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Abstract

Background—In oncology, the treatment paradigm is shifting toward personalized medicine, 

where the goal is to match patients to the treatments most likely to deliver benefit. Treatment 

effects in various subpopulations may provide some information about treatment effects in other 

subpopulations.

Purpose—We compare different approaches to Phase II trial design where a new treatment is 

being investigated in several groups of patients. We compare considering each group in an 

independent trial to a single trial with hierarchical modeling of the patient groups.

Methods—We assume four patient groups with different background response rates and simulate 

operating characteristics of three trial designs, Simon’s Optimal Two-Stage design, a Bayesian 

adaptive design with frequent interim analyses, and a Bayesian adaptive design with frequent 

interim analyses and hierarchical modeling across patient groups.

Results—Simon’s designs are based on 10% Type I and Type II error rates. The independent 

Bayesian designs are tuned to have similar error rates, but may have a slightly smaller mean 

sample size due to more frequent interim analyses. Under the null, the mean sample size is 2–4 

patients smaller. A hierarchical model across patient groups can provide additional power and a 

further reduction in mean sample size. Under the null, the addition of the hierarchical model 

decreases the mean sample size an additional 4–7 patients in each group. Under the alternative 

hypothesis, power is increased to at least 98% in all groups.

Limitations—Hierarchical borrowing can make finding a single group in which the treatment is 

promising, if there is only one, more difficult. In a scenario where the treatment is uninteresting in 
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all but one group, power for that one group is reduced to 65%. When the drug appears promising 

in some groups and not in others, there is potential for borrowing to inflate the Type I error rate.

Conclusions—The Bayesian hierarchical design is more likely to correctly conclude efficacy or 

futility than the other two designs in many scenarios. The Bayesian hierarchical design is a strong 

design for addressing possibly differential effects in different groups.

Introduction

The treatment paradigm in oncology is shifting toward personalized medicine, where the 

goal is to match patients based on their prognostic characteristics to a treatment most likely 

to deliver benefit [1,2]. The ability to personalize treatment has the potential for huge 

advantages for patients, but also for drug development.

A first step in evaluating a novel treatment for a particular group of patients is determining 

whether there is a desired level of efficacy in early Phase II trials. One approach common in 

oncology is to conduct a series of small screening trials in specific patient subgroups, 

perhaps based on histology or on biomarker signature. These trials are typically run in 

parallel, independent of each other. This approach does not consider the possibility that 

some of the patient subpopulations respond similarly to therapy. Treatment effects in the 

various subpopulation trials may provide some information about treatment effects in other 

subpopulations.

We apply Bayesian hierarchical models in Phase II oncology trials where a new treatment is 

being investigated in several groups of patients. Hierarchical modeling allows information 

about the treatment effect in one group to be ‘borrowed’ when estimating the treatment 

effect in another group [3]. In effect, the estimate of treatment effect in each group is shrunk 

toward the overall mean [4]. The amount of shrinkage depends on the results, including the 

relative precision of estimates in the various groups.

There are advantages to hierarchical modeling. One is that it provides a formal mechanism 

for adjusting for the regression effect, also called ‘regression to the mean’. The results in 

some groups will be unusually large or small, especially for modest sample sizes. Additional 

data usually correct fluke observations, pulling them back toward the mean; hierarchical 

modeling explicitly corrects for these by modeling the effect in all groups. Intuitively, 

shrinking mitigates some of the effects of randomness across groups. A consequence is that 

estimates tend to be more accurate, closer to the true values.

Shrinkage estimators have a long history in statistics. Making the assumption of normality in 

the 1950s, Charles Stein demonstrated that shrinkage decreased mean squared error [5,6]. 

He showed that shrinkage improved the naïve approach of no borrowing regardless of the 

state of nature. In particular, when there are at least three groups, the usual (no shrinkage) 

least squares estimator of means of the groups is ‘inadmissible’ in the sense that the total 

mean squared error is reduced uniformly, regardless of the true values of the group means. 

The James–Stein estimator and other similar shrinkage estimators dominate the no-

borrowing estimates in this very strong sense. Perhaps most surprisingly, the groups need 

not be related. Borrowing measurements between entities that bear no relationship is better 
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than letting them stand alone. Many other authors have since contributed to a rich body of 

literature on Bayesian hierarchical models and relationships with empirical Bayesian 

methods [7–21].

When borrowing hierarchically, groups that are extreme and those with greater uncertainty 

(i.e., those with smaller sample sizes) tend to experience greater shrinkage. The amount of 

borrowing is not specified in advance but is determined by the data. If results across groups 

are very similar, there will be more borrowing. If results differ, there is less borrowing and 

hence greater uncertainty associated with the estimates.

We assume four groups of patients for illustration, but our qualitative conclusions apply 

more generally. The four groups of patients may be defined by disease site, tumor type, 

histology (such as in Thall et al. [22] and Chugh et al. [23]), sets of biomarkers, or other 

distinguishing characteristics. For example, the trial or trials may enroll patients with tumors 

positive for a particular biomarker, but at various sites such as breast, prostate, ovary, and 

colon.

We compare three different design strategies. The first two approaches employ four separate 

trials, one for each patient group. The first approach uses Simon’s Optimal Two-Stage 

design [24]. The second is Bayesian and adaptive, with the results updated frequently for 

possibly stopping accrual early for futility. In effect, each trial involves many stages. 

