 

model averaged (or marginalized) over the instrument. If E[T|x1, …,x7] follows a non-linear 

parametric function such as a logistic model, then E[T|x1, …,x6] will generally not follow 

the same functional form as E[T|x1, …,x7] (e.g., logistic model) since averaging over X7 

changes the functional form of the model. The idea that averaging (or marginalizing) over 

variables in non-linear regression models can change the form of the model is well known 

and, in the case of logistic regression, is related to the non-collapsibility of the odds ratio. A 

more detailed and formal discussion on this topic is given by Whittemore (1978).

The reduced model E[T|X1, …,X6], described in Equation 1, can be approximated by 

refitting the logistic model as a more complex function of the reduced set of covariates (X1 

through X6). Another approach that does not require researchers to refit the initial full model 

is to use the fitted model for E[T|X1, …X7] to marginalize (or average) over the empirical 

distribution of the excluded IV, X7.

For example, assume that the full model follows a logistic function that is linear on the logit 

scale. If the full model is correctly specified, the marginalized PS (described in Equation 1) 

for a given individual can be estimated by simply using the fitted model to sum over all of 

the observed values of X7 in the dataset while holding the other covariates in the model 

constant at the observed values for that individual. Dividing this sum by the total number of 

observations in the dataset will give the PS that is averaged over the instrument for that 

individual. This process, which is described in Equation 2, can then be repeated for each 

individual within the dataset. A simple example is provided in the Appendix.
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(2)

1.3 Excluding instruments from calendar time-modified propensity scores

Misspecification that results from excluding IVs from parametric PS models is likely to have 

a negligible impact on effect estimates in many settings (e.g., the settings studied by 

Brookhart et al., 2006 and Myers et al., 2011). In situations where instrumental variables 

modify the effects of covariates on treatment, however, model misspecification will likely 

be more severe. In these settings, confounding factors will have non-linear relationships 

with treatment assignment due to the interactive effects between instruments and 

confounders on treatment. These non-linearities in the PS model can be difficult to capture 

with reduced models that exclude the IVs and IV-confounder interactions.

This issue of model misspecification is particularly relevant in pharmacoepidemiologic 

studies where there is rapid change over time in drug prescribing patterns or in the use of a 

treatment (Glynn et al., 2012; Mack et al., 2013). In these settings, calendar time is often 

associated with the dissemination (or restricted use) of the treatment of interest (Dusetzina et 

al., 2013). Examples include a newly approved treatment quickly diffusing through the 

market and the issuance of black box warnings (Dilokthornsakul et al., 2014). During these 

periods, the effects of covariates on treatment often change, or are modified over time 

(Mack et al., 2013, Dusetzina et al., 2013). For example, physicians becoming more familiar 

with a new treatment may take into account new considerations or drop previous ones when 

prescribing the treatment to patients (Schneeweiss et al. 2011). In studying the use of 

oxaliplatin for stage III colon cancer between the years 2003 and 2006, Mack et al. (2013) 

found diabetes to have no association with initiating oxaliplatin during these periods 

considered in the study, but found that diabetes steered people away from oxaliplatin use in 

later years (likely because of peripheral neuropathy).

If either variable involved in an interaction effect on treatment can be treated as an IV 

(instrument-confounder interaction), then it is unnecessary to include this interaction term 

when modeling the non-linear relationship between the confounder and treatment. After 

excluding IVs, researchers can include a complex function of the confounder to capture, or 

approximate, the non-linear relationship between the confounder and treatment that is due to 

instrument-confounder interaction. When using a single PS model to simultaneously control 

for confounding for multiple outcomes, however, it may not always be possible to exclude 

