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Abstract

We introduce a new method for exploratory analysis of large data sets with time-varying features, 

where the aim is to automatically discover novel relationships between features (over some time 

period) that are predictive of any of a number of time-varying outcomes (over some other time 

period). Using a genetic algorithm, we co-evolve (i) a subset of predictive features, (ii) which 

attribute will be predicted (iii) the time period over which to assess the predictive features, and (iv) 

the time period over which to assess the predicted attribute. After validating the method on 15 

synthetic test problems, we used the approach for exploratory analysis of a large healthcare 

network data set. We discovered a strong association, with 100% sensitivity, between hospital 

participation in multi-institutional quality improvement collaboratives during or before 2002, and 

changes in the risk-adjusted rates of mortality and morbidity observed after a 1–2 year lag. The 

proposed approach is a potentially powerful and general tool for exploratory analysis of a wide 

range of time-series data sets.
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1. Introduction

The rapid growth of technology has facilitated widespread collection and storage of vast 

amounts of time-varying data (e.g. [1]). This data undoubtedly contains a wealth of 

potentially valuable information regarding relationships between various time-varying 

features and outcomes. However, the very size of these databases is an impediment to 

knowledge discovery, creating a need for automated exploratory analysis tools. Over recent 

decades the scientific community has expressed an increasing interest in knowledge 

discovery in large databases [4], and some exciting progress has been made in this area. For 

example, a new method for automated discovery of non-parametric associations between 

pairs of variables was recently proposed and was shown to discover a wide range of 

functional and non-functional associations [25]. However, it would be computationally 

prohibitive to extend this method for discovering multivariate associations.

In general, large data sets include many features, only a few of which may interact, 

potentially in very nonlinear ways, resulting in some association with other outcome features 

in the data. Thus, identifying the relevant features is a critical aspect of knowledge discovery 

in large data sets. Evolutionary algorithms provide a particularly attractive approach for 
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feature selection, because they require no pre-determination of the number of features in the 

optimal feature subset. Genetic algorithms (GAs), in particular, have been widely and 

successfully applied for feature selection in a variety of problems (e.g., [3], [16], [19], [22], 

[24]).

However, identifying the correct set of features is only part of the challenge in exploratory 

data analysis. For example, one may also need to identify which outcome(s) those features 

are associated with. Indeed, many distinct complex relationships between different feature 

subsets and different predicted outcomes may be present in the same data set, waiting to be 

discovered. The problem is compounded with time-series data sets, where there may be 

time-dependent aspects to the association. There are domain specific solutions that can 

address this problem for specific tasks ([21], [29], [14]), but developing a general tool that 

can find novel multivariate associations between features in time varying data for arbitrary 

problems is a much bigger challenge.

Our motivation in addressing this problem stems from a particular application in the 

healthcare domain. The Vermont Oxford Network (VON) is a non-profit corporation 

dedicated to the mission of improving the quality and safety of medical care for newborn 

infants and their families through a coordinated program of research, education, and 

networking of neonatal intensive care units (NICUs) at hospitals around the world. Since its 

inception in 1990, the VON has maintained databases with detailed information about 

hospital characteristics, treatments, and outcomes for all of the very low birth weight 

(VLBW) infants (birth weight under 1500 grams) treated at member hospitals around the 

world (e.g., [2], [6]–[9], [18], [27]–[28], [30]). These data are used to quantify treatment 

practices and risk-adjusted morbidity and mortality for VLBW infants treated at NICUs in 

the VON. While they account for only one percent of births, VLBW infants account for half 

of infant deaths in the US each year [17]. A major and consistent finding of previous VON 

database analysis is the dramatic variation in outcomes among NICUs, even after adjusting 

for differences in case mix among units [6]–[7], [9], [18], [27]–[28], [30]. Differences in 

hospitals and unit characteristics such as teaching status, volume or NICU level also fail to 

explain the large discrepancies in health outcomes [27]. We hypothesize that differences in 

