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Abstract

Genomic sequences contain rich evolutionary information about functional constraints on 

macromolecules such as proteins. This information can be efficiently mined to detect evolutionary 

couplings between residues in proteins and address the long-standing challenge to compute protein 

three-dimensional structures from amino acid sequences. Substantial progress has recently been 

made on this problem owing to the explosive growth in available sequences and the application of 

global statistical methods. In addition to three-dimensional structure, the improved understanding 

of covariation may help identify functional residues involved in ligand binding, protein-complex 

formation and conformational changes. We expect computation of covariation patterns to 

complement experimental structural biology in elucidating the full spectrum of protein structures, 

their functional interactions and evolutionary dynamics.

In the past 50 years, there has been tremendous progress in experimental determination of 

protein three-dimensional structures, but this has not kept pace with the explosive growth of 

sequence information that results from massively parallel sequencing technology. We 

therefore know many more protein sequences than protein three-dimensional structures, and 

the gap is widening rather than diminishing. Yet as the Anfinsen legacy suggests1,2, many 

proteins contain enough information in their amino acid sequence to determine their three-

dimensional structure, thus opening the possibility of predicting three-dimensional structure 

from sequence.

Computational prediction of protein structures, which has been a long-standing challenge in 

molecular biology for more than 40 years, may be able to fill this gap, if done with sufficient 

accuracy. Many useful and quite accurate three-dimensional models have been computed 

from amino acid sequences by using the similarity of the protein sequence of interest to 

another protein whose three-dimensional structure is known, often called template or 

homology model building3,4. However, correct de novo predictions from sequence, when 

not a single structure in a protein family is known, have been hard to achieve, as the 

pioneering Critical Assessment of Techniques for Protein Structure Prediction (CASP) 
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evaluation of blinded predictions has demonstrated over the past two decades5,6. Some of 

the best recent state-of-the-art approaches to de novo folding, such as Rosetta, are based on 

searching for sequence-similar fragments in three-dimensional structure databases followed 

by fragment assembly using empirical intermolecular force fields7. Such approaches have 

worked favorably in cases for smaller proteins that have fewer than ∼90 amino acids7 and 

need to be combined with experimental data for larger proteins8,9. Other approaches attempt 

to predict residue contacts using three-dimensional information with machine-learning 

techniques, such as support vector machines, random forests and neural networks, but 

contact prediction accuracy remained “still quite low”10 with substantial improvements to 

models achieved only for some small proteins11,12. Clearly, and unfortunately, the de novo 

structure prediction problem does not scale13, the conformational search space increases 

exponentially as the size of the protein increases, presenting a fundamental computational 

challenge, even for fragment-based methods14. In this sense, the general problem of de novo 

three-dimensional structure prediction has remained unsolved.

Covariation and the problem of transitive correlations

A substantial step forward in protein-structure prediction is now on the horizon based on the 

power of evolutionary information found in patterns of correlated mutations in protein 

sequences (Fig. 1a). The extraordinary improvements in DNA sequencing technology, aided 

by advanced statistical analysis, have now provided the keys to unlock this evolutionary 

information. Several groups have demonstrated that extracting covariation information from 

sequences is sufficient not only to estimate which pairs of residues are close in three-

dimensional space15–21 but also to fold a protein to reasonable accuracy15,22–25 (Table 1). In 

addition to being predictive of contacts in a protein, these pairs of covarying residues should 

also be predictive of functional sites (Fig. 1b), protein interactions and alternative 

conformations15,16,22.

The most successful approaches deal with a well-known statistical problem, as elegantly 

stated in the 1920s by Sewall Wright26: “The ideal method of science is the study of the 

direct influence of one condition on another in experiments in which all other possible 

causes of variation are eliminated.” For the problem of correlated mutation analysis, to find 

true evolutionary covariation between residues, one must minimize the effect of transitive 

correlations—that is, false positive correlations that are observed, for example, when two 

residues contact the same third residue but do not actually contact each other. For example, 

if residues A and B contact each other, as do residues B and C, then there is in general, a 

transitive influence observed between residues A and C (‘chaining effect’17,27). As residues 

can contact many other residues (not just one), transitive effects occur across the network, 

and pairs of residues that are correlated as computed using a ‘local’ statistical model, such as 

mutual information scores, are not necessarily functionally constrained or close in space 

(Fig. 2). Local statistical models (below referred to as local models or local methods) 

assume that pairs of residue positions are statistically independent of other pairs of residues 

(Table 1 and Fig. 2). In real proteins, however, residues can contact many other residues, 

and their cooperative interaction is crucial to the protein structure and function. In the 18-

year history of contact-prediction methods using correlated mutations, all methods used 
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local mutual information or other local statistical models28–33, with one notable but 

unnoticed exception17.