Comparing the two approaches addresses the advantage of frequent monitoring versus 

having a single interim analysis. The third approach is a modification of the second in that 

the four groups are included in a single trial, one that employs Bayesian hierarchical 

modeling across the four groups in addition to frequent monitoring. Comparing the latter 

two approaches addresses the advantages of hierarchical modeling.

In this article, we consider a nonrandomized single-arm trial with an endpoint of tumor 

response. The same general approach applies to two-armed randomized trials and to trials 

with other types of endpoints, including time-to-event endpoints [3,13].

Trial designs

Simon’s Optimal Two-Stage

As described by Simon [24], this design is based on testing the null hypothesis that the rate 

of tumor response, p, is less than that considered uninteresting, p0

versus an alternative hypothesis that the rate of tumor response is at least at a targeted level, 
p1
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Simon’s design specifies four design parameters: the number of patients enrolled in the two 

stages, n1 and n2, and the maximum number of responses that will lead to rejection of the 

drug in the first and second stages, r1 and r, respectively. If the total number of observed 

responses in the first stage is less than or equal to r1, the trial will stop. Otherwise, the trial 

will continue and will enroll an additional n2 patients. If there are r or fewer responses at the 

end of the trial among the N = n1 + n2 patients, the trial will reject the drug at the end of the 

second stage. Otherwise, the treatment will be considered efficacious and warrant 

consideration for further study.

Simon’s Optimal Two-Stage design finds the values of n1, n2, r1, and r that minimize the 

expected sample size when the response probability is p0 for all two-stage designs that have 

the specified Type I and Type II error probabilities. We set both Type I and Type II error 

rates to 0.10.

Patient groups may have known background differences that reflect in the group-specific 

historical response rates. For example, some tumor types may be known to be less sensitive 

to chemotherapy. Therefore, we will consider the three designs for four groups of patients 

that are expected to have different background response rates, which means p0 and p1 vary 

by group. Table 1 shows the values of p0 and p1 we use for each group and the 

corresponding Simon’s Optimal Two-Stage designs.

Bayesian adaptive design

We model the log-odds of response, including an adjustment for the targeted p1 rates

and use a subscript to indicate patient group: θ1, θ2, θ3, and θ4. This allows the change in 

log-odds from the targeted rates to be modeled, and hence similar values of θ across the 

groups reflect similar treatment effects relative to the targeted values. While the modeling is 

done on the log-odds scale, all inference of futility or efficacy is done on the probability 

scale, which is more clinically interpretable.

First, we present a Bayesian model with no borrowing. To accomplish this, we model the θi 

with independent normal distributions, with weak priors

The mean of −1.34 reflects a prior mean consistent with the null hypothesis for the 

parameter θ, but a very large standard deviation, creating a nearly non-informative prior.

For this design, interim analyses are planned after the first 10 patients are enrolled, and each 

subsequent interim analysis occurs after every 5 additional patients. The updated posterior 

distributions are used to decide whether to stop accrual or to continue. The same early 
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futility rule is applied to all four groups at each interim analysis. Early stopping for futility is 

based on the current posterior probability that p is greater than pmid

where pmid = (p0 + p1)/2, is halfway between p0 and p1. If this probability is less than 5% at 

any interim analysis then accrual stops for futility. Otherwise accrual will continue to the 

maximum sample size.

At the final analysis of the trial, the treatment will be declared efficacious and of interest for 

further study based on the posterior probability of being greater than p0. In our example, this 

final evaluation criteria varies by group

Additionally, we will consider the operating characteristics of this design if we include the 

ability to stop for efficacy at each interim analysis. In this extension of the design, at any 

interim analysis, the trial will stop early for efficacy if the probability that the response rate, 

p, is greater than pmid is greater than 90%

The Bayesian design parameters were chosen to make a direct comparison with Simon’s 

design. We assume the same maximum sample size within each group as in the 

corresponding Simon’s design (Table 1). The goal of the Simon’s design is to distinguish 

between p0 and p1, and so, we use pmid for early stopping to emulate this behavior. If there is 

a low probability that p > pmid, then there is confidence that p is close to p0, and we stop 

early for futility. If there is high probability that p > pmid, then there is confidence that p is 

close to p1, and we stop early for efficacy. The final efficacy criteria were chosen to make 

both Type I and Type II error rates in each group approximately 10%, as in the Simon’s 

design. Differing numbers of interim analyses because of the varying sample sizes and 

differing null and alternative response rates in each group necessitated different final 

efficacy criteria across the four groups to achieve the stated error rates.

Bayesian hierarchical adaptive design

In this design, the four patient groups are considered together in a single, integrated trial, 

and a Bayesian hierarchical model borrows information across the groups. To accomplish 

this, we model the θi with a normal distribution with unknown mean μ and variance σ2
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A second-level of the distribution (hierarchy) is used to model the unknown mean and 

variance. The data across the groups will shape the posterior distribution for the mean and 

variance across groups, thus creating a dynamic amount of borrowing, depending on the 

similarity across groups. The following prior distributions of μ and σ2 are

The parameter σ2 represents the degree of heterogeneity between the patient groups. At one 

extreme, when σ2 is 0, there is complete pooling, with adjustment for the targeted p1 rates in 

each group, of the results across the patient groups. At the other extreme, when σ2 is near 

infinity, then there is no borrowing across the groups. For values between these two 

extremes, there is an amount of borrowing consistent with the variability across groups. 