VON-sponsored activities designed to improve healthcare practices may account for some of 

these unexplained discrepancies in patient outcomes in VON member hospitals. Of 

particular interest are VON-sponsored team quality improvement collaboratives, in which 

interdisciplinary teams from multiple institutions work together to identify, test, implement, 

and report on innovative evidence-based treatment strategies [10]–[13], [20], [23], [26]. In 

order to explore this hypothesis, we have assembled a large database of VON-sponsored 

interactions among member hospitals between 1995 and 2010. We seek to discover novel 

multivariate associations between time-varying VON-sponsored hospital interactions and 

patient outcomes. Discovering such relationships, if they exist, could potentially have 

widespread application to managing collaborative healthcare networks, such as the VON, 

that seeks to innovate and spread quality improvement practices between hospitals around 

the world.

In this paper we propose a genetic algorithm for co-evolving four important aspects of 

exploratory multivariate time-series analysis: (i) a subset of features to be used as input into 
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some sort of statistical predictor (such as a classifier or regression analysis), (ii) which 

attribute we can best predict from these features, (iii) a dividing year that partitions the time-

series, and (iv) a time lag to be added to the dividing year. Fitness is determined by seeing 

how well the values of the selected features before the dividing year can be used to predict 

changes in the selected attribute after the dividing year + lag. In this proof-of-concept study, 

we first validate the approach using synthetic data, and then apply the method to a subset of 

the VON data.

2. Methods

We propose a new method that uses a Genetic Algorithm (GA) to co-evolve the inputs and 

output to a fitness function based on a statistical predictor, seeking causal associations in 

large time-varying data sets with multiple input features and potential prediction attributes. 

In this paper we focus on classification predictors, although one could easily employ other 

types of predictors (such as multiple regression). For brevity, we refer to this method as 

GAMET (Genetic Algorithm for Multivariate Exploration of Time-varying data).

In the general problem, the hypothesis is that there is some sort of causal relationship 

between a set of features that affect the value of some outcome attribute over some time 

period in the future. For example, we hypothesize that interactions between hospitals in the 

Vermont Oxford Network (e.g., as evidenced by participation in multi-institutional team 

quality improvement collaboratives, co-authored publications, case study presentations, and 

attendance at annual meetings) can influence future health outcomes at these hospitals (e.g., 

probability of patient death, infection, or other morbidity). However, even assuming this 

causal influence is true, there are doubtless a number of other (non-VON related) influences 

that affect the healthcare outcomes at these hospitals (see Fig. 1, top). Thus, it is not realistic 

to expect that we will be able to predict healthcare outcomes based on knowledge of the 

VON interactions alone. Furthermore, the number of hospitals that actively participate in the 

more intense types of VON interactions (such as team collaboratives and co-authorship on 

scientific studies) is much smaller than the number of member hospitals that don't actively 

participate, so these classes are very imbalanced. Consequently, for this application we seek 

to do the prediction in the opposite direction (see Fig. 1, bottom). That is, given knowledge 

of time-varying healthcare outcomes at various hospitals, can we predict which hospitals 

actively participated in VON-sponsored interactions (even if we cannot determine which 

hospitals did not actively participate)?

In a problem like this where we hope to infer causal relationships, it is important to take the 

time-varying nature of the data into account. For example, if a hospital participates in a team 

collaborative designed to reduce infection rates, then one would hope to see infection rates 

decrease at that hospital at some time in the future, although there may be a time lag 

between when the collaborative activity took place and when measurable changes in 

infection rate can be detected. We handle this time component by looking at the change in 

health outcomes, averaged before and after a given points in time, relative to some “dividing 

year” and possibly with an intervening time lag, and see if we can use this to predict the 

presumed causal attribute (level of participation in VON-sponsored activities) before the 

dividing year (as illustrated in Fig. 2 for a dividing year of 2004 and a time lag of 2 years).
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Thus, we desire to co-estimate three types of information simultaneously: which features to 

use as input to the classifier, what dividing year and lag to use in processing the time-series 

data, and which attribute to try to predict. The binary chromosomes used in GAMET thus 

include genes associated with each of these three parts (see Fig. 3).