IVs prior to fitting the full model as discussed previously. Further, previous studies have 

discussed how calendar time itself can sometimes be treated as an IV when it is unassociated 

with risk factors for the outcome (Cain et al., 2009; Chen and Briesacher, 2011; Zeliadt et 

al., 2014). When conducting multiple studies over different time periods, however, it is 

unlikely that calendar time satisfies the conditions for an instrument over each of the study 

periods. It may therefore be necessary to incorporate heterogeneous effects for calendar time 

when using a single PS model to simultaneously control for confounding for multiple 

outcomes and over multiple study periods.
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One approach is to fit a complex model that includes interaction terms involving calendar 

time within the PS model (Mack et al., 2013, Dilokthornsakul et al., 2014). Changes over 

time in the treatment assignment mechanism can also be addressed by estimating the PS 

within given time periods (Seeger et al., 2005; Mack et al., 2013). For the subset of studies 

where calendar time can be viewed as an IV, however, controlling for calendar time is prone 

to introduce the negative effects that balancing IVs can have on effect estimates. If a full PS 

model that includes calendar time is correctly specified, then researchers can use this full 

model to control for confounding within subgroups of the population (Rassen et al., 2012). 

This implies that this model can be used to marginalize (average) over calendar time for 

study periods where calendar time acts as an IV and control for calendar time in periods 

where it acts as a confounder (or a proxy for confounders). When evaluating multiple 

outcomes, this model can further be used to marginalize over other variables that act as 

instruments when researchers want to subsequently consider a subset of the outcomes in 

more detail. Using a single model to marginalize over IVs can allow researchers to avoid 

controlling for IVs without having to fit multiple reduced models in settings where it can be 

difficult to accurately model the relationship between covariates with treatment over time.

2 Simulation: a simple illustrative example

2.1 Simulation setup

To illustrate, we chose a simulation structure that was originally constructed by Setoguchi et 

al. (2008) and has been used in a number of previous studies (Lee et al., 2009; Austin 2012; 

Leacy & Stuart 2013). Simulations consisted of a dichotomous treatment (T), six binary 

covariates (X1, X3, X5, X6, X8, X9) and four standard-normal covariates (X2, X4, X7, X10). 

This simulation structure includes correlations between some of the covariates to reflect the 

complexities of treatment assignment that are likely to occur in practice. Lee et al. (2011) 

provide a description and code for this simulation structure. The associations among the 

variables are illustrated in Figure 1.

We simulated the conditional probability of treatment as a function of X1 through X7 

according to Equation 3. Following the example of Lee et al. (2009) we simulated a 

normally distributed outcome according to Equation 4. We used the same parameter values 

for β1 through β7 and α1 through α7 as used by Setoguchi et al. (2008) and Lee et al. (2009). 

These values are based on the coefficients from actual claims data modeling the propensity 

of statin use (Setoguchi et al., 2008). We varied the strength of the interaction effect 

between X7 and X4 on treatment (β8). We simulated 1,000 studies for each scenario with a 

sample size of N = 5,000 for each simulated study.

(3)

(4)

We estimated the PSs using the following models:
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• PS Model 1: Logistic regression was used to estimate E[T|x1, …,x7] by fitting the 

full logistic model defined in Equation 3.

• PS Model 2: Logistic regression was used to approximate E[T|x1, …,x6] by 

excluding terms involving the instrument from the full model (PS Model 1). After 

excluding these terms, this model included only main effects in the reduced set of 

covariates X1 through X6.

• PS Model 3: Logistic regression was used to approximate E[T|x1, …,x6] by refitting 

the logistic model as a more complex function of the reduced set of covariates (X1 

through X6). This model excludes the IV and IV-confounder interaction but allows 

for non-linear relationships between the confounders and the log-odds of treatment. 

We fitted this model by adding non-linear terms for X4, checking covariate balance, 

and then refitting the model in an iterative process to improve balance. The final 

model included main effects for the covariates X1 through X6 and all two-way 

interaction terms between the confounder X4 and the confounders X1, X2, and X3. 

The purpose of PS Model 3 is not to describe an algorithm for fitting reduced 

models, but to simply illustrate that more flexible reduced models can be fitted in 

an iterative process to improve covariate balance and the specification of the 

model.

