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ABSTRACT

This review considers the potential utility of positron emission
tomography (PET) tracers in thesettingof responsemonitoring
in breast cancer, with a special emphasis on glucosemetabolic
changes assessed with 18F-fluorodeoxyglucose (FDG). In the
neoadjuvant setting of breast cancer, the metabolic response
can predict the final complete pathologic response after the
first cycles of chemotherapy. Because tumor metabolic
behavior highly depends on cancer subtype, studies are
ongoing to define the optimal metabolic criteria of tumor
response in each subtype.The recentmulticentric randomized
AVATAXHER trial has suggested, in the human epidermal
growth factor 2-positive subtype, a clinical benefit of early
tailoring the neoadjuvant treatment in women with poor
metabolic response after the first course of treatment. In
the bone-dominant metastatic setting, there is increasing
clinical evidence that FDG-PET/computed tomography (CT)

is the most accurate imaging modality for assessment of
the tumor response to treatment when both metabolic
information and morphologic information are considered.
Nevertheless, there is a need to define standardized
metabolic criteria of response, including the heterogeneity
of response among metastases, and to evaluate the costs
and health outcome of FDG-PET/CT compared with con-
ventional imaging. New non-FDG radiotracers highlight-
ing specific molecular hallmarks of breast cancer cells
have recently emerged in preclinical and clinical studies.
These biomarkers can take into account the heterogeneity
of tumor biology in metastatic lesions. They may provide
valuable clinical information for physicians to select and
monitor the effectiveness of novel therapeutics targeting the
same molecular pathways of breast tumor. The Oncologist
2015;20:94–104

Implications for Practice: 18F-Fluorodeoxyglucose (FDG)-positron emission tomography (PET) is amolecular imaging exam. It can
monitor breast cancer response to therapy earlier than the tumor shrinking observed with conventional imaging. This review
focuses on the advantages and limits of FDG-PET for early determination of response, both in the neoadjuvant and metastatic
settings. It discusses the different PET timing and metabolic criteria to define response that have been evaluated in previous
studies. The development of new radiotracers of specific molecular pathways of breast cancer cells is also a challenging and
promising research area to monitor the effectiveness of the new target treatments emerging in breast cancer.

INTRODUCTION

Positron emission tomography (PET) allows noninvasive
visualization and quantitative assessment of many biologic
processes that are modulated during therapy of breast
cancer. Of these, evaluation of glucose metabolism with
18F-fluorodeoxyglucose (FDG) is themost widely used and has
an evolving role in breast cancer management [1]. Because
glucose metabolic changes occur earlier than tumor shrinking
[2], the ability of FDG-PET to predict treatment response in
individual patients has been an active field of research for
many years, particularly in the neoadjuvant setting. For the

same reason, but also in the context of the heterogeneity of
breast cancer metastases, FDG-PET/computed tomography
(CT) has been implemented in the follow-up of metastatic
breast cancer. In all cases, accurate early differentiation of
responders fromnonresponders using FDG-PET/CT is clinically
relevant to avoid unnecessary drug toxicities and to allow an
early switch of noneffective treatment.

Besides FDG, new radiotracers of specific molecular
pathways of breast cancer have recently emerged. These
biomarkers of receptor expression, tumor cell proliferation, or
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angiogenesis may provide valuable clinical information to
select the most efficient treatment and to monitor the
effectiveness of novel therapeutics.

MATERIALS AND METHODS

We searched for studies that evaluated the value of PET for
monitoring the response to therapy of breast cancer. The
search was performed using the electronic database PubMed
(http://www.pubmed.com) until May 2014. The search
strategy included the keywords “PET” or “PET/CT”; “breast
cancer” or “breast carcinoma”; “response” or “monitoring”;
“neoadjuvant”or “primary”or “metastatic”; “chemotherapy”
or “hormone therapy” or “endocrine therapy”; “HER2” or
“triple negative”or “luminal”; “18F-FDG”or “FDG”or “FES”or
“FLT” or “15O-water”; and “glucidic metabolism” or “blood
flow” or “angiogenesis.” Studies were considered eligible if
they included women with breast cancer who were initiated
with chemotherapy or endocrine therapy either in the neo-
adjuvant or metastatic settings with baseline and interim PET.
Both prospective and retrospective studies were included on
the condition that they were published in English in a peer-
reviewed journal. Except for the ACRIN 6688 and ZEPHIR trials,
both presented at the 2014 American Society of Clinical
Oncology (ASCO) meeting, unpublished data, case reports,
abstracts, and letters were not sought.