For feature selection, we are using binary flags that indicate whether the given feature is 

included in the final features subset or not. To evolve the time series component we evolve 

the dividing year and lag, both of which are represented as gray-coded integers in the 

chromosome. Finally, a gray-coded “participation index” specifying which single attribute 

(from a list of potentially predicted attributes) is to be predicted.

To calculate the fitness of an individual, we first process the data for the included features, 

using the dividing year and lag as described above (labeled as time series extraction and 

aggregation in Fig. 4). We then pass these time-processed features as inputs to the classifier, 

and compare the predicted classes to class outcomes of the attribute specified by the 

participation index, averaged prior to the dividing year. The data is divided into training and 

testing sets, using a parameter to control the percentage of the data used for training (80\% 

for our experiments). We use Latin hypercube sampling to ensure adequate distribution of 

samples in the training and testing sets for this highly unbalanced classification problem. 

After the training phase we evaluate the classifier performance using the confusion matrix, 

which shows the number of correctly and incorrectly classified samples in each class (see 

Fig. 4).

For our VON data set we are using two classes for all predicted outputs: a “positive”(P) 

classification means that we are predicting that a particular hospital participated in the 

specified activity beforethe dividing year, whereas a “negative” (N) classification means we 

are predicting the hospitals that didn't participate in the specified activity. The fitness is 

calculated using the following formula:

where FP is the number of false positives, TP is the number of true positives, FN is the 

number of false negatives and TN is the number of true negatives. The first two terms 

represent the proportion of samples in each class that were classified in correctly, whereas 

the last term is the proportion of the overall misclassified samples. This fitness function thus 

takes into consideration both the overall prediction rate and the individual class prediction 

rates (the latter is helpful for unbalanced classes). We would like to note that there is some 

stochasticity involved in the calculation of the fitness function (due to the Latin hypercube 

sampling and any stochasticity possibly associated with classifier), which can result in 
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slightly different fitness values being evaluated for the same chromosome on different 

occasions.

We employ two different classifiers in this paper. For the synthetically generated data set, 

we were able to use a naïve Bayes quadratic discriminant analysis (DA) classifier. However, 

because the VON data set violated so many assumptions of the DA, for this application we 

used a non-parameter counter-propagation artificial neural network (CPNN) classifier [5]. 

The overall architecture of the approach, illustrated for the VON data set, is shown in Figure 

4, where the co-evolved entities are indicated in red.

3. Experiments

A. Synthetic data

In order to test the capability of GAMET for co-evolving correct feature sets of varying 

sizes, attribute to predict, year, and lag, we created synthetic data sets for 15 test problems, 

as follows.

We first generated 5 random "true" combinations of dividing year (selected uniformly from 

2002..2009), lag (selected uniformly from 0..3 years), and index for the attribute to predict 

(selected uniformly from 0..3). We next generated 15 random multivariate expression trees 

in 3 sets of varying levels of difficulty; 5 expressions contained 2 variables, 5 contained 3 

variables, and 5 contained 8 variables. For each of these 15 test problems, we generated a 

300×100 matrix of uniformly distributed random real numbers in the range (0,1), 

representing synthetic data for 300 cases, each with 100 feature variables (e.g., synthetic 

values for 100 heath outcomes at 300 hospitals). The expression trees were generated using 

a function set of {+,−,*,exp, <, >, =} and were constructed so as to return binary class 

outcomes such that at most 2/3 of the outcomes had the same value.

The expression trees were generated using a terminal set comprising 100 distinct real-valued 

variables (corresponding to the 100 feature columns in the synthetic data sets), as well as 

integer constants {1,2,3}. Each set of 5 expression trees with the same number of variables 

was associated with the set of 5 combinations of year, lag, and index of the attribute to be 

predicted, created as described above. The resulting specifications for these 15 test problems 

are outlined in Table 4, column 2.