Because the model is powerful enough to capture such extremes, the model results are 

sensitive to the prior selection for σ2. Our selection reflects a small amount of heterogeneity 

across the four groups. The prior for σ2 is equivalent to assuming a prior estimate of σ = 0.1, 

but with very little weight, 0.1% of one observation. Given the four patient groups to be 

observed in the trial, the posterior distribution contributes very little information to the 

posterior. The prior distribution of μ is essentially noninformative, with a weak prior mean 

close to the null hypothesis.

The model enables learning about μ and σ2 as the trial unfolds. However, the information 

about σ2 is limited when there are only four patient groups, even if their sample sizes are 

large. Therefore, the prior distribution for σ2 can affect the amount of borrowing across 

groups, and careful assessment of this prior distribution is important. Sensitivity to the prior 

for σ2 is discussed below.

The adaptive algorithm (interim analyses, early stopping rules, and the final efficacy 

criteria) are as described above for the independent-group Bayesian design. For the 

hierarchical model analysis, we apply the same early stopping rules and final evaluation 

criteria separately for each group. For example, group 2 may stop early for futility, while 

groups 1, 3, and 4 continue to the maximum sample size. And at the conclusion of the trial, 

the efficacy criteria may be satisfied for group 1, but not for groups 3 and 4. This allows us 

to explore the effect of borrowing on the error rates and mean sample size.

For ease of presentation, we assume equal accrual to all groups. In practice, accrual to the 

groups will vary, with some accruing more rapidly and others more slowly. Attempts can be 

made to make accrual more balanced, such as opening additional sites for more slowly 

accruing groups.
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Examples of Bayesian hierarchical modeling

In this section, we show two single simulated trials as examples to illustrate the Bayesian 

hierarchical modeling. These examples are a simplification of the design described above. In 

these examples, p0 = 10% and p1 = 30% in all four patient groups, whereas for the design 

described above and for the operating characteristics presented later, we assume a more 

complicated case, that p0 and p1 vary by group. In these examples, the interim analyses and 

the adaptive algorithm are as described above. The first example is a scenario in which 

responses are simulated assuming p = 30% in all four groups. This example illustrates the 

effect of borrowing across groups when all groups are similar, such as the smoothing of the 

observed response rates and a reduction in uncertainty. The second example is from a 

scenario in which responses are simulated assuming p = 10% in two groups and p = 30% in 

two groups. This example illustrates the effect of borrowing, and that the harm is not great, 

when groups are dissimilar.

Example 1: treatment is of interest in all groups

Figure 1 shows each of the interim analyses for this example. The first interim analysis 

occurs when 10 patients in each group have been assessed for response. We have observed 

one response in group 1, six responses in group 2, and three responses each in groups 3 and 

4. The small sample sizes in each group result in strong borrowing, and the Bayesian 

hierarchical model shrinks the two most extreme groups, groups 1 and 2, more than 15% 

toward the overall mean. All groups have a high probability of being greater than pmid, and 

so accrual continues in all groups to the next interim analysis.

The next interim analysis occurs when an additional five patients have been accrued in each 

group. We now observe 3, 8, 5, and 4 responses across the groups. The Bayesian 

hierarchical model pulls the highest observed response rate, 53%, down to a posterior mean 

estimate of 36%. Groups closer to the overall mean are shrunk less, such as group 3, in 

which the observed and model estimated response rates are the equal. With 15 patients in 

each group, there is a greater than 90% probability that p > pmid in all groups.

Additional interim analyses occur after 20, 25, and 30 patients have been accrued in each 

group. The final analysis occurs when 35 patients have been accrued in each group. At the 

completion of the trial, we observe similar response rates across the groups – from 26% in 

group 4 to 31% in groups 1 and 2. The Bayesian hierarchical model estimates response rates 

as 29% in all four groups. The strong borrowing across the groups also results in a reduction 

in the uncertainty around these estimates. The 95% credible interval for the response rate in 

each group is 21%–37%. If each group had been considered in a separate trial and there was 

no borrowing between the groups, the 95% confidence intervals would be wider – (17%, 

49%) for groups 1 and 2, (15%, 46%) for group 3, and (12%, 43%) for group 4. There is a 

high probability in each group that the response rate is greater than p0, and so the treatment 

is considered efficacious and of interest for further investigation in all groups.
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Example 2: treatment is of interest in only two groups

Figure 2 shows each of the interim analyses for this example trial. As above, the first interim 

analysis is conducted when 10 patients have been enrolled in each group. We observe zero 

responses in group 1 and three responses each in groups 3 and 4. There is a small sample 

size in each group at this first look, and so, there is substantial shrinkage from the Bayesian 

hierarchical model, with the posterior mean being 14% larger than the observed rate in 

group 1 and 9% smaller in groups 3 and 4.

The next interim look occurs when 15 patients have been enrolled in each group. We have 

observed zero responses in group 1 and only one response in group 2. With more patients 

and growing heterogeneity, there is now less shrinkage in groups 1 and 2, but the positive 

data in groups 3 and 4 keep the probability of being greater than pmid greater than 5%, and 

thus, all groups continue to enroll to the next interim analysis.