We screened the titles and abstracts of all potentially
relevant articles to determine eligibility. All studies matching
the eligibility criteria were retrieved, and bibliographies were
checked for other relevant publications. The bibliographies of
relevant review articles were also hand-searched to identify
additional studies. If few articles were available on a precise
question being address in the present review, they are
mentioned. If many articles were eligible, only the ones
considered tobe “major articles” arementioned. Articleswere
consideredmajor either because they correspond to first pilot
studies that were later corroborated, because of their good
designandhigh impact factorof the journal inwhich theywere
published, or because of a relatively higher number of women
included compared with other studies. We also searched for
meta-analysis.

Although systematic literature search protocols were
applied to provide an overview of the area of the present
subject, the PRISMA Statement guidelines could not be
entirely applied because of the extended field of the topic,
the methodological heterogeneity in the literature existing,
and the lack of evidence on this subject. Moreover, combining
data from these heterogeneous studies would not have been
appropriate.

FDG-PET IN THE NEOADJUVANT SETTING
Neoadjuvantchemotherapy (NAC) isused in largebutoperable
breast cancer to downstage the primary tumor and increase
therateofbreastconservative surgery [3,4].NACalsoprovides
theopportunity to evaluate in vivo thebreast tumor sensitivity
to therapeutics.Womenwho achieve a pathological complete
response (pCR) in the breast and axillary nodes at the end of
NAC seem to have significantly improved survival [5, 6].
However, this conclusion depends on breast cancer subtype
[6].Thus, pathological examination at the endofNAChas been
used as a surrogateof survival for assessing treatment efficacy,

but pathological response cannot bedetermineduntil surgery.
An earlier tumoral response assessment could allow for
adjusting the treatment to the individual tumor response
during NAC.

Because of delayed tumor shrinking and difficulties in
differentiating residual fibrosis from active tumor, conven-
tional imaging (CI) is of limited accuracy to assess the response
to NAC [2]. Because glucose metabolism is increased in breast
cancer, the monitoring of the metabolic response with FDG-
PET has been proposed for the early prediction of pCR [7–15].
PET uptake measures can provide a continuous indicator
of response and carries information beyond the standard
dichotomous evaluations usually used in other response
assessments. Although interesting papers published by
Dunnwald et al. [16] have shown that FDG uptake kinetic
analysis may hold an advantage over static uptake measures
for response assessment, the most-used parameter is the
percentage decrease of the tumor maximal standard uptake
value (SUV) between baseline and post-treatment exam
(DSUV). Indeed, this parameter is easier to measure than
FDG kinetic parameters in routine practice and is more
reproducible among centers than absolute SUV values [17]. A
study by Schwarz-Dose et al. [12], prospectively including 104
women, found that aDSUVsuperior to 45%after the first cycle
predicts a pathological response with a sensitivity of 73%,
aspecificityof63%,apositivepredictivevalue (PPV)of36%,and
a negative predictive value (NPV) of 90%. Similar results were
found after the second cycle of NAC, using a threshold of 55%.

Three meta-analyses were published [18–20]: results
indicate that FDG-PET has reasonable sensitivity tomake early
predictions regarding histopathological response to NAC in
breast cancer, all tumor subtypes included.Mghangaet al. [20]
included 15 studies (745 patients). The pooled sensitivity,
specificity, PPV, and NPV were 80.5%, 78.8%, 79.8%, and
79.5%, respectively.Mghanga et al. concluded that FDG-PET is
valuable forearlymonitoringofbreastcancer responsetoNAC,
witha trend towardahigher sensitivity after the secondcourse
than after the first course. This meta-analysis also underlined
the great heterogeneity of the monocentric studies. Indeed,
the definition of the pathological response largely varies from
one study to another, considering or not axillary lymph nodes
involvement (Table 1). Differences in PET timing were also
observed. Consequently, the thresholds of DSUV to define
metabolic response largely differ across studies, ranging from
40% to 88% SUV decrease (Table 1). In addition to the
predictive value of FDG-PET, this exam also carries an in-
dependent prognostic value: a high tumor SUV can help
discriminate patients at high risk of tumor relapse [21, 22].

Since the original works published by Sorlie and Perou
[23–26], gene expression profiling has led to a newmolecular
classification of breast cancer. A more easy-to-use, biology-
based classification has arisen in clinical practice [27–30]. Both
classification systems demonstrated distinct breast cancer
subtypes with predictive and prognostic significance. The
influence of these entities on the tumor metabolic behavior
became a matter of interest.

At baseline, FDG avidity correlates with high tumor
grading, high mitotic activity, negative hormonal receptor
status, tumor proliferation index assessed with Ki-67: it is thus
a marker of tumor aggressiveness [9, 31]. A first paper of our
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institution, confirmed by other studies, demonstrated that
both the tumor metabolism at baseline and the metabolic
response after the first cycle of treatment are highly de-
pendent on the tumoral subtype [32–34].Thereafter, different
metabolic patterns have been identified in each of the three
main biologic subtypes of breast cancer.