For each of the 15 random problems, we then created a synthetic 300×128 outcomes matrix, 

where the 128 columns in this matrix correspond to all combinations of 4 possible attributes 

to predict (e.g., synthetic values for participation in 4 types of VON-related interactions), 8 

possible dividing years, and 4 possible lags. All 96 columns in the outcomes matrix 

corresponding to the 3 incorrect attributes to predict (for all 8 dividing years and all 4 

possible lags) were initialized to uniform random binary class outcomes. However, the 

remaining 32 columns associated with the correct attribute to predict (for all 8 dividing years 

and all 4 lags), were initialized to the "true" predicted binary class outcomes associated with 

the 15 random problems.
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These "true" outcomes were calculated by evaluating the expression trees using the columns 

from the synthetic data matrix corresponding to the feature variables in the expression trees. 

Lastly, we added noise to 31 of these 32 columns, proportional to the Hamming distance (H) 

between the 5-bit gray-coded sequences representing their dividing years (3-bits) and lags 

(2-bits) and the 5-bit vector representing the “true” dividing year and lag. Specifically, we 

overwrote 30×H bits in each of these columns with random binary values.

This algorithm thus creates a synthetic data set that has known associations between a subset 

of feature vectors and one of the attributes to predict. By design this relationship has a 

perfect association when the dividing year and the lag exactly match the “true” target values, 

but the level of added random noise increases as the dividing year and lag get farther from 

the target values, as one might expect to see in real time series data.

B. VON data set

1) VON-related interactions—We assimilated a large database of VON-facilitated 

interactions between hospitals for the years 1995 through 2010. During this time, the VON 

network grew from around 100 hospitals to 850 hospitals. Here, we report on four specific 

types of VON-sponsored interactions: (i) participation in VON annual meetings; (ii) 

preparation of case studies that were presented at VON meetings; (iii) participation in VON-

sponsored team collaboratives, which are 2-year long team projects where multidisciplinary 

quality improvement teams from participating hospitals work together to identify and 

implement potentially better health practices, and (iv) co-authorship on publications 

resulting from VON-related activities. It should be noted that the level of participation in 

these four types of interactions is quite variable, with many member hospitals not actively 

participating in any of these types of VON-sponsored interactions. On average, in any given 

year only {53.2%, 11.5%, 8.3%, and 21.5%} of all VON member hospitals participated in 

these four types of activities, respectively. Thus, although we have quantitative information 

on the amount of participation in each of these activities, for this preliminary study we have 

binarized the annual participation in these four types of interactions for each member 

hospital. Our initial goal is to see if changes in health outcomes are associated with any level 

of participation, in any of these types of VON-facilitated interactions. I.e., these four types 

of VON-sponsored interactions comprise four potential “attributes to predict”, where the 

predicted values are the binary classes representing participation or non-participation. After 

the creation of this database, all identifying information was removed, to ensure member 

hospital privacy.

2) VON health outcomes—The VON maintains an extensive database of over 200 types 

of annual health outcomes at all member hospitals. In this preliminary study, adjusted 

measures (see table 3) over the period 2001 through 2010, representing the health outcomes 

of over half a million VLBW infants. The risk adjusted outcome measures are recorded as 

observed divided by expected values of the outcome, where expected values vary with the 

number of patients at the hospital. These particular features were identified by VON staff as 

ought had strong potential to have been impacted by VON-related interactions, based on 

collaborative studies they had sponsored during this time period. I.e., we want to see if 

subsets of these 18 real-valued features can be used to classify individual hospitals as 
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participants or non-participants in any of the 4 types of VON-sponsored interactions 

described in Section 3.B.1. The distribution of health outcomes in the real VON data 

violates assumptions of normality and independence. Preliminary testing, using the real 

VON health outcome features described in Section 3.B.2 with synthetically generated 

known associations to class outcomes, confirmed that the parametric DA classifier was not 

able to correctly classify known outcomes associated with these data, whereas the non-

parametric CPNN was. Thus, as mentioned previously, we used CPNN-based fitness in the 

co-evolutionary method applied to the VON data. The data provided by VON for use in this 

study was de-identified to protect the confidentiality of patients and hospitals and did not 

include personal patient or hospital identifiers. The protocol for this research was submitted 

by the Committees on Human Research at the University of Vermont and determined to be 

exempt from formal Committee review and approval.