• PS Model 4: Using a more conservative definition of IVs discussed previously, it is 

straightforward to estimate E[T|X1, …,X6] by averaging over the empirical 

distribution of the instrument as described previously in Section 1.2. This was done 

by fitting the full model for E[T|X1, …,X7] and then using this model to marginalize 

over values of the instrument, X7, according to Equation 5.

(5)

For simplicity and illustrative purposes we conducted simulations for only one 

instrument. In practice, X7 could be replaced with a set of IVs and the joint 

distribution of the IVs could be simultaneously marginalized over, using a similar 

process with the same assumptions.

Following the example of Lee et al (2009), we estimated the treatment effect in the treated 

using standardized mortality ratio (SMR) weighting. We evaluated the percent bias in the 

estimated treatment effect along with the standard error. We estimated the standard error 

using the empirical standard deviation of the distribution of the treatment effect estimates 

across all simulation runs.

Since the identification of IVs can be difficult in practice, it is likely that in some situations 

variables that are thought to act as instruments are correlated with variables that affect the 

outcome (Myers et al., 2011). Therefore, we repeated the simulations while treating the 

variables X5, X6 and X7 as instruments. The variables X5 and X6 do not causally affect the 

outcome (other than through treatment), but are correlated with the outcome through X1 and 
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X2. Therefore, these variables should not be treated as IVs according to the stricter definition 

of instruments discussed previously.

2.2 Simulation results

Figure 2 shows results when only X7 was treated as an IV. Figure 2 illustrates that when the 

instrument, X7, had no interaction effect on treatment (β8 = 0), each of the PS models 

resulted in approximately unbiased effect estimates. Excluding X7 from the full PS model 

(PS Model 2) in this case had a negligible effect on the functional form of the PS model. 

When X7 interacted with a confounder to affect treatment, simply excluding terms that 

involved the IV from the full model (PS Model 2) resulted in an increase in bias compared 

to the other PS models. This bias increased as the strength of the instrument-confounder 

interaction effect on treatment increased (Figure 2).

Fitting a more flexible logistic model (PS Model 3) or fitting the full logistic model and then 

marginalizing over the IV (PS Model 4) resulted in reduced bias compared to PS Model 2 

when there existed an instrument-confounder interaction effect on treatment. These models 

also resulted in reduced standard error compared to PS Model 1 for all scenarios (Figure 2).

Figure 3 illustrates that fitting the full logistic model and then marginalizing over variables 

that are correlated with predictors of the outcome can produce substantial bias in the effect 

estimates. In these settings, refitting a more flexible logistic model (PS Model 3) as a 

function of the reduced set of covariates (X1,…,X4) resulted in reduced bias and standard 

error compared to PS Models 2 and 4.

3 Empirical example using the National Ambulatory Medical Care Survey 

(NAMCS) data

3.1 Data source

To examine the relative performance of the discussed PS estimation strategies in data 

reflecting the complexities of real-world settings, we used data obtained from the National 

Ambulatory Medical Care Survey (NAMCS). The NAMCS data consist of medical 

information collected from a national probability sample survey of visits to office-based 

physicians. The data were collected by the National Center for Health Statistics, Centers for 

Disease Control and Prevention. The survey includes patient demographics, comorbidities, 

diagnosis history, diagnostic screening services, treatments received (including 

medications), and reasons for the visit.

We identified a cohort of statin users within the NAMCS data between the years 2005–2009. 

With no follow-up, the NAMCS files do not include outcome data. We therefore simulated 

an arbitrary, normally-distributed continuous outcome (representing, for example, serum 

cholesterol) as a linear combination of statin medication use and selected covariates that are 

known to be predictive of statin use (Table 1). We simulated a normally distributed outcome 

for simplicity and to avoid issues with the non-collapsibility of the odds ratio (Greenland et 

al., 1999; Whittemore, 1978).
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Because the outcome was simulated, all confounding factors are known by design and can 

be included in each of the estimated PS models. Although the true outcome model and true 

treatment effect are known, the true PS function is unknown and a function of real data. By 

simulating the outcome as a function of real data, we are able to maintain some of the 

advantages of simulation studies while incorporating the complexities that often exist in 

practical settings when estimating the PS.