Although these local methods have been used to make some improvements in contact 

prediction or identification of functional residues, they have not been used successfully to 

predict three-dimensional structures from sequence information alone presumably for two 

main reasons. First, local statistical models do not deal with transitive correlations, and 

second, such models do not adequately take into account important information in conserved 

positions33. Other confounding effects that have prevented high-accuracy prediction of 

residue contacts include uneven representation of family members in sequence space, 

statistical-noise as the result of an inadequate number of sequences in the family as well as 

phylogenetic effects. Whether or not explicit removal of quantifiable phylogenetic effects 

can be productively added to the suppression of transitive correlations in global models 

remains an open question.

In contrast, a ‘global’ modeling approach treats correlated pairs of residues as dependent on 

each other, rather than as statistically independent, thereby minimizing the effects of 

transitivity and spurious noise. This approach also uses globally consistent single-residue 

marginals, which takes into account effects from conservation of single residue positions. 

Global approaches yield high coupling scores only for pairs or residue positions that are 

likely to be causative of all the observed correlations. Residue pairs with high globally 

derived coupling scores are most likely to represent the true interactions between residues 

deduced from the evolutionary history of the protein. In contrast, local information–based 

methods, which treat each pair of residue positions independently, will have high ranking 

correlations that are not necessarily causative and such correlations can be even greater than 

the causative correlations. Noncausal correlation is well understood in statistical physics; it 

includes, for instance, long-range order observed in spin systems, where in fact the spins 

only have short-range direct interactions, and is called ‘chained covariation’27,34. In essence, 

global statistical approaches for analysis of protein sequences address this question: given 

all pair correlations, which ones best explain all the others? Or, as in other areas of statistics, 

how does one go from correlation to causation26?

Transitive correlations removed by global statistical approaches

One global statistical approach is known as entropy maximization under data constraints, a 

classic inference method connecting information theory and Boltzmann statistics35. 

Maximizing entropy under constraints36 has been successfully used in statistical physics and 

other areas of statistical inference37–39, and the conditional mutual information derived from 

correlations between positions in a protein sequence is a discrete, nonlinear analog of partial 

correlation analysis40. In contrast to simple mutual information, the conditional mutual 

information can be thought of as the degree of covariation between residues at positions a 

and b that is due solely to direct effects of a on b, factoring out contributions to the 

correlation that are caused by interaction of both a and b with the rest of the network of 

residues.
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The first step in the practical application of such global approaches is to create a multiple 

sequence alignment between many members of an evolutionarily related protein family (Fig. 

2). Next, one calculates the covariance matrix (the observed minus expected pair counts) of 

dimension (20L)2, where L is the length of the protein sequence, by counting how often a 

given pair of the 20 amino acids, say alanine and lysine, occurs in a particular pair of 

positions, say position 15 and 67, in any one sequence, summing over all sequences in the 

multiple-sequence alignment. This large matrix contains the raw data capturing all residue 

pair relationships across evolution up to second order (pairs, not triplets or higher). One can 

then compute a measure of causative correlations, the conditional mutual information, in the 

global statistical approaches by taking the inverse of the covariance matrix. That such a 

matrix inversion results in a measure of causative correlations is well known in the statistical 

theory of Gaussian multivariate distributions of continuous variables40.

An analogous derivation for discrete-state biological sequence analysis is, for example, 

based on a mean-field expansion in analogy to statistical physics16. The resulting explicit 

probability model for a sequence in the particular protein family resulting from inversion of 

the covariation matrix contains numerical estimates of direct pair interactions. These are 

directly and simply computed from the raw data in the covariation matrix, in 

contradistinction to machine-learning methods that rely on parameter fitting in learning sets 

and cross-validation in test sets. The pair interaction terms can also be interpreted as residue-

residue pair energies, in analogy to pair terms in a Hamiltonian energy expression in 

statistical physics. The conditional mutual information between a pair of positions derived 

using the global statistical approach becomes a useful predictor of residue-residue contacts.

The maximum-entropy approach to potentially solving the problem of protein structure 

prediction from residue covariation patterns was first described by Lapedes and 

collaborators17,27. However, instead of inversion of the covariance matrix, they used a more 

computationally demanding Monte Carlo method (that is, iterative exploration of the best set 

of pair interactions values) to derive the probability terms in conditional mutual information. 

Although Lapedes and Jarzynski did not compute three-dimensional structures, they reached 

a first breakthrough in contact prediction in 2002 for 11 small proteins and reported 50–70% 

accuracy for top 20 contact predictions, in contrast to 35–45% accuracy with the previous 

best methods available17.