HER2-Positive Subtype
Approximately 20% of invasive breast cancers overexpress
human epidermal growth factor 2 (HER2). This subtype is
highly proliferative, but its prognosis has been strongly
improved with the advent of trastuzumab [35–37]. Because
newtherapies areavailable in this subtype (i.e., dual anti-HER2
blockage, the addition of an antiangiogenic drug), the early
identification of poor-responding women after a first line of
trastuzumab/cytotoxic drugs is an important clinical issue.

Initial results were conflicting because two studies
demonstrated a good value of early FDG-PET/CT to predict
pCR [38, 39], contrasting with the results of Koolen et al. [40,
41].The two positive studies found that absolute residual SUV
at interim PET was the best predictive marker. Groheux et al.
[38] found that a tumor and axillary SUV,3.0 after two cycles
ofNACwas a goodpredictor of a pCR (PPV592%,NPV588%,
accuracy 5 90%). Although Humbert et al. [39] found tumor
SUV ,2.1 to be the optimal cutoff after the first cycle (PPV,
NPV, and accuracy 5 76%). Contrary to Humbert et al.,
trastuzumab was introduced after four cycles of NAC in
Groheux’s study, explaining the lower early tumor response.
Both studies found a lower predictive value of DSUV.
Nevertheless, the strength of DSUV is to be less affected by
technical factors than absolute SUV and to be more
reproducible among centers in multicentric trials [17], and its
predictive value can be improved by the exclusion of low
metabolic tumors at baseline [39].

The neo-ALTTO study enrolled womenwith HER21 breast
cancer and compared metabolic response to neoadjuvant
lapatinib and/or trastuzumab. In 66 women, FDG-PET/CT was
performed at baseline; at weeks 2 and 6, pCR ratewas twice as
high for PET responders than nonresponders (week 2: 42% vs.
21%, p 5 .12; week 6: 44% vs. 19%, p 5 .005). The authors
concluded that FDG-PET/CT is efficient for monitoring the
tumor response to neoadjuvant anti-HER2 therapy alone [42].

Coudert et al. [43] planned the AVATAXHER multicentric
phase 2 randomized trial to assess the benefit of adding
bevacizumab after the second cycle of treatment in women
who responding poorly (DSUV ,70%) to trastuzumab/
docetaxel.Theadditionofbevacizumab forwomenwithapoor
metabolic response increased thepCR rate from24%to43.8%.
This is the first study suggesting that tailoring theNAC regimen
to theearlymetabolic responsemightbeofclinicalbenefit.The
prognostic value of themetabolic response in this subtype has
not been evaluated yet.

Triple-Negative Subtype
Approximately 15% of breast cancers are triple-negative
(negative estrogen and progesterone receptors, no HER2
overexpression) [44]. It is a highly chemosensitive subtype with
a pCR frequently reached, but the prognosis remains poor,
particularlywhenpCRisnotachievedattheendofNAC[6,45,46].Ta
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This aggressive subtype has the highest baseline SUV [32,
33, 47]. In the recent study of Groheux et al. [48], 50 patients
were included. Interim FDG-PET/CT was performed after the
second course of NAC. The mean DSUV of the primary tumor
was272%inthepCRgroupversus238%inthenon-pCRgroup
(p , .0001). Using a 50% cutoff, DSUV was the best PET
parameter to predict pCR, corroborating previous results [40,
49]. InterimPETwas also associatedwithpatient outcome: the
3-year event-free survival was 77.5% in metabolic responders
(DSUV$ 42%) versus 47.1% in nonresponders (DSUV,42%).

The main limit is the heterogeneity of the NAC regimen
used across studies and theusual switch to another regimenat
midpoint of NAC in triple-negative (TN) breast cancer. Two
previous studies showed that DSUV is dependent on the type
and sequence of drugs used [32, 50]. Therefore, the observed
metabolic response may not be sustained after the switch.
Care must be taken when interpreting FDG-PET in settings of
TN women with a midcourse switch.

Luminal/HER2-Negative Subtype
Despite a favorable prognosis, the luminal subtype usually has
a low chemosensitivity. pCR is rarely achieved [29], and an
intermediate tumor reduction allowing a conservative surgery
is a more reasonable aim. Because NAC is controversial in this
lowchemosensitivesubtype,there isaneedforearlybiomarker
to predict which luminal tumors will respond to NAC.