3.2 Calendar time as an instrumental variable

We modeled the probability of statin use as a function of the covariates described in Table 1 

and calendar year. As discussed in Section 1.3, calendar time is often associated with the 

dissemination (or restricted use) of the treatment of interest (Mack et al., 2013). Setoguchi et 

al. (2007) and Mann et al. (2008) have reported trends of increased statin use over time. In 

the NAMCS data, we observed a significant correlation between calendar year and statin use 

over the entire study period 2005–2009 (Table 2).

When evaluating a treatment effect over long time periods, calendar time is likely to be 

associated with biological factors. For example, studies have reported increased prevalence 

of many predictors of cardiovascular disease over time, including diabetes and hypertension 

(Hajjar et al., 2006, Danaei et al., 2011). Table 2 shows that calendar time was correlated 

with some of the selected covariates over the years 2005–2009. In these settings, calendar 

time should not be treated as an instrument since it is associated with the outcome through 

variables other than treatment.

Over short time intervals, however, it is less likely that there are significant changes in 

biological factors over time. Correlations between calendar time and biological 

characteristics in these settings are more likely to be small. As discussed in Section 1.3, 

calendar time has been viewed as an instrument over periods where calendar time is 

associated with treatment assignment, but not strongly correlated with predictors of the 

outcome (Cain et al., 2009; Chen and Briesacher, 2011; Zeliadt et al., 2014). While calendar 

time was associated with predictors of the outcome over the years 2005–2009, Table 2 also 

shows that these correlations were attenuated over the shorter period 2005–2007.

3.3 PS models and results

We initially fit a full PS model that included only first order terms (main effects of the 

covariates) over the entire study period (2005–2009). We evaluated the validity of the 

specified PS model by calculating the average standardized absolute mean difference 

(ASAMD) of the covariates across treatment groups. After including all two-way 

interactions in the PS model, the covariates were approximately balanced across treatment 

groups with an ASAMD of 0.01 (Table 3). This improved balance corresponded with 

reduced bias in the estimated treatment effect (Table 3). The improved balance that resulted 

after including interaction terms indicates that covariates likely have a complex non-linear 

relationship with statin use and that the propensity for statin use is modified over time. This 

modification is captured in the PS by modeling interaction terms between calendar time and 

the confounders described in Table 1.
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Assuming the full PS model is correctly specified, we can then use this model to control for 

confounding when conducting multiple studies in different time periods. Because the full PS 

model with interaction terms successfully balances covariates across treatment groups, we 

make the assumption that this model is a close approximation to the true PS model that 

conditions on the same set of covariates.

In addition to estimating the treatment effect over the entire study period, we conducted an 

analysis over the period 2005–2007 where we treated calendar time as an IV.We used three 

methods to not control for calendar time within this period. First, we simply excluded terms 

involving calendar time from the full PS model, similar to PS Model 2 described in Section 

2.1. We then refit a more flexible PS model within the years 2005–2007 without controlling 

calendar time. This model was fit using a process similar to that described for PS Model 3 in 

Section 2.1. We added higher-order terms in the confounders (interactions and quadratic 

terms) using an iterative process of adding terms and checking covariate balance until 

covariates were approximately balanced across treatment groups. For this model we 

included main effects along with all two-way interactions in the reduced set of covariates. 

We also included a quadratic term for age. Finally, we used the full model that was fit over 

the entire study period (2005–2009) to average (or marginalize) over calendar time within 

the period from 2005–2007. This process is described in Section 1.2 and is similar to PS 

Model 4 described in Section 2.1.

Among the models that did not control for calendar time during the years 2005–2007 

(Reduced models in Table 4), refitting a more flexible model resulted in the greatest balance 

in covariates and least bias in the estimated treatment effect. The reduced models that did 

not control for calendar time did not substantially improve the precision of the effect 

estimate (Table 4). In practical settings where instruments have a modest effect on treatment 

assignment, potential gains that are achieved when excluding an instrument may be small 

(Myers et al., 2011). Overall the results were fairly similar across each of the methods.