A more recent independently derived implementation of the maximum-entropy approach 

used an iterative parameter-estimation technique for deriving the pair-interaction parameters 

known as belief propagation21. This was superseded by a much more efficient mean-field 

approximation, in which the parameter estimation problem was solved by inverting the 

correlation matrix15,16, as currently used by the EVfold and DCA-fold structure-prediction 

methods. Other implementations have used derivatives of partial correlation approaches, 

where ‘partial’ refers to computing direct residue-residue correlations after removal of 

transitive effects. These methods used Bayesian network inference19 and sparse inverse 

covariance estimation20, which leads to equations that are similar to those derived with the 

maximum-entropy approach in the mean-field approximation to eliminate the effect of 

transitive correlations. After removal of transitive correlations and other confounding 
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effects, predicted contacts based on the global probability models provide a base for the 

computation of three-dimensional folds.

From contact predictions to protein folding

To what extent does improved contact prediction lead to improved de novo prediction of 

three-dimensional structures? We developed (D.S.M. and colleagues15), a folding protocol, 

EVfold, in which predicted residue contacts from coevolution patterns are translated into 

detailed atomic coordinates by using distance restraints placed on an extended polypeptide 

(Fig. 2). In this method, a three-dimensional structure is calculated by constraining the 

distance between pairs of residues with high covariance scores using a standard distance 

geometry algorithm, first pioneered and then ubiquitously used to solve three-dimensional 

structures with experimental constraints deduced from NMR spectroscopy data41. This is 

then followed by simulated annealing by molecular dynamics to ensure the correct bond 

lengths and plausible side-chain conformations. In a benchmark test on known structures, 

all-atom three-dimensional coordinates were predicted from sequence alone for 15 diverse 

globular folds of up to 220 amino acids and for eight folds with 100 or more residues15. The 

predicted structural elements were correctly placed in three-dimensional space, with an 

overall accuracy of as low as 2.8–5.1 Å Cα r.m.s. deviation relative to the experimentally 

determined structures. Predictions for enzymatic proteins were the most accurate, and the 

quality of prediction was robust to false positive predicted contacts.

To compare alternative global statistical methods, we (D.S.M. and colleagues15) also have 

folded proteins using residue contacts predicted by a Bayesian network model19, reporting 

three-dimensional structure error between 4 and 6 Cα r.m.s. deviation, at somewhat lower 

accuracy than with contacts predicted by the maximum-entropy formalism15. Using EVfold 

contacts and folding protocol, the accuracy of atomic coordinates were reported to be best 

(down to ∼1 Å all-atom over 5–10 residues) around active sites. Plausibly, this reflects 

strong functional requirements for protein-ligand interaction, such that active-site residues 

are multiply constrained by interactions between pairs of residues (Fig. 1b).

The quality of the predicted folds, and the number of cases in which this works, is likely to 

improve in time, given the observation15 that more sequence information tends to lead to 

higher accuracy of distance constraints. And the currently limited atomic accuracy (in the 

range of 2–5 Å Cα r.m.s. deviation) of the successful de novo structures is likely to improve 

with advanced molecular dynamics refinement methods resulting in more accurate atomic 

coordinates (for example, using the molecular dynamics and refinement software 

Cystallography and NMR System (CNS)42, Rosetta43, the deformable elastic network 

(DEN) approach44 or the Anton massively parallel special purpose computer45).

The structures of membrane proteins are notoriously difficult to determine by 

crystallography or NMR spectroscopy. Using a maximum-entropy approach, one of our 

groups (T.H. and colleagues22) recently has tested the ability to predict the three-

dimensional structures of membrane proteins on 25 membrane proteins with up to 487 

residues (up to 14 transmembrane helices) from 23 structurally diverse families, excluding 

information from homologous three-dimensional structures and sequence-similar fragments. 
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The protein set included examples from important functional classes, such as G protein–

coupled receptors (GPCRs) and membrane transporters22. The EVfold-membrane protocol 

provides a ranked set of predicted structures for each protein, which was then compared with 

the corresponding crystal structure. Accuracy results ranged from Cα r.m.s. deviation of 2.6 

Å to 4.8Å over >70% of the length and template modeling scores46 of 0.5–0.7, which are 

notable for de novo predictions of proteins of this size (Fig. 3).

Several other global statistical modeling approaches have since been used to predict residue 

contacts for use in folding protocols. The Jones group24, using a method called FILM3, 

predicted accurate all-atom three-dimensional structures of membrane proteins using an 

evolutionary coupling term added to an earlier fragment-based prediction method. They 

predicted the structure of 32 known membrane proteins with template modeling scores of 

∼0.25–0.75 (folds with scores >0.5 are considered essentially correct). From a first set of 

results on known structures they derived an empirical ranking protocol that can be used to 

objectively select structures such that template modeling scores are likely to exceed 0.47. 

This level of accuracy is comparable with that of the EVfold method, although unlike 

FILM3, EVfold uses no experimentally determined protein fragments nor known membrane 

protein Z-plane coordinates.