The next interim analysis occurs when 20 patients have been enrolled in each of the groups. 

We have observed no additional responses in groups 1 and 2. The probability of being 

greater than pmid is now less than 5%, and these groups stop for futility. Accrual to groups 3 

and 4 continues.

Additional interim analyses occur when 25 and 30 patients have been enrolled. Groups 1 and 

2 remain in the model for the purposes of estimation even though accrual to these groups has 

stopped. The final analysis occurs with 20 patients enrolled in groups 1 and 2 and the 

maximum accrual of 35 patients for groups 3 and 4. At the final analysis, the treatment 

would be considered efficacious and of interest for further investigation in groups 3 and 4 

but not in groups 1 and 2. The 95% credible intervals for the response rate in each group are 

(0%, 17%) for group 1, (0%, 20%) for group 2, and (10%, 37%) for group 3, and (12%, 

40%) for group 4. If each group had been considered in a separate trial, the 95% confidence 

intervals would be of similar width – (0.0%, 17%) for group 1, (0%, 25%) for group 2, 

(12%, 43%) for group 3, and (15%, 46%) for group 4. This example trial demonstrates that 

the algorithm can adjust to heterogeneous data and learn to shrink less.

Operating characteristics

To evaluate the performance of the three designs, we simulate each under varying 

assumptions of the true response rates in each group. In each scenario, 10,000 simulated 

trials are used. For the hierarchical design, we assumed equal numbers of patients in each 

group at each analysis. We report the proportion of simulated trials that concluded efficacy, 

the mean sample sizes, and describe the point estimation and the number of correct decisions 

(correctly rejecting or accepting the null) for each design.

The true response rates assumed for each scenario are shown in Table 2. The p0 and p1 for 

each group determining the design, reflecting the different background response rates across 

groups, are shown in Table 1. In Table 2, the first two scenarios are tailor-made for 

hierarchical borrowing because the treatment effect is similar in each group. In scenarios 3 

and 4, there is a similar direction in the effect, but more heterogeneity, while in scenarios 5 

and 6, there are stark differences in the effects for each group.
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Type I error

Type 1 error is the probability of claiming efficacy (i.e., reject H0) in scenarios where p = 

p0. Probabilities of claiming efficacy by group are shown in Figure 3. The specification of 

the Simon’s design requires that Type I error be no more than 10%; actual Type I error rates 

are 9.3%, 9.3%, 9.8%, and 9.5%, for groups 1–4, respectively. As indicated above, we tuned 

the independent Bayesian design to have a Type I error of approximately 10%. For the 

particular null hypothesis that we assumed, scenario 1, when p = p0, the Type I error rates 

are 8.8%, 8.8%, 9.5%, and 8.0% for groups 1, 2, 3, and 4, respectively. The Bayesian 

hierarchical design has Type I error of 6.4%, 6.8%, 6.6%, and 1.9% for groups 1, 2, 3, and 4, 

respectively. The hierarchical model reduces the Type I error rate in all groups, but the 

biggest reduction is in group 4. This is due to differing null and alternative response rates 

across the groups and the log-odds parameterization of the model. The borrowing in the 

Bayesian hierarchical model prevents Type I errors compared to the designs that ignore the 

data in the other groups.

This reduction in Type I error has huge benefits when more groups are studied. Figure 4 

shows the overall Type I error rate, the probability of claiming efficacy in at least one group 

under the null hypothesis for Simon’s design and the Bayesian hierarchical design for an 

increasing number of groups. We assume p0 = 10% and p1 = 30% for all groups. As the 

number of groups increases, the overall Type I error rate for parallel Simon’s designs 

increases – meaning that a Type I error is highly likely. The overall Type I error rate with 4 

groups is 34.4% and with 10 groups is 65.1%. The Bayesian hierarchical design inherently 

adjusts for the multiplicities. As the number of groups increases, there is increasing 

shrinkage to the null and decreasing Type I error rates. The overall Type I error rate is 9.1% 

for 4 groups and 5.6% for 10 groups. The likelihood of a Type I error in multiple Simon’s 

designs goes to 1 as the number of groups increase, yet goes to 0 for the Bayesian 

hierarchical design. There are similar benefits of the Bayesian hierarchical design when the 

alternatives are true.

We consider two scenarios where the response rates are mixed between null and alternative 

across the four groups. Where there is ‘One Nugget’, the treatment would be considered of 

interest in only one group, p = p0 in groups 1, 2, and 3 and p = p1 in group 4. This is the 

most challenging scenario for the hierarchical model. In the Bayesian hierarchical design, 

the borrowing is weighted toward futility, but the single promising response rate in group 4 

inflates the Type I error in groups 1, 2, and 3 to 17%–20%.