C. Experimental design—For the 15 synthetic problems described in Section 3.A we ran 

10 replicates of the GA, using the DA-based fitness function. For the actual VON data 

described in Section 3.B, we ran 10 replicates of the GA, using the CPNN-based fitness 

function. Because both the DA and the CPNN can still classify well even with a certain 

number of excess features given as inputs, we subsequently intersected the feature sets of the 

best individuals resulting from each of the 10 replicates. The results of these experiments are 

described in the following section.

4. Results

In all 10 replications of each of the fifteen 100-feature synthetic problems GAMET was able 

to correctly identify the dividing year, lag, which attribute to predict (labeled "output"), and 

all of the 2, 3, or 8 true features (see table 4, compare columns 2 and 3), using the DA-based 

fitness function. As the number of true features increased, the tendency of GAMET to return 

excess features also increased (see table 4, column 4), since the DA can accommodate 

excess features (but simply not give them much weight).

However, the intersections of the feature sets in the 10 replications contained relatively few 

excess features (see table 4, column 5). These results demonstrate that the system is able to 

co-evolve the correct feature subsets, correct attribute to classify, correct dividing year, and 

correct lag in time-series data with known relationships between input features and attribute 

to classify.

On the VON data set, all 10 runs consistently returned a dividing year of 2002, and 

discovered that participation in VON-sponsored team collaboratives was the attribute that 

could most accurately be classified. In 7 of the 10 runs, the lag was determined to be 2 years, 

whereas in the remaining 3 runs the lag was determined to be 1 years. The health outcome 

features selected as input to the CPNN-based fitness function were also relatively consistent 

between the 10 runs (see Figure 5). However, since the CPNN can do robust predictions 

even when given a few excess inputs, we then searched for consensus in the selected 

features between the different runs.
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In all cases, the CPNN was able to predict the “true positives” in the smaller class 

(participants) with 100% accuracy (i.e., based on the selected health outcomes, the CPNN 

could correctly predict which hospitals had participated in a VON-sponsored team 

collaborative during or before the dividing year) (see table 5, column 1). However, the 

classifier was not able to use the selected health outcomes to accurately predict the “true 

negatives” (hospitals that didn't participate in any VON-sponsored team collaboratives 

during or before the dividing year) (see table 5, column 2). In other words, the identified 

classifier has high sensitivity, but low specificity. We assessed the overall classification 

accuracy in prediction participation in a VON-sponsored team collaborative, using health 

outcome feature sets that included the top n in {4,8,9,11,12,13,16} most consistently 

selected features, based on the consensus features selected in {100%, 90%, 80%, 70%, 30%, 

20%, 10%} of the replicates, respectively (i.e., those features whose frequency bars are at or 

above the horizontal dotted lines in Figure 5), using a dividing year of 2002 and a lag of 2 

years. We report the resulting percentage accuracies to the right of Figure 5. Four features 

(5, 6, 8, and 14) occurred in the selected features of all 10 replicates, but the highest 

prediction accuracy (33%) was obtained when using the 9 features (2, 5, 6, 7, 8, 9, 10, 11, 

12, 14, and 17) that were found in at least 7 of the 10 replicates; this 9-feature set also 

coincides with the best single individual found in the 10 runs (see Figure 5, red asterisks). 

The confusion matrix for this individual is shown in Table 5. Note that differences in these 

percent accuracies only reflect the differences in the specificity of the classifier, since all had 

perfect sensitivity. Conversely, we also found that the overall classification accuracy 

dropped dramatically to only 16%–18% when predicting from any 3 of the top 4 features, 

indicating that all four of these are important predictive features.

5. Discussion and Conclusions

In this paper, we introduce a method for exploratory analysis of large data sets with time-

varying features. Such data sets may contain information about many different potential 

relationships between features and outcomes. The aim is to automatically discover novel 

relationships between features (over some time period) that are predictive of any of a 

number of time-varying outcomes (over a different time period), but where the specific 

features, outcomes, and time periods are not known in advance. The application that 

motivated this study concerns exploratory analysis of a large healthcare network data set, 

comprising various types of time-varying interactions between subsets of hospitals in the 

Vermont Oxford Network (VON) and a variety of annual health outcomes at those hospitals.