4 Discussion, limitations, and conclusions

4.1 Discussion

In this study, we used both simulations and empirical data to examine various ways to 

exclude instrumental variables from a full PS model that is initially fit to simultaneously 

control for confounding in multiple studies. The simulation results illustrated that when 

there did not exist an IV-confounder interaction effect on treatment, simply excluding the IV 

from the full logistic model (PS Model 2) resulted in a negligible amount of bias in the 

estimated PSs for the scenarios evaluated. However, when instruments interacted with 

confounders to affect treatment, simply excluding terms involving the instrument from the 

full logistic model (PS Model 2) resulted in biased effect estimates. We also demonstrated 

that if researchers initially fit a full model that is correctly specified, then IVs can be 

excluded through a simple process of using the full model to average over the instruments 

(PS Model 4). With an incorrectly specified full model, or when variables thought to be IVs 

are actually correlated with predictors of the outcome, this marginalization method can 

result in substantial bias, and more valid results are likely to be obtained by refitting more 

flexible reduced models (PS Model 3).
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In practice, the true functional form of the PS and relations between covariates with 

treatment are unknown. To address this, we used empirical data to model the probability of 

treatment (statin use) while treating calendar time as an instrumental variable. In this 

example, each of the estimation strategies for excluding the instrument calendar time 

produced similar results. While excluding instruments from full logistic PS models can, in 

theory, result in misspecified PSs, this example illustrated that the misspecification may 

cause only slight bias in practical scenarios that primarily involve dichotomous predictors of 

treatment. When predictors of treatment are dichotomous, model misspecification resulting 

from excluding IVs from the full model can be modest and the relative gains obtained by 

refitting a more flexible logistic model (PS Model 3) or fitting a full logistic model and then 

marginalizing over IVs (PS Model 4) will likely be small.

The proposed method of marginalizing over IVs and the alternative method of adding non-

linear terms to fit more flexible logistic models are not the only ways to accurately estimate 

PSs that do not condition on IVs. Other examples include non- or semi-parametric models 

that do not require strong a priori assumptions regarding the functional relations between 

covariates with treatment (e.g. machine learning methods, generalized additive models and 

fractional polynomial models) (Lee et al., 2009; Hastie and Tibshirani, 1986; Royston and 

Altman, 1994). For situations where model misspecification can potentially be severe due to 

very little or no prior information regarding the functional form of the PS model, more 

flexible non- or semi-parametric methods may result in more accurate PS estimates (Lee et 

al., 2009, Westreich et al., 2010).

The example we presented in Section 1.3 and empirical example (i.e., calendar time as an IV 

that influences how risk factors for the outcome affect treatment) is likely to be common in 

pharmacoepidemiology and, more generally, comparative effectiveness research. Examples 

include, but are not limited to, cancer treatments (Sheets et al., 2012; Zeliadt et al., 2014). 

However, whether calendar time is an instrument is not always known, and incorrectly 

characterizing a variable as an instrument (and thus not controlling for the variable) when in 

fact it is a confounder leads to unmeasured confounding. With variables strongly affecting 

treatment, unmeasured confounding may be substantial, even with small effects on the 

outcome (Myers et al., 2011). In many practical situations it may therefore be necessary to 

present analyses treating calendar time both as a confounder and, separately, as an IV.

4.2 Limitations and conclusion

Certain other caveats and limitations should be kept in mind. As with any simulation or 

empirical study, the results observed here are specific to the causal structure and parameter 

values assessed. Further, the practical implementation of marginalizing over IVs requires a 

strict definition of instruments, as previously discussed. Also, neither marginalizing over 

IVs nor fitting more flexible models solves the practical issue of defining which variables 

are instruments and which variables are not. As with any method of PS estimation, the 

validity of the PS estimates depends on the validity of the assumptions regarding the causal 

structure between the covariates, treatment, and outcome. Therefore, we stress the 

importance of using study design and subject matter expertise to gain an understanding of 

the underlying causal structure when performing PS analysis (Robins, 2001). When the 
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causal structure is not well understood, the specified full PS model may not be a good 

approximation for the true PS function, and therefore the proposed strategy of marginalizing 

over instruments should be avoided.