In the scenario, ‘2 Null, 2 Alternative’, p = p0 in groups 1 and 2, and p = p1 in groups 3 and 

4. The Bayesian hierarchical design is able to recognize that groups 1 and 2 differ from 

groups 3 and 4. The probabilities of claiming efficacy in groups 1 and 2 are 37% compared 

with 92% and 84% in groups 3 and 4. Shrinkage toward the overall mean in this case makes 

the response rates for groups 1 and 2 appear more promising and the Type I error rate is 

inflated for these groups.
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Power

Power is the probability of claiming efficacy in scenarios where p > p0. Simon’s design 

requires that power be at least 90% when p = p1; actual power is 90.2%, 90.2%, 90.2%, and 

90.3%, for groups 1–4, respectively. Similarly, when p = p1, the independent Bayesian 

designs have power of 86%, 86%, 92%, and 88% for groups 1, 2, 3, and 4, respectively. In 

the ‘Alternative’ scenario where p = p1 for all groups, the addition of borrowing with the 

Bayesian hierarchical design increases power for all four groups. The similarity of treatment 

effects allows for strong borrowing, increasing precision, and boosting power to 98%–99% 

in each of the groups.

We consider two other scenarios for the demonstration of power. In the scenario ‘One in the 

Middle’, p = p1 for groups 1 and 2, p = pmid for group 3, and p > p1 for group 4. Simon’s 

design has the specified power of 90% for groups 1 and 2, 60% power for the pmid response 

rate in group 3, and 99% power to detect the large treatment effect in group 4. The 

independent Bayesian design has similar power. In the Bayesian hierarchical design, the 

promising treatment effects across the groups increase power for each group. The Bayesian 

hierarchical design has 91% power in group 3, compared to the 60% for Simon’s design and 

the independent Bayesian design.

In the scenario ‘All in the Middle’, the response rate is intermediate between p0 and p1 in all 

four groups. The true response rates in groups 1 and 2 are 15% and so slightly higher than 

pmid. Simon’s design has 75% power, and the independent Bayesian design has 70% power 

for these groups. The true response rate in groups 3 and 4 are equal to pmid. Simon’s design 

has power of 60% and 54%, and the independent Bayesian design has power of 61% and 

51% in groups 3 and 4, respectively. The Bayesian hierarchical design has increased power. 

This design has powers of 90% in groups 1 and 2, 86% in group 3, and 71% in group 4.

The last two scenarios are a mixture of null and alternative response rates. In the ‘One 

Nugget’ scenario, borrowing is weighted toward futility as p = p0 in three groups. Power in 

the Bayesian hierarchical design is reduced to 65%. Similarly, in the ‘2 Null, 2 Alternative’ 

borrowing reduces power in the Bayesian hierarchical design slightly to 92% and 84% in 

groups 3 and 4, respectively.

Mean sample size

We have first considered each Bayesian design with early stopping for futility only. Thus, 

the goal is to stop the trial early if the treatment appears not promising, but to enroll to the 

maximum sample size and gain more experience with the treatment if it appears promising. 

Simon’s design has a single early stopping analysis. The two Bayesian designs may have 5–

6 early stopping analyses, depending on the maximum sample size.

More interim analyses means the Bayesian designs are more likely to stop early when p = p0 

compared to Simon’s design. Mean sample sizes are shown in Figure 5. When p = p0, 

Simon’s design has mean sample size of 23.5, 23.5, 19.9, and 26.0 in groups 1, 2, 3, and 4, 

respectively, while the independent Bayesian design has mean sample sizes of 19.3, 19.5, 

20.5, and 24.2, respectively. The Simon’s design enrolls to the maximum sample size with 

46% probability in groups 1 and 2, 34% probability in group 3, and 45% probability in 
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group 4. The Bayesian hierarchical design enrolls to the maximum sample size with 20% 

probability in groups 1 and 2, 28% probability in group 3, and 37% probability in group 4.

Mean sample size is reduced again with the Bayesian hierarchical design, in correspondence 

with the lower Type I error (17.0, 17.1, 16.7, and 17.1 for groups 1 through 4, respectively). 

The Bayesian hierarchical design enrolls to the maximum sample size with 8% probability 

in groups 1 and 2 and 11% probability in groups 3 and 4. Therefore, under the null 

hypotheses, the mean sample size is smaller, and Type I error is smaller with the Bayesian 

hierarchical design.

In scenarios where p = p1, early stopping for futility occurs rarely in each of the designs. 

Thus, most trials have the desired outcome of continuing to the maximum sample size. 

When p = p1, Simon’s design has mean sample sizes of 35.3, 35.3, 33, and 36.1 in groups 1, 

2, 3, and 4, respectively. Results are similar for the independent Bayesian design.

For the Bayesian hierarchical design, the increased probability of claiming efficacy in many 

scenarios corresponds to a larger mean sample size, such as in the ‘Alternative’, ‘One in the 

Middle’, and ‘All in the Middle’ scenario. In the ‘One Nugget’ and ‘2 Null, 2 Alternative’ 

scenario, the Bayesian hierarchical design has inflated Type I error for the groups where p = 

p0, and a correspondingly larger average sample size in these groups.

Estimation

Table 3 shows the estimated means and standard deviations for the probabilities of response 

in each group. For Simon’s Optimal Two-Stage designs, we have calculated the average 

observed probability and average standard errors for each group and scenario. For the 

independent Bayesian designs, we have calculated the average posterior probability and 

average standard errors for each group and scenario. Point estimates are very similar 

between Simon’s design and the independent Bayesian design.