When primary tumor has a low pretherapy uptake, the
ability of PET to detect it and to assess its response is limited
[10, 51]: this limitation is usually observed in the luminal/HER2
subtype,whichhas the lowest baseline SUVandΔSUV [32, 33].
Moreover, becausepCR is rare in this subtype, previous studies
failed to demonstrate its predictionwith FDG-PET [41, 52, 53].
Koolen et al. [41] found that DSUV was predictive of “near
pCR,” allowing few scattered cells, but the prognostic value
of this definition is controversial [6]. In this subtype, the
metabolic tumor volume could bemoreaccurate than the SUV
to predict the response [52, 54].

Because pCR is very uncommon, a study of our institution
directly assessed the prognostic value of PET [53]. We dem-
onstrated that tumor metabolism at baseline, and changes
after the first course were early surrogate markers of 5 years of
patient survival, independently of the pathologic response. We
were able to identify a subgroup of patients with a high risk of
relapse (5-year relapse-free survival [RFS] of 33%) based on a
high baseline tumor metabolism and a low metabolic response
following one cycle of chemotherapy. In contrast, patients with
a low baseline tumor metabolism or a high baseline tumor
metabolismfollowedbyagoodmetabolic responsehada lowrisk
of relapse (5-year RFSs of 93%and 88%, respectively).Moreover,
the baseline tumor metabolism was strongly correlated with
tumorproliferation index: low-metabolic luminal tumorshad low
Scarff-Bloom-Richardson grade andKi-67 expression, contrary to
hypermetabolic ones, which presented increased proliferation
indexes andmainly belonged to the luminal B subtype.

FDG-PET IN THE METASTATIC SETTING
Contrary to theneoadjuvant setting, thepathological response
generally cannot be obtained in the metastatic setting.
Because a change in tumor size is an indicator of outcome in
the treatment of many solid tumors [55], it is the most

frequently used surrogate endpoint to evaluate therapeutic
effects inmetastatic disease. Anatomic imaging is used for this
purpose (predominantly ultrasound, CT, or magnetic reso-
nance imaging [MRI]).TheResponseEvaluationCriteria inSolid
Tumors (RECIST) have been defined [56] and updated [57] to
standardize this response assessment.

However, criteria based on the size of tumors are limited
because new targeted therapies are more cytostatic than
cytotoxic. Moreover, change in tumor size is also not a good
surrogate of bone lesion response, and the RECIST 1.1 criteria
specify that bone lesions without soft tissue components
cannot be considered as measurable [57]. This is a major
limitationbecausebone is thepreferential siteofbreastcancer
metastases [58, 59].

In order to overcome this problem, the University of Texas
M.D. Anderson Cancer Center has developed more specific
response criteria for bone metastases response monitoring
(MDA Criteria), combining quantitative (size measurement)
and qualitative (sclerotic bone reaction) assessments [60, 61].
Despite such efforts, Hayashi et al. [62] found that the MDA
criteria predicted progression-free survival at 6 months, but
not earlier. Indeed, because morphologic imaging does not
directly reflect tumor cell viability, but rather the secondary
effect on bone adjacent tissue,morphologic changes areoften
delayed during chemotherapy [63] and do not seem to
correlate with the presence of residual active tumor [64].
Moreover, a “flare” reaction can be assessed on CT or bone
scan, corresponding to the sclerotichealing (Fig. 1),making the
response evaluation difficult [60, 65].

In contrast, PET reflects cellular and molecular changes of
tumorcellsoccurringbefore tumorshrinking,asdemonstrated
in 1993byWahl et al. [2]. In 2002, Stafford et al. [66] published
preliminary results showing that changes in tumor FDGuptake
with therapy were correlated with the overall clinical
assessment of response (p , .01) and concluded that serial
FDG-PET can help in bone response assessment. This was
corroborated by Schwarz-Dose et al. [67], who included 11
patients with 26 metastatic lesions in first-line therapy:
metabolic tumor changes, evaluated after the first and second
courses of chemotherapy, correctly predicted the final clinical
response in all women. Regarding the optimal timing for
interim PET, Couturier et al. [68] had conflicting results: they
found that PET changes after the third cycle of chemotherapy,
but not after the first, predicting the clinical response after six
cycles and overall survival. Tumor metabolic early change as
a surrogate of survival in bone-dominant metastatic breast
tumor response was later confirmed by Specht et al. [69]. A
greater than 41% decline in SUV of the most hypermetabolic
lesion at baseline was associated with a longer time to
progression (p, .005). However, this study was retrospective
with a large interval between PET exams ranging from 1 to 17
months. Cachin et al. [70] also found that a complete PET
response after completion of high-dose chemotherapy
(maximum three cycles) can more powerfully stratify for
survival than conventional imaging (including CT).