The Onuchic group23, using a protocol called DCAfold, predicted three-dimensional 

structures of 15 bacterial protein domains up to 133 residues (in their test set) using the 

information content in evolutionary couplings, with or without assumed native 

(experimental) secondary structure and statistical potentials derived from a set of known 

proteins unrelated to those folded. The derivation of predicted contacts uses essentially the 

same maximum-entropy approach as EVfold, and the structures are generated from a one-

bead-per-residue representation, followed by generation of all-atom coordinates. The results 

generated with known or predicted secondary structure are comparable to those of EVfold, 

at least for smaller-length proteins reported.

Each of these three approaches to folding from evolutionary constraints predicted residue 

contacts from correlated mutations at much higher accuracy than did previous contact 

prediction methods (Box 1). They often reached the correct fold (that is, correct topography 

of secondary structure elements in three dimensions; 2–6 Å Cα r.m.s. deviation), which is 

unprecedented without the use of three-dimensional fragments and unprecedented for any 

proteins over 100 residues, even with the use of three-dimensional fragments. The three 

approaches differ in details of the statistical models, the use of predicted secondary structure 

and the protocol for generating atomic coordinates of predicted folded three-dimensional 

structures, for example, with or without the use of sequence-similar database fragments and 

in all-atom or residue-center representation. EVfold uses the least existing structural 

information of all three approaches and therefore showed the potential for the prediction of 

unknown folds. DCAfold showed how using evolutionary constraints with very detailed 

experimental information about secondary structure can predict native-like three-

dimensional structures. FILM3, for membrane proteins, showed that using fragments from 

globular proteins and information from membrane protein secondary structure may increase 

prediction accuracy. It is reasonable to expect that use of any independent empirical 

information or advanced refinement protocols can improve the accuracy of predicted 
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coordinates from the new covariation methods. Taken together, these global approaches for 

calculating sequence-derived constraints show the power of evolutionary information and 

the potential to increase the accuracy of predicted three-dimensional structures by adding 

limited experimental data. Going all the way from multiply aligned sequence families via 

predicted residues couplings and contacts to often well-folded predicted three-dimensional 

structures has now been achieved in several reports (Table 1)15,22–24. These 

implementations may be broadly applied over the next few years and will benefit from the 

continuing rapid growth in the number of sequences in protein families and of known 

protein families.

Applications of improved structure-prediction methods

Beyond benchmarks, the value of three-dimensional structure prediction methods is best 

established over time by making biological discoveries, in unknown territory. Notably, 

evolutionary couplings, even with transitive correlation effects removed, can be caused by 

diverse functional effects, of which the formation and stability of the folded three-

dimensional structure is only one (Fig. 4a). Several applications are possible.

Proteins with unknown structures

The first published exercise of prediction in unknown territory using the EVfold method 

focused on medically interesting transmembrane proteins (Fig. 2c) associated with diabetes, 

obesity, Crohn's disease, breast cancer, a hereditary optic neuropathy, Alzheimer's disease or 

Parkinson's disease. The predicted several hundred all-atom three-dimensional models for 

each protein were ranked according to an empirical score, with the top ranking thought to be 

more likely to be correct. Such predicted structures can be used for functional interpretation 

and design of targeted experiments (all three-dimensional coordinates available at http://

www.EVfold.org/). A particularly interesting application is the identification of putative 

binding and interaction sites and possibly computational drug screening, which is not 

unreasonable in light of the higher accuracy near active sites in the benchmarks (Fig. 4). A 

search of predicted structures against experimentally known structures in the Protein Data 

Bank (PDB) for similar folds can be used to determine whether a predicted structure is a 

new fold or to discover unexpected evolutionary relationships. Such unexpected ‘remote 

homologies’ are either indicative of remote evolutionary relatedness not easily detectable at 

the sequence level, or indicative of convergent evolution to particularly advantageous or 

easily accessible folds22.

Protein oligomers and complexes

Functional constraints have an effect on a protein sequence through interactions, but not all 

of these are internal to the protein. Thus, analysis of evolutionary covariation may also 

reveal constraints imposed by protein oligomers or complexes made of identical (homo-

oligomers) or different (hetero-oligomers) types of proteins. For homo-oligomers, 

interactions between monomers can be false positives when considering intramonomer 

contacts. In de novo structure prediction, one needs an algorithm that disambiguates between 

intramonomer and intermonomer contacts in an oligomer, as is needed in structure 

determination of oligomers by NMR spectroscopy.
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A recent example has shown the accuracy of the evolutionary constraints in identifying 

multimer contacts (Fig. 4b), including dimer contacts for an Escherichia coli methioinine 

transporter, tetramer contacts for a cataract disease protein and predicted dimer contacts for 

the de novo–predicted structure of the adiponectin receptor22. Similarly, another report16 has 

demonstrated that three of the top 20 predicted contacts for an ATPase domain were false 

positives for the monomer but true positives for the multimer. Both reports showed that 

∼50–70% of the top predicted contacts that are not intradomain contacts, are inter-domain 

contacts from multimeric assemblies.