We indicated that the amount of borrowing in the Bayesian hierarchical approach is 

determined by the data: the more similar the groups, the greater the borrowing. The ‘Null’ 

and ‘Alternative’ scenarios illustrate that similarity across the groups results in strong 

borrowing and reduced uncertainty. The standard deviations for the Bayesian hierarchical 

design are smaller in this scenario as compared to the other two designs. The response rate 

for group 4 in the null scenario is 20%, but the Bayesian hierarchical model has a mean 

estimate of 14%. There is little to no bias for the other groups. As indicated above, there is a 

relatively larger amount of shrinkage for group 4 in this scenario, resulting in a particularly 

low Type I error rate.

Additionally, the ‘One in the Middle’ and the ‘2 Null, 2 Alternative’ scenarios illustrate 

shrinkage toward the overall mean in the Bayesian hierarchical design. In ‘One in the 

Middle’, the estimated probability of response for group 3 is more promising than truth, and 

the estimated probability of response for group 4 is less promising than truth. In the ‘2 Null, 

2 Alternative’ scenarios, the estimated probability of response is pulled up for the two 

groups, where p = p0 and pulled down for the two groups where p = p1.
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In the ‘One Nugget’ scenario, p = p0 in the first three groups. The Bayesian hierarchical 

design borrows across these three groups such that point estimates are only slightly higher, 

and the standard deviations are smaller as compared to the other two designs. Group 4 is 

dissimilar, p = p1, and so, the point estimate is shrunk toward the null response rate, but the 

heterogeneity of the groups results in a larger amount of uncertainty around the estimated 

probabilities of response.

Mean proportion of correct decisions

In the setting of simultaneously evaluating four groups, the interest is not only in evaluating 

each group individually but also in correctly evaluating all four groups – and thus evaluating 

the treatment overall. We define a correct decision as concluding futility where p = p0 and 

concluding efficacy where p > p0. Table 4 shows the proportion of correct decisions for each 

design across the scenarios.

Generally, all three approaches are likely to make at least three out of four correct decisions. 

The Bayesian hierarchical design has a higher proportion of correct decisions, in all 

scenarios, except for the ‘One Nugget’, where it is more likely to conclude futility in the 

group where p > p0 and in the ‘2 Null 2 Alternative’ scenario where the Bayesian 

hierarchical design has a higher probability of concluding efficacy in the groups where p = 

p0.

Sensitivity analysis

The amount of borrowing depends on the prior distribution for the σ2 parameter. This 

parameter allows the model to span from assuming all treatments are the same to assuming 

there is no borrowing. We have specified a prior that places approximately a weight of 0.001 

on an estimated value of 0.1 for σ. This is a weak prior, allowing the data to shape the 

amount of borrowing. To understand the sensitivity of the results to the selected prior, we 

show, for the null and alternative scenarios, the probability of claiming efficacy and the 

estimated response rate across a range of prior distributions (Table 5). We show results for 

our same mean (0.1) with more weight (0.01) and with less weight (0.0001) and results for 

our same weight (0.001) with a larger mean (1) and a smaller mean (0.01). Each prior still 

allows the data to shape the amount of borrowing. Thus, the probability of claiming efficacy 

is consistent across the priors and the mean estimated probability of response varies little. 

Therefore, while the prior on σ2 is important, we have selected priors that are robust to 

changes of an order of magnitude.

With early efficacy stopping

Early stopping with a claim of efficacy is not a characteristic of Simon’s design. It may be 

desirable to stop early for efficacy, saving time and patient resources, and moving the 

treatment to the next phase of development more rapidly. In other cases, one may want more 

information about an apparently effective treatment, but single-arm evidence with tumor 

response as an endpoint is of limited utility in addressing whether to move to Phase III. 

Consider again the examples of the Bayesian hierarchical trial. In Example 1, group 2 could 

have stopped early for efficacy at the first interim analysis with 10 patients, and the 

remainder of the groups could have stopped early for efficacy at the second interim analysis. 
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Inference did not change with the additional patients enrolled. With an early efficacy 

stopping rule, this trial could have stopped early, with the correct answer, and saved most of 

the allotted patient resources. In this section, we compare the operating characteristics of the 

three designs when the Bayesian designs incorporate early stopping for both futility and 

efficacy.

Early stopping for a claim of efficacy typically does not change the overall probability of 

trial success, but does impact the mean sample size. Figure 6 shows the mean sample sizes 

for Simon’s design and the two Bayesian designs with early efficacy stopping. The addition 

of early efficacy stopping for the Bayesian designs tends to reduce the mean sample size in 

each group. Where the Bayesian hierarchical design has a greater probability of trial success, 

there is a further reduction in sample size.

In the ‘Null’ scenario, mean sample size results are similar to those with no early efficacy 

stopping because in these scenarios, efficacy stopping is appropriately rare. In the 

‘Alternative’ scenario, early efficacy stopping reduces the mean sample size in both 

Bayesian designs. The independent Bayesian design stops early for efficacy with 60%–64% 

probability across the groups and continues to the maximum sample size with 27% 

probability in groups 1 and 2, 30% probability in group 3, and 25% probability in group 4. 

The Bayesian hierarchical design has the greatest power in this scenario and 

correspondingly, the smallest mean sample sizes. The Bayesian hierarchical design stops 

early for efficacy with 82%–90% probability across the groups and continues to the 

maximum sample size with 10% probability in groups 1 and 2, 12% probability in group 3, 

and 16% probability in group 4. Results are similar for the ‘One in the Middle’ scenario.