Later, the development of integrated FDG-PET/CT has
improved theaccuracyof the responseevaluationbeyond that
achievable by PET alone by adding information on bone
morphological changes, particularly interesting for bone
metastases (Fig. 1). Indeed, FDG uptake reflects themetabolic
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feature of bone metastases independently of their CT pattern
(osteoblastic and osteoclastic) [64].

Tateishi etal. [71] retrospectivelycompared theprognostic
value of morphologic and metabolic changes in bones
metastases in patients with metastatic breast cancer, both
evaluated with a FDG-PET/CT. One hundred and two women
treatedwith first-line hormone-chemotherapywere included.
PET/CTwas performed at baseline and after treatment (mean:
28 days; range: 21–38 days). Only the metastatic lesion that
exhibited the most substantial uptake was selected as the
target lesion for response. Results showed that an increase in
CTattenuation andadecrease in SUVof bonemetastaseswere
associated with response duration. Multivariate analysis
showed that a decrease in SUV of 8.5% or more was the
only significant predictor of long responseduration.ThisDSUV
threshold differs from that of Specht’s study (41%), possibly in
relation with the difference of time between PET exams [69].

Thus,many studies have demonstrated that FDG-PET/CT is
more accurate than morphologic CI for early monitoring of
response to therapy, with a good prognostic stratification [64,
71]. FDG-PET/CT may emerge as a standard of care in bone
metastatic breast cancer.

Evaluation of Response to Endocrine Therapy
Endocrine therapy is an efficient and low-toxicity treatment in
metastatic hormone-positive (HR) breast cancer. It is often
used as the first line treatment [72], but only 30%–50% of
women with HR1 metastatic disease respond to first-line
hormonotherapy [73, 74]. It may be explained by the
heterogeneity of HR expression in the metastases, the
sampling error of a one-site biopsy, and the presence of non-
functional estrogen receptors (ERs). Thus, identification of
other predictive biomarkers of the tumor hormone sensitivity
remains an important clinical issue.

In responding tumors, an early increase in FDG uptake has
been described 7–10 days after introduction of tamoxifen
therapy [75].Thismetabolic flare reactionmay be explained by
an initial increase in cell growth caused by an agonist effect of
therapy and implies that ERs are functional. Thus, it is an early
predictor of tumor sensitivity to endocrine therapy [75, 76]. In
contrast, because antiaromatase therapy lowers estradiol level
and thus reduces the tumoragonist effect, responding patients
shows an early drop in tumor FDG uptake after antiaromatase
induction [77]. Dehdashti et al. [78] demonstrated that an
estradiol challenge (30 mg of estradiol), initiated before the
antiaromatase therapy, can restore the metabolic flare that
both predicts tumor response and longer overall survival. Only
one study has evaluated the relevance of FDG-PET/CT for the
delayed monitoring of metastatic breast cancer treated with
endocrine therapy. PET/CT exams were performed at baseline
and after 106 4weeks [79]. Using cutoffs of 25% SUV increase
ordecrease,progressive, stable,andpartialmetabolic response
disease showed median progression-free survival times of 6,
27, and 20 months, respectively (p, .0001). FDG-PET/CT can
thus be used for the delayed monitoring of response to
hormone therapy, usually indicated for bone-dominant meta-
static cancer, in which morphological modalities often fail to
assess tumor response [60, 64].

Because antiaromatase therapy lowers estradiol level
andthus reducesthe tumoragonisteffect, responding
patients shows an early drop in tumor FDG uptake
after antiaromatase induction. Dehdashti et al. dem-
onstrated that an estradiol challenge, initiated before
the antiaromatase therapy, can restore themetabolic
flare that both predicts tumor response and longer
overall survival

Figure 1. Example of fluorodeoxyglucose-positron emission tomography (PET)/computed tomography (CT) exam before (left) and after
(right) 3 months of eribulin and trastuzumab therapy in a womanwith an osteolytic metastases of breast cancer, located on TH12 . After
treatment, CT showed an important sclerotic reaction of the bone lesion, whereas PET showed no more metabolic activity. Both the
anatomic and molecular imaging are in favor of a good response to systemic treatment.
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Limitations
All the studies previously mentioned were monocentric,
and most of them were retrospective. They suffer from
a lackof consensus on the optimal PET timing andmetabolic
criteria to use for response evaluation, compared with
RECIST. Consequently, the 2012 NCCN Guidelines have
pointed out this lack of standardization as a key limitation
for using FDG-PET/CT in the metastatic setting of breast
cancer, emphasizing the need of further prospective
studies [80].