Such an algorithm can help with monomer folding accuracy, if the conflicting oligomer 

contacts are removed in the process of computing the monomer structure. A related but 

actually simpler problem is that of predicting pairwise protein–protein interactions21,47,48. 

Assembly of protein complexes from evolutionary couplings should also be possible, in 

analogy to the computation of the higher-order structure of the nuclear pore complex49 from 

interactions between pairs of residues deduced for mass spectrometry data.

Functional sites and signal transmission

As prediction accuracy using evolutionary couplings is generally higher near active sites and 

binding sites, it is reasonable to hypothesize that strong pair constraints are a signature of 

functional constraints. This can be generalized and applied to the prediction of functional 

elements in two ways. First, one can use the cumulative strength of evolutionary couplings 

for a particular residue as a measure of the effect of functional selective pressure on one 

residue (that as a single residue does not have to be strongly conserved). Second, one can 

identify chains of residue pairs with high evolutionary coupling values as potential chains of 

transmission of information, which is particularly interesting in transmembrane receptors. 

Such predictions of functional information for proteins (with either known or unknown 

three-dimensional structures) may be useful for multiple biological applications, including 

basic protein mechanism, interpretation of genotypic differences across the human 

population and evolution, somatic mutations in cancers, and the synthetic design of 

functionally altered proteins.

In one of our papers (D.S.M. and colleagues15) we illustrated the first principle by 

demonstrating that the predicted active sites of trypsin and Ras were particularly accurate 

relative to the accuracy of the rest of the protein when compared with the crystal structures, 

following the spirit of earlier work that used a weighted local mutual information 

method50,51. Morcos et al.16 also showed that a long-distance high-scoring pair of predicted 

contacts in a metallo-enzyme was more than 14 Å apart in the monomer, so seemed as if the 

pair prediction was a false positive, but the residues are in principle in contact through a 

catalytic manganese ion in the respective monomer units of the dimer16.

The second principle of functional interpretation is illustrated in a subsequent paper (T.A.H. 

and colleagues22), where we systematically mapped the cumulative strength of all high-

ranking evolutionary couplings onto all residues to predict functional sites and functional 

chains over and above single-residue conservation. Mapping these highly evolutionary 

constrained residues onto two GPCRs, adrenergic beta-2 receptor and an opioid receptor, 
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highlights known ligand-binding residues (Fig. 4c) and the G-protein binding residues on the 

cytoplasmic interface (data not shown).

Alternative conformations and allostery

Many proteins can adopt different distinct conformations as part of their function. An 

interesting example of covariation analysis of conformational changes is the derivation from 

computed evolutionary constraints of the alternative three-dimensional conformations in the 

large ‘major facilitator’ super-family of transmembrane proteins22,52,53. In general, for some 

proteins with functional conformational flexibility, the record of functional constraints in 

multiple sequence alignments may be sufficiently strong to permit modeling not just of one 

structure, but of alternate structures, for example, of the end points of functional 

conformational transitions (Fig. 4d)22.

Limitations

Although evolutionary couplings show promise for the identification of functional sites, 

homomultimer contacts, alternative conformations and functional sites, many of the 

predicted contacts involved in these protein features may appear as false positives in the 

prediction of intradomain residue contacts. Therefore, a challenge for the field will be to 

develop algorithms that can disambiguate the different functional constraints. In addition, 

protein sequences that are confidently aligned will not necessarily have the same three-

dimensional conformations, and methods should be developed to identify those protein 

families that are likely to be more varied in their three-dimensional structure. An objective 

measure has been described22 to choose the optimal alignment depth for accurate prediction 

of three-dimensional structure, but such measures will need to be developed further to be 

more rigorously applicable and yield better predictions.