In the ‘All in the Middle’ scenario, the Bayesian hierarchical design has a greater mean 

sample size as compared to the Independent Bayesian design as a result of continuing to the 

maximum sample size more frequently before being able to declare efficacy. With shrinkage 

in this scenario toward pmid for all groups and early stopping criteria being based on pmid, 

shrinkage in this scenario makes early efficacy stopping appropriately more difficult.

In the ‘One Nugget’ scenario, early efficacy stopping has little impact on the groups where p 

= p0 as early efficacy stopping would be rare for these groups, but does reduce the mean 

sample size for group 4. The effect of early efficacy stopping is similar in the ‘2 Null, 2 

Alternative’ scenario.

Discussion

We have compared two Bayesian adaptive approaches to the commonly used Simon’s 

Optimal Two-Stage design in the setting of Phase II trials in multiple patient groups. 

Bayesian adaptive designs can be tuned to have similar operating characteristics to Simon’s 

design in terms of Type I error and power. The resulting design will often have a lower 

sample size because of more frequent interim analyses and the possibility of stopping early 

for efficacy. Using a Bayesian hierarchical model to borrow across patient groups can 

provide a reduction in Type I error, increased power, and a further reduction in mean sample 

size. Bayesian hierarchical modeling makes personalized medicine tractable. Several 
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different pharmaceutical companies have successfully implemented the Bayesian 

hierarchical design. Sometimes called tumor agnostic, the settings are frequently focused on 

patients who have a tumor positive for a particular biomarker irrespective of the tumor site.

The advantages of borrowing are pronounced when the treatment effects are similar in some 

of the groups, but they retain reasonably good properties more generally. With the model 

used, the null hypothesis response rates need not be similar across groups. When the drug 

appears promising in some groups and not in others, there is more potential for borrowing to 

inflate the Type I error rate. Hierarchical modeling adjusts for the regression effect. It is 

possible that such an adjustment is too great. But our experience with actual therapies is that 

the much greater problem is underadjustment or no adjustment at all. Hierarchical modeling 

partially accounts for the random highs and lows that occur in experiment results. The 

Bayesian hierarchical design inherently considers multiplicities and tends to make a higher 

number of correct decisions. If parallel Simon’s designs or independent Bayesian designs 

were conducted, the multiplicity of considering the same treatment in numerous patient 

groups would typically be ignored, allowing many ineffective treatments to advance through 

drug development.

Deciding whether and how to borrow across groups depends in part on whether similar 

treatment effects are a reasonable possibility. For example, would knowing there is positive 

treatment effect in one group make a positive treatment effect in another group more likely? 

The amount of borrowing in our model is determined by an inverse gamma hyperprior on 

the variance term for the log-odds of response rate. Other parametric forms for this prior 

could also be chosen, including uniform or half-cauchy [25]. There may be no optimal 

choice for the parametric form; however, our choice of the inverse gamma distribution 

performs well and creates desirable borrowing behavior in our examples. The appropriate 

amount of borrowing for a particular trial must be judged clinically at the time of trial 

design. For example, during trial design, the sponsor might consider example final results 

and the associated analyses across a range of models, and then use the model with which 

they are most comfortable.

For the purposes of comparing with Simon’s design, we tuned the independent Bayesian 

design to have the same Type I error rate, maximum sample size, and Type II error rate. The 

resulting operating characteristics of both Bayesian designs are a function of these choices. 

The purpose was to isolate the effect of borrowing, the unique feature of the Bayesian 

hierarchical design, by controlling as many design parameters as possible across the three 

strategies. However, in practice, alternative trial designs may be considered and need not be 

constrained by such correspondence to a traditional design.

The choice of futility and efficacy thresholds can be selected through examination of the 

simulation results. When p = p0, if futility stopping is rare, the futility threshold can be 

increased to allow for increased futility stopping. This should be balanced by results when p 

> p0. If groups stop for futility but efficacy would have been declared had enrollment been 

allowed to continue, the criterion can be decreased to lessen futility stopping. The final 

efficacy criterion can be selected by examining the overall Type I and Type II error rates 

and adjusted the threshold to achieve strong results. Fixed and Adaptive Clinical Trial 
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Simulator (FACTS; Berry Consultants LLC and Tessella) is commercially available 

software that allows simulation of the Bayesian hierarchical design.

In our example, the Bayesian hierarchical design could be considered overpowered. With 

more stringent efficacy criteria, this design could be refined to have lower power in each 

group when p = p1, 80%–90%, for example. This would lower the overall Type I error rate. 

The definitions of p0, pmid, and p1 for the Bayesian designs are also in part an artifact of the 

comparison with Simon’s design. It may be more natural for these designs to have a single 

target response rate, pgoal, and to declare futility if the probability of p > pgoal is sufficiently 

small and to declare efficacy if it is sufficiently large.