In conclusion, when interactions between IVs and confounders affect treatment, simply 

excluding all terms that involve IVs from an initial (full) logistic PS model can result in 

misspecified PSs and potentially invalid causal estimates. Instead, PSs that do not condition 

on IVs can be estimated accurately by refitting the PS model as a function of the reduced set 

of covariates, using a flexible model that allows for non-linear relations between the 

confounders and treatment. When it is reasonable to assume that the specified full PS model 

is a close approximation to the true PS function and when there is confidence about which 

variables are instruments in the strict sense, using the full (conservative) logistic PS model 

to marginalize over a set of instruments can avoid model misspecification and the negative 

effects of controlling IVs without having to refit the initial full logistic PS model. This 

strategy provides an easy way for researchers to avoid both controlling IVs and refitting 

multiple reduced models in situations where a single PS model is initially fit to 

simultaneously control for confounding across multiple studies.

Acknowledgments

This work was funded by a grant (R01 AG023178) from the National Institute on Aging.

Appendix

Marginalizing over Instrumental Variables when Estimating Propensity 

Scores

• Step 1: For simplicity, consider a causal structure consisting of one instrument, X1, 

and one confounder, X2. Fit the full PS model (i.e., the PS model that includes all 

terms that affect treatment including interactions and higher order terms). 

Assuming that the fitted model is correctly specified for the true full PS model, 

then we can marginalize (average) over instruments using a simple process 

described in steps 2 and 3.

• Step 2: Using the fitted model from Step 1, calculate N predicted values (where N 

is equal to the study size) for the first observation by holding the value of the 

variable that is not an instrument (X2) constant at the observed value for the first 

observation and inserting the observed values of the instrument (X1) for all N 

observations in the study. This will result in N predicted values for the first 

observation or individual. Take the mean of the resulting N predicted values to be 

the estimate of the conditional probability of treatment marginalized over the 

instrumental variable (X1) for this first observation.

• Step 3: Repeat Step 2 for all of the remaining N − 1 observations in the dataset. 

This described process is a relatively simple computational procedure to 

marginalize over variables under the assumption that the full model is correctly 

specified and instruments are not correlated with predictors of the outcome.
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Figure 1. 
Causal structure originally constructed by Setoguchi et al. (2008)
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Figure 2. 
Comparison of PS models when only X7 is treated as an instrumental variable
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Figure 3. 
Comparison of PS models when X5 and X6 are incorrectly treated as instrumental variables
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Table 1

Description of covariates (N=80,693)

Variable Description %

statin (treatment) statin user 1.5

male individual is male 41.7

smoking uses tobacco 11.25

CHF congestive heart failure 2.34

circulatory reason for visit circulatory 3.55

IHD ischemic heart disease 5.36

CeVD cerebrovascular disease 2.6

obesity diagnosed as obese 7.3

hyperlipidemia diagnosed hyperlipidemia 14.74

age age in years 61.3 (mean)
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Table 3

Results for study period between 2005–2009

PS Model ASAMD % bias st. error

Full model Main effect only 0.10 54.2 0.06

Interaction termsa 0.01 2.0 0.08

a
included all two-way interactions terms
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Table 4

Results for study period between 2005–2007

PS Model ASAMD % bias st. error

Full model Interaction termsa 0.02 2.3 0.09

Reduced models Excluding IV termsb 0.03 2.6 0.08

Flexible modelc 0.01 1.9 0.09

Marginalizing over IV d 0.03 2.7 0.09

a
Full model that was fit to the entire study period (2005–2009).

b
Excluding all terms from the full model that involve calendar time

c
After excluding calendar time, fitting a flexible model by including interactions and higher order terms in the confounders in an iterative process 

of adding terms and checking covariate balance.

d
Using the full model to marginalize over calendar time.
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