The detection of evolutionary couplings between residues requires a substantially diverse set 

of sequences, which is not yet available for many families. For instance, to obtain a good 

fold, EVFold needs about 5L (rough estimate) sequences in the multiple alignment, where L 

is the length of the protein. However, this shortcoming may be addressed simply over time, 

and more sophisticated use of family and subfamily information54 may improve the 

accuracy of the algorithms. Given the massive throughput capacity of current sequencing 

technology, the growth of protein family information is primarily limited by the acquisition 

of genomic samples from a diverse set of species. A reasonable extrapolation predicts that 

within a few years most of the current 15,000 protein families (as defined by PFAM-A55) 

will have sufficiently many known sequences to yield a robust evolutionary coupling signal 

(Fig. 5a). In addition, conservative extrapolation suggests that another 500 of the ∼1,300 

currently known transmembrane protein families will be amenable to folding with 

evolutionary constraints (Fig. 5b). Of course, new families will also join the known universe 

of sequences, at a rate that is hard to predict56, but it is likely that the absolute number of 

correctly predictable protein folds will rise sharply into the many thousands over the next 

few years. None of the methods reviewed here have been tested yet in the CASP 

competition (http://predictioncenter.org/casp10/) but one can assume researchers using the 

new methods will enter the CASP competition in the future.
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Signatures of evolutionary constraints may be left in sequences as a result of forces other 

than natural evolution. Guided evolution or selection in the laboratory is a potentially 

powerful tool for focused expansion of the sequence repertoire in any particular protein 

family57. After generating partially randomized large sequence sets, one can use a selection 

or screening method to identify sequences that are the result of strong functional constraints. 

Sequence-constraint experiments in the laboratory, coupled with massively parallel 

sequencing, have the promise of generating tens or hundreds of thousands of diverse 

sequences, permitting a robust derivation of evolutionary couplings.

Combine experimental and computational structural biology

With the steep rise in the amount of sequence information, a rapid scan of the universe of 

protein folds at reasonable prediction accuracy appears to be within reach. Such a survey 

would provide insight into the diversity of protein structures that have evolved to perform a 

wide range of specific molecular functions. Obtaining higher-accuracy structures will take 

more time, even if experimental structural genomics technology is further accelerated.

A particularly productive approach may be the combination of computational and 

experimental methods (Fig. 5c). Protein-structure determination by NMR spectroscopy is 

ideally suited for a hybrid approach8, as it is based on the determination of distance 

constraints. Combining distance constraints derived from evolutionary couplings with those 

from NMR spectroscopy could reduce the amount of experimental effort needed to obtain a 

correct structure or facilitate the solution of larger structures than possible using NMR 

spectroscopy alone. A similar increase in overall efficiency could be obtained using X-ray 

crystallography if a molecular replacement search of a predicted three-dimensional structure 

against just a native data set can be made to work. This would save the effort of obtaining 

additional derivative or anomalous diffraction data sets. Combining reduced X-ray and 

NMR spectroscopy data sets with predicted three-dimensional models may open a new 

phase for structural biology with much more rapid determination of high-accuracy protein 

structures (Fig. 5d).

Experimental and computational structural biology has made tremendous progress since the 

first elucidation of the intricate details of protein three-dimensional structures and the first in 

vitro protein-folding experiments. We are now entering a phase in which the evolutionary 

information in the genetic sequences of the living system is being rapidly read using 

advanced sequencing technology. Using the resulting massive sequence data sets, successful 

decoding of the molecular record of evolutionary constraints could now reveal structural and 

functional information about proteins at an unprecedented rate.
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Box 1

Three-dimensional structure from coevolution patterns—why does it work?

The recent substantial progress in contact prediction and de novo folding reviewed here, 

against a background of several decades of slow improvement5, raises the question of 

what are the key enabling factors. The answer is threefold: first, the power of 

evolutionary selection, with functional constraints conserved over large evolutionary 

distances; second, the recent increase in the amount of available sequence information61; 

and third, the recently honed mathematical ability to compute global (cooperative) rather 

than local (factorized) probability models. When combined with computational methods 

for generating structures of biological macromolecules from distance constraints that had 

been originally developed for experimental NMR spectroscopy, these three factors lead 

to substantially improved prediction of protein three-dimensional structures from 

sequences alone.

Precise information in the evolutionary sequence record

Reading of the evolutionary record in protein sequences over the past four decades has 

revealed the remarkable conservation, yet flexible adaptation, in many protein structures 

and sequences across large evolutionary distances. Protein science has yielded a detailed 

understanding of how functional constraints at the level of the organism percolate down 

to the level of cellular processes and functional protein molecules. Notably, evolutionary 

imprints of functional constraints are visible in single sequence positions in a set of 

aligned, evolutionarily related proteins (a ‘family’). More subtle, but equally notable, is 

the realization, not unlike that for RNA structures but less obvious, that evolution appears 

to have left a clear imprint detectable not only as conserved single-residue characteristics, 

but also as constrained interaction signatures in residue pairs. Sequence information in 

carefully assembled protein families is a gold mine for computational analyses of 

evolutionary interaction constraints.

Growth in sequence databases from massively parallel sequencing

A nontrivial challenge for detection of this evolutionary information is the availability of 

sufficient sequences of sufficient diversity. Fortunately, known protein families are 

growing in size, typically from a few sequences to many thousands of sequences. The 

pace of growth has been faster as the result of advances in DNA sequencing technology 

over the past decade or so. The recent progress in de novo protein-structure prediction 

builds directly on the enormous corpus of sequence information.