In sum, with the ability to have greater power and lower Type I error with a lower mean 

sample size, the Bayesian hierarchical design is an important alternative in this Phase II 

setting.
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Figure 1. 
Example 1. Barplot shows sample size in each group where the height of the solid bar shows 

number of patients enrolled and height of the hashed bar shows number of patients who 

achieved a response. Upper part of the plot shows observed response (‘x’), fitted response 

(‘o’) and 2 times the standard deviation (line). Asterisks indicate Pr(p > pmid) for the 

interim analyses and Pr(p > p0) at the final analysis.
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Figure 2. 
Example 2. Barplot shows sample size in each group where the height of the solid bar shows 

number of patients enrolled and height of the hashed bar shows number of patients who 

achieved a response. Upper part of the plot shows observed response (‘x’), fitted response 

(‘o’) and 2 times the standard deviation (line). Asterisks indicate Pr(p > pmid) for the 

interim analyses and Pr(p > p0) at the final analysis.
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Figure 3. 
Probability of claiming efficacy by group in each scenario. The open bar is Simon’s design, 

the crosshatched bar is independent Bayesian, and the solid bar is Bayesian hierarchical.
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Figure 4. 
Overall Type I error rate, probability of claiming efficacy in at least one group under the null 

hypothesis by the number of groups. Simon’s design is shown as a solid line and the 

Bayesian hierarchical design is shown as the dotted line. We assume p0 = 10% and p1 = 30% 

for all groups.
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Figure 5. 
Mean sample size by group in each scenario. The open bar is Simon’s design, the 

crosshatched bar is independent Bayesian, and solid bar is Bayesian hierarchical.
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Figure 6. 
Mean sample size by group in each scenario with early efficacy stopping for the two 

Bayesian designs. The open bar is Simon’s design, the crosshatched bar is independent 

Bayesian, and solid bar is Bayesian hierarchical.
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Table 1

Simon’s Optimal Two-Stage design for each of the four patient groups

Group p0 p1 Stage 1 r1/n1 Stage 2 r/N

1 5% 20% 0/12 3/37

2 5% 20% 0/12 3/37

3 10% 30% 1/12 5/35

4 20% 40% 3/17 10/37
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Table 2

Response scenarios

Scenario Response rate p

Group 1 Group 2 Group 3 Group 4

1. Null 5% 5% 10% 20%

2. Alternative 20% 20% 30% 40%

3. One in the Middle 20% 20% 20% 50%

4. All in the Middle 15% 15% 20% 30%

5. One Nugget 5% 5% 10% 40%

6. 2 Null, 2 Alternative 5% 5% 30% 40%
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Table 3

Estimated probability of response and standard errors

Group 1 Group 2 Group 3 Group 4

Null

 Truth 0.05 0.05 0.1 0.2

 Simon 0.05 (0.05) 0.05 (0.05) 0.09 (0.06) 0.18 (0.08)

 Independent Bayes 0.04 (0.04) 0.04 (0.04) 0.08 (0.06) 0.16 (0.09)

 Hierarchical Bayes 0.05 (0.02) 0.05 (0.02) 0.09 (0.04) 0.14 (0.06)

Alternative

 Truth 0.2 0.2 0.3 0.4

 Simon 0.18 (0.08) 0.18 (0.08) 0.28 (0.09) 0.39 (0.09)

 Independent Bayes 0.19 (0.08) 0.19 (0.08) 0.29 (0.10) 0.39 (0.10)

 Hierarchical Bayes 0.20 (0.04) 0.20 (0.04) 0.30 (0.05) 0.40 (0.05)

One in the Middle

 Truth 0.2 0.2 0.2 0.5

 Simon 0.18 (0.08) 0.18 (0.08) 0.18 (0.08) 0.50 (0.09)

 Independent Bayes 0.19 (0.08) 0.19 (0.08) 0.18 (0.09) 0.50 (0.09)

 Hierarchical Bayes 0.20 (0.04) 0.20 (0.04) 0.26 (0.06) 0.44 (0.07)

All in the Middle

 Truth 0.15 0.15 0.2 0.3

 Simon 0.13 (0.07) 0.13 (0.07) 0.18 (0.08) 0.28 (0.09)

 Independent Bayes 0.13 (0.08) 0.13 (0.08) 0.18 (0.09) 0.28 (0.11)

 Hierarchical Bayes 0.14 (0.04) 0.14 (0.04) 0.21 (0.05) 0.29 (0.07)

One Nugget

 Truth 0.05 0.05 0.1 0.4

 Simon 0.05 (0.05) 0.05 (0.05) 0.09 (0.06) 0.39 (0.09)

 Independent Bayes 0.04 (0.04) 0.04 (0.04) 0.08 (0.06) 0.39 (0.10)

 Hierarchical Bayes 0.06 (0.03) 0.06 (0.03) 0.11 (0.05) 0.32 (0.12)

2 Null, 2 Alternative

 Truth 0.05 0.05 0.3 0.4

 Simon 0.05 (0.05) 0.05 (0.05) 0.28 (0.09) 0.39 (0.09)

 Independent Bayes 0.04 (0.04) 0.04 (0.04) 0.29 (0.09) 0.39 (0.10)

 Hierarchical Bayes 0.08 (0.04) 0.08 (0.04) 0.26 (0.08) 0.35 (0.09)
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Table 4

Mean proportion of correct decisions

Scenario Simon Independent Bayes Hierarchical Bayes

1. Null 0.905 0.913 0.946

2. Alternative 0.903 0.880 0.987

3. One in the Middle 0.850 0.828 0.967

4. All in the Middle 0.663 0.630 0.841

5. One Nugget 0.905 0.900 0.766

6. 2 Null, 2 Alternative 0.905 0.903 0.755
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