The approach we take uses a Genetic Algorithm for Multivariate Exploration of Time-

varying data (GAMET), in which we co-evolve (i) a subset of health outcomes, (ii) one of 

four types of VON-sponsored interactions to consider, (iii) the maximum ``dividing" year up 

to which we consider these VON-sponsored interactions, and (iv) how many years’ time lag 

after the dividing year before which we assess changes in the health outcomes.

We first validated that GAMET was able to select the correct features, outcomes, dividing 

year, and lag in 15 synthetically designed problems with 2, 3, and 8 non-linearly interacting 

features with known associations to a specific binary-valued attribute. For these synthetic 

Manukyan et al. Page 8

Int J Adv Comput Sci. Author manuscript; available in PMC 2015 February 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



problems we assessed fitness based on the classification accuracy of a naive Bayes quadratic 

discriminant analysis classifier.

We then conducted preliminary exploration of the actual VON data set with 18 potential 

health outcome features, 4 types of VON-sponsored interactions, 8 possible dividing years, 

and 4 possible lags, representing a search space of over 33 million possible combinations of 

solutions. Due to the non-parametric nature of this actual data set, we assessed fitness based 

on the classification accuracy of non-parametric counterpropagation artificial neural network 

classifier. In addition, because the participation classes were highly unbalanced, we used 

Latin hypercube sampling to determine how to subdivide the data into appropriate training 

and testing sets.

The strongest association so far discovered by GAMET in the VON data set was between 

participation in VON-sponsored team quality improvement collaboratives during or before 

2002, and changes in the risk-adjusted rates of mortality and morbidities including 

intraventrical hemorrhage and pneumothorax (collapsed lung) that were observed after 2003 

or 2004, relative to these rates during or before 2002. Using changes in only 4 health 

outcomes selected by GAMET, we achieved 100% sensitivity in predicting which hospitals 

had participated in these collaboratives in 2002 or earlier. The identified lag of 1–2 years is a 

reasonable amount of time one would expect such changes in health practices to be 

implemented, and the health impacts of these changes observed, in the annually-updated 

health outcome records.

Our results on the VON data had relatively low specificity, however. The best individual 

returned by GAMET was still only able to achieve an overall classification accuracy of 33%, 

because the classifier was not able to accurately predict which hospitals had not participated 

in VON-sponsored interactions during or before 2002, based on the changes in health 

outcomes after 2003 or 2004. This result is actually to be expected, because there are many 

changes in healthcare practices at VON member hospitals that were independent of 

participation in VON-sponsored activities (and are consequently not in our database) that are 

expected to contribute to changes in health outcomes.

Having established proof-of-concept for the method, we now plan to apply GAMET to a 

more complete set of health outcome features and VON-sponsored interactions aimed at 

stimulating improvements in healthcare practices. We will then more closely examine the 

specific nature of the relationships embedded in the associations discovered by GAMET. 

For example, we intend to use genetic programming (GP) for symbolic regression, using 

GAMET-selected features as variables in the GP terminal set (much as in [3]).

We can also envision many ways in which to improve the GAMET algorithm itself. For 

example, since the two types of classifiers employed here (the DA and the CPNN) can be 

trained to ignore excess features, the features selected by GAMET also contained excess 

features. Consequently, we applied a post-processing step to further reduce the final feature 

sets, by looking for features common to the selected feature sets from different GAMET 

replicates. Others have reported promising results in GA-based feature selection by actually 

embedding set intersection directly into the crossover operator [3], [15]. Although we found 
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that strict set intersection was too aggressive in reducing features in the VON application, 

we plan to explore whether a probabilistic application of a “softer” form of multiset 

intersection (i.e., including all elements that occur in a certain percentage of parents) in 

multiparent crossover could help improve feature selection in GAMET, and therefore 

preclude the need for the post-processing of multiple replicates, as done here. In addition, 

the current version of GAMET only allows for the evolution of a single dividing year. We 

plan to explore whether it may prove more powerful to apply the evolved lag directly to the 

hospital-specific years of participation for selected types of VON interactions.