Currently, two sets of response criteria using PET are
available: those developed by the European Organization
for Research and Treatment of Cancer [81] and the PET
Response Criteria in Solid Tumors (PERCIST) [82]. These
criteria are still matters of debate. One first critical point is
that the metabolic response is highly influenced by the
cancer genomic and immunohistological subtype and by
the treatment [32].The optimal criteria therefore need to be
adapted to each situation.

A second limit is that PERCIST, like RECIST, evaluates
change of SUV only in the most active lesion(s), without
considering the frequently observed intraindividual hetero-
geneity of the response among lesions in metastatic breast
cancer. FDG-PET/CT being a whole body evaluation of me-
tastases with a unique procedure is much more reliable than
conventional imaging to identify a mixed response (Fig. 2).
Huyge et al. [83] have performed serial FDG-PET/CT in
women with bone-dominant metastatic breast cancer.
Coexistence of responding and nonresponding metastatic
lesions was observed in 43% of women with a trend toward
an intermediate outcome in these patients, compared with
women with homogeneous response or nonresponse.

To create the reproducibility that is needed inmulticentric
trials, furthermulticentric studies should thusbe conducted to
define robust standardized metabolic criteria in the monitor-
ing ofmetastatic breast cancer, taking into account the various
subtypes of breast cancer, the treatments used, and the
heterogeneity of response among metastases.

NEW TRACERS OF OTHER MOLECULAR PATHWAYS FOR

BREAST TUMOR RESPONSE EVALUATION
Recent identification of molecular alterations in key
proteins involved in breast cancer cell proliferation has led
to the development of new target therapies. Specific
biomarkers are required to evaluate these molecular
pathways.

Furthermore, breast cancer is a heterogeneous tumor
made up of different cell clones [84, 85]. Imaging tracers have
the advantage of taking into account the heterogeneity of
tumor biology in metastatic lesions, whereas biopsies are
subject to sample error.

Contractor et al. have recently demonstrated that
changes in FLT-PET uptake within 2 weeks after
initiating the first or second cycle of docetaxel can
predict the anatomic response at midtherapy (after
three cycles) with good sensitivity and is correlated
with the decrease of circulatory tumor cells.

Changes in Tumor Cell Proliferation
Proliferation is one of the key behaviors of cancer and is thus
particularly attractive in cancer imaging. The most studied PET
proliferation tracer is 18F-fluorothymidine (FLT). Its uptake
depends on the activity of thymidine kinase-1, overexpressed
during the S phase of the cell cycle [86, 87]. Its use is limited by
a lower uptake than FDG [88], and a high physiological uptake
in the liver and in bone marrow limits its use for evaluating
metastases in these organs [88].Themain advantage of FLT is its
lower accumulation caused by tumor inflammation [89–91],
which may reduce the false-positive effects of inflammatory
reaction encountered with FDG-PET. Small studies have shown
that FLT could reflect treatment effectiveness earlier than
anatomic imaging [92–94]. Contractor et al. have recently dem-
onstrated that changes in FLT-PET uptake within 2 weeks after
initiating the first or second cycle of docetaxel can predict
the anatomic response at midtherapy (after three cycles) with
good sensitivity [93] and is correlated with the decrease of
circulatory tumor cells [94]. In the neoadjuvant setting, the few
studies are contradictory. A recent study including 20 women
has reported disappointing results: FLT breast tumor uptake at

Figure 2. Discordant response between bone and visceral
metastases on fluorodeoxyglucose (FDG)-positron emission
tomography (PET) exams performed before (left) and after (right)
3 months of treatment with gemcitabine-trastuzumab. Baseline
FDG-PETshows hypermetabolic activity in bilateral andmultifocal
breast tumors, lymph node involvement of right axilla, and bone
metastases. After treatment, PET demonstrated an heteroge-
neous metabolic response with coexistence of responding (left
breast, axillarynodes) andnonrespondingmetastaticbone lesions
(red arrows, moderate increased in focal uptake of the two bone
lesions).
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baseline was correlated with baseline Ki-67 (p 5 .006), but the
decrease after the first cycle of NAC did not predict pathological
response [95]. In contrast, preliminary results of the ACRIN 6688
multicentric trials, presented at the 2014 ASCO meeting, found
that FLT-PET after the first cycle of NACwasmarginally predictive
of pCR in 51 women [96]. Further works are warranted to
establish theexactclinical roleof FLT formonitoringbreast tumor
response, compared with FDG.

Changes in Tumor Blood Flow and Angiogenesis
Angiogenesis is an important hallmark of tumor growth [97]
and has become a therapeutic target in breast cancer. Imaging
ofchanges in tumor flowduring therapy is an importantclinical
issue to evaluate the efficacy of these drugs.