Reduction of conformational search space by cooperative probability models

The global probability models account for the fact that interactions along an entire 

protein chain are mutually interdependent in a way that is inherently cooperative (pair 

interactions are modified by interactions with other parts of the system) and cannot be 

factored (probabilities are not a simple product of independent terms). In this way, the 

early realization that protein folding is a cooperative process is reflected in the 

application of statistical approaches using maximum entropy or partial correlations. Both 

of these methods capture interdependency effects between pairs, in particular the 
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confounding transitive correlations (Fig. 2b). Compared with massive and impressive 

molecular dynamics simulations, the statistical approaches are many orders of magnitude 

more efficient in reducing a huge conformational search space to manageable 

proportions.
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Figure 1. 
Reading the sequence record for evolutionary constraints. (a) Evolutionary pressure (left) to 

maintain favorable interactions between physically interacting amino acid residues (red 

circles) in the three-dimensional fold of a protein (curved line) leaves a visible record of 

residue covariation (double-headed, dashed arrow) in related protein sequences (aligned 

horizontal lines). The inverse problem of inferring (right) directly causative residue 

couplings (evolutionary couplings) from the covariation record is challenging because of 

transitive correlations and other confounding effects, but once evolutionary couplings are 

determined (double-headed dashed arrows on curved protein chain), they can be used to 

predict the unknown three-dimensional structure of a protein (ribbon, right) from a set of 

sequences alone. (b) Residues subject to a high number of evolutionary pair constraints 

(double-headed, dashed arrows; left) represent likely functional hotspots (large red dot). 

Such highly constrained residues include residues in functional sites (for example, 

interaction with external ligands, red dots on right) that may not be detectable by analysis of 

single-residue conservation.
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Figure 2. 
Deriving folded three-dimensional structure for a target protein sequence. (a) Workflow as 

implemented on the publicly available web server EVfold.org. Related methods (Table 1) 

follow similar steps, but details differ. The amino acid sequence of the target protein is used 

to perform a database search for putative structural homologs, with attention to the optimal 

cutoff in sequence similarity so that sufficient sequences are available yet they are not too 

far diverged to lose subfamily specificity. Minimally, hundreds of sequences are needed to 

derive plausible causative evolutionary couplings. For ten candidate structures for a 

medium-sized protein (∼200 residues), the computation takes less than an hour on a typical 

laptop computer. (b) The principal confounding effect dealt with by global probability 

models, but not by the local models, is that of transitive (indirect) correlations that do not 

reflect causative evolutionary constraints on interactions. For example, correlations between 

residues A and B, residues A and D, and residues D and C are causative because they reflect 

direct interactions, whereas residues A and C show transitive correlation owing to their 

mutual direct interactions with residue D. The transitive correlations, in special cases, can 

have numerically stronger correlation values than causative correlation, for example, if two 

noninteracting residues have in common several neighbors27, thereby confounding structure 

prediction.
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Figure 3. 
High-ranking evolutionary constraints correspond well to experimental structure contacts in 

blinded tests, encouraging prediction of unknown structures. (a) Blinded prediction test for a 

globular protein. Dots in plots on left represent contacts between residues in a protein. 

Residue pairs with high coevolution scores from local models based on mutual information 

are mostly not close in three dimensions (blue dots), whereas high-ranking evolutionary 

constraints (red dots) correspond well to experimental structure contacts (gray). The same 

number of predictions are shown in each triangle (same number of blue and red dots). The 

high accuracy of prediction of evolutionary constraints allows the prediction of the all-atom 

three-dimensional structures of globular proteins, shown as a ribbon diagram of the human 

oncoprotein RAS (red, evolutionary coupling–based prediction; gray, crystal structure; 

Uniprot identifier RASH_HUMAN; PDB identifier 5p21)15. (b) Blinded prediction test as in 

a for a transmembrane protein (Uniprot identifier GLPT_ECOLI; PDB identifier, 1pw4 (ref. 

22). (c) Example of prediction of a medically important protein of unknown three-

dimensional structure, ATP-binding cassette sub-family G member 2 (alias, breast cancer 

resistance protein, Uniprot identifier ABCG2_HUMAN)22.

Marks et al. Page 18

Nat Biotechnol. Author manuscript; available in PMC 2015 February 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4. 
Beyond three-dimensional folds: predicting protein complexes and functional interactions. 