Although the proposed method was originally developed for analysis of the VON healthcare 

network data set described here, the GAMET approach is a potentially powerful and general 

tool for exploratory analysis of a wide range of time-series data sets. Future work will 

include the application of GAMET to time-vary problems in a variety of other domains 

(such as those in [1]).
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Fig. 1. 
a) Hypothesis of causality. b) Inverted hypothesis tested by the classifier.
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Fig. 2. 
Information is extracted and aggregated from the time-series data relative to a dividing year 

(2004, in this example) and lag (2 years, in this example).
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Fig. 3. 
Overall architecture of the approach, illustrated for use with the VON data set. Items 

outlined in red are co-evolved by GAMET.
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Fig. 4. 
Experimental results on the VON data set. The bars indicate the frequency with which each 

of the individual features was selected in 10 GAMET trials. The red asterisks near the top 

indicate the features selected in the single best individual.
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Table 1

GA parameters used in this study.

Parameter Value

Population Type bitstring

Population Size 500

Generations 100

Crossover Fen scattered

Mutation Fen {uniform, p = 0.04}

Crossover Fraction 0.8

Elite Count 1

Selection Fen {tournament, size = 4}
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Table 2

CPNN parameters used in this study.

Parameter Value

Learning rate 0.7

Bias 0.1

Mean Square Error to stop training 0.001
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Table 3

Health outcomes used as possible features in our analysis of the VON data.

# Description

1 Any Late Infection

2 Chronic Lung Disease

3 Chronic Lung Disease before 33 Weeks

4 Coagulase Negative Staph

5 Mortality

6 Mortality or Morbidity

7 Fungal Infection

8 Intraventricular Hemorrhage

9 Mortality Excluding Early Deaths

10 Bacterial Pathogen after Day 3

11 Necrotizing Enterocolitis

12 Necrotizing Enterocolitis, where occurred

13 Nosocomial Infection

14 Pneumothorax

15 Cystic Periventricular Leukomalacia

16 Retinopathy of Prematurity

17 Severe Intraventricular Hemorrhage

18 Severe Retinopathy of Prematurity

Int J Adv Comput Sci. Author manuscript; available in PMC 2015 February 06.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Manukyan et al. Page 21

Table 4

Experimental results on the 15 synthetic test problems.

# True
year, lag,
output,

#features

Found
year, lag,
output,

#true feat.

#Feat.
mean±

std

Excess
#features

found
in ∩

1 2002, 2, 3, 2 2002, 2, 3, 2 46±4 0

2 2003, 1, 1, 2 2003, 1, 1, 2 45±5 0

3 2007, 0, 2, 2 2007, 0, 2, 2 46±6 0

4 2005, 2, 4, 2 2005, 2, 4, 2 44±4 0

5 2004, 1, 3, 2 2004, 1, 3, 2 45±5 1

6 2002, 2, 3, 3 2002, 2, 3, 3 48±5 0

7 2003, 1, 1, 3 2003, 1, 1, 3 47±6 1

8 2007, 0, 2, 3 2007, 0, 2, 3 47±6 1

9 2005, 2, 4, 3 2005, 2, 4, 3 48±6 1

10 2004, 1, 3, 3 2004, 1, 3, 3 47±5 1

11 2002, 2, 3, 8 2002, 2, 3, 8 49±7 3

12 2003, 1, 1, 8 2003, 1, 1, 8 48±6 1

13 2007, 0, 2, 8 2007, 0, 2, 8 52±8 3

14 2005, 2, 4, 8 2005, 2, 4, 8 50±7 2

15 2004, 1, 3, 8 2004, 1, 3, 8 51±8 1
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Table 5

Confusion matrix for the best individual found by GAMET on the VON data. Here, “participants” refers those 

hospitals who participated in VON-sponsored quality improvement collaboratives during or before to 2002.

Observed
participants

Observed
non-participants

54 263 Predicted participants

0 91 Predicted non-participants
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