The Seattle group has assessed perfusion in breast cancer
using 15O-labeled water [34, 98–101]. They determined that
blood flow decrease after 2 months of therapy can predict
tumor response and outcome in women receiving NAC [99,
100]. Moreover, locally advanced breast cancer tumors with
a baseline flow-glycolytic metabolism mismatch (low tumor
blood flow but high glycolytic metabolism) are more resistant
to therapy, predicting a low likelihood of pCR and higher riskof
early relapse [98, 101]. This mismatch is more common in
triple-negative tumors [34].

In a few papers, determination of tumor blood flow and
metabolismwith a single injectionof FDGwas suggested tobean
alternative to the less available 15O-water. Indeed, dynamic FDG-
PET can indirectly evaluate blood flowusing a two-compartment
model [100, 102], but it requires an acquisition of 1 hour.Mullani
et al. [103] used a shorter first-pass method to calculate blood
flow by dynamic imaging 2 minutes after FDG injection: it was
linearlycorrelatedwith the15O-watermethod.Cochetetal. [104]
demonstrated that, in breast cancer, blood flowdeterminedwith
this first-pass FDGmethod was correlated with tumor angiogen-
esis evaluated by immunohistochemistry.

Other molecular pathways have been studied. avb3

integrin is a protein expressed on activated endothelial cells
during angiogenesis. It is involved in tumor growth, local
invasiveness, and metastatic spread [105]. Promising PET
tracers have been developed to image this protein: 18F-galacto-
RGD is themost studiedone [105–107]. Inbreastcancer, aclinical
studydemonstratedelevatedandhighlyvariableavb3expression
in primary tumor, assessed with PET [105].

Vascular endothelial growth factor (VEGF) is a molecular
target of the monoclonal antibody bevacizumab.When labeled
with 89-zirconium (89Zr), bevacizumab preserves its VEGF-
binding properties. 89Zr-Bevacizumab tumor uptake correlated
withVEGFtumorlevels [108]andmightbevaluableforprediction
andevaluationoftheeffectofVEGF-targetingtherapeutics. Inthe
near future,thedevelopmentofaPET/MRI integratedsystemwill
permitthecombinationof imagingofmolecular targetsusingPET
tracers and study of perfusion using MRI [109].

Estrogen Receptor Tumor Expression
Approximately 70% of women with breast cancer have ER-
positive tumors. Currently, because distant metastases are
numerous andnoteasily accessible for biopsies [110], patients
with metastatic breast cancer are usually stratified according
to the immunohistochemistry analysis of the primary tumor,

but approximately 40%of themhave discordant ERexpression
across lesions [111]. PET with 16a-18F-fluoro-17b-estradiol
(FES) cancharacterizeandquantify the invivo functional status
of ER expression in all tumor lesionswithin one patient (Fig. 3).

Figure 3. FDG-PET exam (left) and FES-PET exam (right) of
a woman with metastatic breast cancer. The tumor lesions,
assessed with FDG-PET, showed heterogeneous expression of
estrogen receptors: primary breast tumor had a high but
heterogeneous uptake pattern of FES, mediastinal nodes showed
no significant FES uptake, and the bone metastasis on the left
ischiopubic branch showed weak FES uptake.The liver metastasis
was not evaluable with FES-PET because of the high physiological
uptake of the liver (images are obtained from Estrotepredic
Programme Hospitalier de Recherche Clinique, coordinator:
Dr. K. Kerrou, Hôpital Tenon, Assistance-Publique–Hôpitaux de
Paris, Paris; Eudract: 2011-005043-27).

Abbreviations: FDG, fluorodeoxyglucose; FES, 16a-18F-fluoro-
17b-estradiol; PET, positron emission tomography.
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Its sensitivity and specificity to detect ER1 lesions are
evaluated at 84% and 98%, respectively [112]. Four studies
reported thepredictive valueof FES tumoruptake for response
to endocrine therapy in 138 patients with metastatic breast
cancer [75, 76, 78, 112, ] (Table 2). FES-PET was performed
before introducing endocrine therapy. A tumor SUV higher
than 1.5 at baseline predicts a clinical benefit with a PPV of
65% and a NPV of 88%. Thus, in patients with a previously
ER1 tumor, lowFESuptake inmetastasispredictsnonresponse
to endocrine therapy. One of these studies, including 40
women, also found that the decrease in FES uptake 7–10 days
after induction of tamoxifen, corresponding to ER blockage,
wasgreater in responders thannonresponders (55%614%vs.
19% 6 17%, respectively) [75]. Nevertheless, the limited
number of women included, the differences in optimal SUV
cutoff, and the predictive value require additional studies.