(a) Besides the prediction of monomer three-dimensional structure (‘within self’), in 

principle, evolutionary couplings can be used to deduce additional functional interactions 

(between a target protein and other proteins or ligands), the transmission of information and 

conformational plasticity. (b) Evolutionary constraints reflect the coevolution of residues in 

homomultimer interaction interfaces (red spheres, residues participating in interprotein 

evolutionary couplings; monomeric subunits, ribbons in different shades of gray), allowing 

the prediction of both tertiary and quaternary (oligomeric) structures from correlated 

mutations. (c) Residues (red sticks, predicted from summed evolutionary couplings) 

involved in ligand (blue sticks, position known in crystal structure) binding of 

transmembrane receptors are often affected by multiple high-ranking evolutionary 

constraints, which reflect the requirements of a particular spatial arrangement of binding 

residues, even in the presence of diverse ligand specificities in subfamilies. (d) In proteins 

with conformational plasticity, evolutionary constraints may reflect the proximity of 

residues in alternative conformations and can be used to fold structural models of the 

different states. Transmembrane helices H5-H8 H5 and H8, and H2 and H11, form two pairs 

that rock between the alternative conformations of the glycerol-3-phosphate transporter 

GlpT. The ‘closed conformation’ (closed to cytoplasm) was predicted by EVfold22; the 

‘open conformation’ is known from X-ray crystallography data (PDB identifier 1pw4).
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Figure 5. 
Future applications. (a) Although experimental structure-determination in structural biology 

laboratories or structural genomics centers is highly productive (solid black line), it cannot 

keep up with the pace at which new protein families are being discovered by high-

throughput sequencing (solid gray line). The number of three-dimensional structures that 

can be reasonably predicted using evolutionary conservation (solid red line) was estimated 

by a linear extrapolation in the log plot of the exponential growth inset. We expect the 

growth curves to saturate in the future (dashed lines), but there is no indication this will 

happen in the next couple of years, and indications are that a large increase in the number of 

protein families may be apparent from multispecies (metagenomic) sequencing58. (b) Of the 

1,250 alpha-helical transmembrane protein families known in mid-2012, 107 have solved 

experimental three-dimensional structures and another 200 are accessible to solution by 

evolutionary constraints in 2012. By 2015, we estimate an additional 500 of these 2012 

families will become accessible to fold prediction by coevolution methods (Pfam numbers 

courtesy of J. Mistry and M. Punta). Similar extrapolations can be made for other protein 

structure classes, such as β-sheet transmembrane proteins or globular water-soluble proteins. 

(c) A comparison of methods for three-dimensional protein structure determination showing 

the complementary nature of various features from different approaches. ‘Sequence needs’ 

refers to the number of sequnces needed to solve the three-dimensional structure; ‘Existing 

3D needs’ refers to the number of homologous sequences needed to solve structure. 

‘Coverage’ refers to the ability to solve a large fraction of existing proteins given sufficient 

sequence information. Not included in our comparison matrix are large specialized hardware 

computational methods for protein structures such as Anton, which though providing 

insights into protein dynamics and folding are not yet easily reproducible59. (d) Hybrid 

methods using all three computational approaches in c, with easier to produce experimental 

data, may greatly increase the number of protein structures and complexes, which are 

currently not in reach of experimental methods alone. EM, electron microscopy.
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Table 1
Statistical models for predicting coevolution between protein residues

Method Statistics Reference Predictions

Global (contacts 
and three 
dimensions)

EVfold, ECs Maximum entropy 15 Three-dimensional folds (globular); 
evolutionary couplings

EVfold-transmembrane Maximum entropy 22
Three-dimensional folds 
(transmembrane); functional residues; 
conformational change; oligomers

DCA-fold Maximum entropy 23 Three-dimensional folds (globular)

FILM3 Partial correlations 24 Three-dimensional folds (transmembrane)

Global (contacts)

Boltzmann network model Maximum entropy 17 Residue contacts; stability changes

Bayesian network model Conditional ratio of spanning trees 19 Residue contacts

PsiCov Sparse inverse covariance estimation 20 Residue contacts

DCA-BP Maximum entropy, belief propagation 21 Protein-protein contacts

DCA–mean field Maximum entropy 16 Residue contacts; oligomer contacts

Local

Correlated mutation analyses Correlations 29–31 Residue contacts

MI, SCA, McBasc, OMES
(Weighted) mutual information; 
substitution correlations; observed 
minus expected

33 Residue contacts

MIp Phylogeny-corrected mutual information 60 Residue contacts

SCA Weighted mutual information 51 Sets of functional residues

EVfold, evolutionary coupling analysis and folding. ECs, evolutionary couplings or contraints. DCA-fold, direct coupling analysis and folding. 
DCA-BP, direct coupling analysis and belief propagation. FILM3, folding in lipid membranes. MI, mutual information. McBasc, McLachlan-based 
substitution correlation. OMES, observed minus expected squared. MIp, positional mutual information. SCA, statistical coupling analysis.

Nat Biotechnol. Author manuscript; available in PMC 2015 February 06.