Many other PET tracers are being evaluated, for example
89Zr-trastuzumab [114–117]. The few studies published demon-
stratedagooduptake inHER2-positive liver, lung,bone,andbrain
metastases.Themulticentric ZEPHYR trial, presentedat the2014
ASCOmeeting, foundpromising first results for89Zr-trastuzumab
as a predictive marker for trastuzumab/emtansine (T-DM1)
therapy in HER21 breast cancer [118]. Promising works are also
ongoing in progesterone-receptor imaging [119].

CONCLUSION
FDG-PET is a promising early imaging biomarker of the efficacy of
breast treatment. First studies demonstrated that, in the neo-
adjuvantsetting,themetabolicresponsecanpredictfinalpCRafter
the first cycles of NAC. However, breast cancer is a heterogeneous
disease, and following studies showed that tumor metabolic
behaviorhighlydependsonthevariousbiologicsubtypesofbreast

cancer. In subgroup analysis, FDG-PET seems to correctly predict
pCR in HER2-positive and TN subtypes, whereas it may rather be
a surrogate marker of survival in luminal tumors. Rigorous
prospective clinical trials are mandatory to define the optimal
metabolic criteriaofgoodandpoormetabolic response foreachof
the three main biologic subtypes of breast cancer and answer
questionsabouttheoptimalPETtiming.Randomizedclinical trials,
evaluating different PET-based therapeutic strategies, are also
neededtodemonstrateaclinicalbenefitofanearly tailoringof the
neoadjuvant treatment.

Inthemetastatic setting,there is increasingclinical evidence
that FDG-PET/CT is the most accurate and earlier imaging
modality for assessment of the tumor response to treatment
when both metabolic and morphologic tumor data are
considered. Compared with other imaging modalities, whole-
body FDG-PET/CT is particularly efficient in measuring bone
metastasis response and may emerge as a standard of care.

Many therapies targeting specific molecular hallmarks of
breast tumor cells have recently emerged, with encouraging
and sometimes disappointing results. The concurrent de-
velopment of newpredictive surrogatemarkers of the efficacy
of these treatments is required to reveal their truepotential. In
the future, new radiopharmaceuticals highlighting specific
molecular pathways of an individual tumor may help
physicians to select the optimal target therapy, leading to
a more personalized treatment. The role of imaging bio-
markers, compared with biological and molecular biomarkers
of response (circulating tumor cells for example) will also have
to be better defined.
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Table 2. Studies evaluating the prediction of response with FES-PET in women with estrogen receptor-positive breast cancer

Study
Number of
patients Stage Main goal Conclusions

Dehdashti et al.
(1999) [76]

11
postmenopausal
women

Metastatic breast
cancer

To investigate whether FES and
FDG-PET, performed both before
and 7–10 days after initiation of
tamoxifen, can predict hormonally
responsive breast cancer

Increase in FDG uptake and the
degree of ER blockage, evaluated
by FES uptake decrease after the
initiation of tamoxifen, predicted
response

Mortimer et al.
(2001) [75]

40
postmenopausal
women

Locally advanced,
recurrent, or
metastatic

To investigate whether FES and
FDG-PET, performed both before
and 7–10 days after initiation of
tamoxifen, can predict hormonally
responsive breast cancer

Increase in FDG uptake, baseline
FES uptake and decrease in FES
uptake 7–10 days after the
initiation of tamoxifen predicted
response

Linden et al.
(2006) [113]

47 Metastatic breast
cancer

To quantify tumor FES uptake to
predict response to salvage
hormonal treatment in heavily
pretreated metastatic breast
cancer patients, predominantly
treated with aromatase inhibitors.

Absence of FES uptake (SUV,1.5)
predict failure of endocrine therapy;
may help to guide treatment
selection

Dehdashti et al.
(2009) [78]

51
postmenopausal
women

Locally advanced
or metastatic

To predict the response to
endocrine therapy (aromatase
inhibitor or fulvestrant) with
baseline FES-PET and FDG-PET
before and after challenge with
30 mg of estradiol

Baseline FES uptake (SUV$2) and
metabolic FDG flare after estradiol
challenge can predict the response
to therapy

Linden et al.
(2011) [120]

30 Metastatic To measure changes in FES uptake
during treatment with aromatase
inhibitor, tamoxifen, or fulvestrant

High decreases with tamoxifen and
fulvestrant (54% average decline);
lowest decrease after aromatase
inhibitor (15% average decline)

Abbreviations: FDG, fluorodeoxyglucose; FES, 16a-18F-fluoro-17b-estradiol; PET, positron emission tomography; SUV, standard uptake value.
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