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Abstract

This paper presents a formulation of controlled geometric reduction with one degree of 

underactuation for mechanical systems with an unactuated cyclic variable subject to passive 

damping. We show that the first control term in the fully actuated case reduces to passive joint-

velocity feedback, which can be equivalently provided by viscous friction. The underactuated 

control strategy is applied to a five-link 3D biped with a hip, torso, knees, and unactuated yaw at 

the foot contact point. We show asymptotically stable walking in the presence of passive yawing 

for realistic friction coefficients.

I. INTRODUCTION

Human walking is a dynamic task involving distinct phases of static instability. Motor 

control of this task is challenged by different forms of underactuation during a gait cycle. A 

dynamic walking biped engages in controlled falling during single-support phase, where 

gravity and momentum propel the center of mass along a pendular arc causing the support 

foot to passively rotate about different contact points from heel-strike to toe-off. In addition 

to pitching in the sagittal plane-of-motion, body dynamics induce yawing about the gravity 

vector at these contact points. The human ankle joint provides substantial actuation in the 

sagittal plane through plantar/dorsiflexion and some actuation in the frontal plane through 

inversion/eversion, but internal/external rotation (i.e., yaw) of the stance leg is mostly 

passive [1].

Different control strategies have been proposed to confront these forms of underactuation in 

walking robots. Works based on hybrid zero dynamics model the foot/ankle as a point with 

passive degrees of freedom (DOFs) [2]–[5]. This method has produced walking without 

ankle actuation on the planar testbeds RABBIT [3] and MABEL [4], and recent work has 

simulated 3D walking with yaw rotation [5].

Controlled geometric reduction [6]–[10] uses symmetry-based momentum constraints to 

create zero dynamics corresponding to planar bipeds that are known to have passively stable 

gaits (i.e., gravity-powered walking down shallow slopes [11]). This approach exploits the 

natural existence of limit cycles in the sagittal plane as a sufficient condition for generating 

gaits in actuated 3D bipeds. Feet with fixed yaw are modeled in [10] to demonstrate that 

reduction-based control is robust to phases of underactuation associated with non-flat foot 
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contact with ground. However, this body of work has not considered the steady form of 

underactuation associated with passive yaw rotation.

This paper derives an underactuated formulation of controlled reduction that produces 3D 

walking in the presence of passive yawing. We constrain our investigation to a fixed contact 

point by modeling the biped with point feet. Section II introduces the momentum constraints 

induced by cyclic variables (i.e., invariants in dynamics) and passive joint-velocity feedback. 

We use these constraints in Section III to show that controlled reduction can be achieved 

with an unactuated cyclic variable subject to passive damping. This controller produces 

locally exponentially stable walking gaits for a five-link 3D biped in Section IV. We 

conclude in Section V with discussion and future work.

II. LAGRANGIAN MECHANICS AND SYMMETRY

We consider the class of n-DOF mechanical systems with configuration space  = ℝn, 

where the state (q, q̇) in tangent bundle T  ≅ ℝ2n consists of configuration q ∈  and 

tangential velocity q̇ ∈ ℝn. The system dynamics are derived from the Lagrangian ℒ : T  → 

ℝ, given in coordinates by

(1)

where (q) is the potential energy and n × n symmetric, positive-definite M(q) is the mass/

inertia matrix. System integral curves satisfy the Euler-Lagrange (E-L) equations

(2)

where τ ∈ ℝn contains the external joint torques. This second-order system of ordinary 

differential equations gives the dynamics for the actuated mechanism in phase space T :

(3)

where n × n-matrix C(q, q̇) contains the Coriolis/centrifugal terms, vector N(q) = ∇q (q) 

contains the potential torques, and n × m-matrix B (full row rank) maps actuator input vector 

u ∈ ℝm to joint torques τ = Bu ∈ ℝn for m ≤ n.

Conservation Laws

Symmetry of the system Lagrangian implies a conservation law by Noether’s theorem [12], 

i.e., a physical quantity of the system is conserved by the dynamics. We are interested in 

conservation laws that can be expressed as nonholonomic constraints of the form

(4)

where Jc ∈ ℝk × n has rank k < n. The system dynamics restricted to the invariant level-set

(5)
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then correspond to lower-dimensional zero dynamics. We now discuss the kind of 

symmetries that we will use to design a desirable submanifold  for controlled reduction.

Cyclic Variables

Let Lagrangian ℒ be defined in coordinates of configuration space  = × S, where = ℝk 

is the configuration symmetry group and S = ℝn − k is the shape space. We are interested in 

symmetries of ℒ characterized by cyclic variables qc ∈  such that

(6)

If these cyclic variables are free from external and actuator forces, equations (2) and (6) 

imply that the generalized momenta pc = ∇q̇c ℒ conjugate to the cyclic coordinates are 

constant. The dynamics then evolve on the invariant level-set (5) of these conserved 

momentum quantities, where Jc = [Ik × k 0k × n − k]M and b(q) = μ for some constant vector 

μ. Routhian reduction uses these constraints to directly relate full-order integral curves on 

phase space T  to reduced-order integral curves on phase space TS, and vice versa.

In the case of mechanical systems, often only the world coordinates are cyclic, e.g., position 

and orientation of the stance foot. However, extensive symmetries known as recursively 

cyclic variables exist in subsystems of open kinematic chains, a general property proven in 

[7], [8]. The rigid-body inertia matrix M can be expressed in relative coordinates to be 

independent of (cyclic) variable q1. The lower-right fn − 1 × n − 1 submatrix is additionally 

independent of q2, and the lower-right n − 2 × n − 2 submatrix is independent of q3. This 

nested cyclic structure holds recursively through the inertia matrix until a branch in the 

kinematic chain [8].

Many systems have an unactuated cyclic variable and actuated shape variables (e.g., bipedal 

runners in flight phase), for which stability can be achieved by breaking the momentum 

conservation law with a rotary spring in the cyclic coordinate [13]. We will instead use 

passive damping to replace the existing conservation law with a new functional momentum 

law that controls the cyclic variable.

Controlled Momentum Constraints

Our controlled version of Routhian reduction shapes the conservation laws arising from 

cyclic variables [6]–[8], [14]. These controlled momentum constraints will uniquely 

describe the dynamics of the constrained coordinates qc ∈ ℝk in terms of the reduced 

coordinates qr ∈ ℝn − k, where .

Although the generalized momentum is typically defined as p̃ ≔ ∇q̇ ℒ = Mq̇, multistage 

controlled reduction exploits the recursively cyclic structure of the inertia matrix by 

considering the momentum p ≔ M̂ q̇, where matrix M̂ is defined by upper-triangular blocks 

from M:
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(7)

where M̂
c ∈ ℝk × k is the upper-triangular part of the top-left k × k submatrix in M, and Mc,r 

∈ ℝk × (n − k), Mr ∈ ℝ(n − k) × (n × k) are, respectively, the top-right and bottom-right 

submatrices in M. The first k momentum terms are

(8)

which we wish to constrain in order to control coordinates qc to neighborhoods around set-

points q̄c ∈ ℝk (cf. [14]):

(9)

(10)

where gain matrix K ∈ ℝk × k is constant, diagonal, and positive-definite. These momentum 

constraints define the smooth, invariant, (2n − k)-dimensional submanifold q̄c as in (5), 

where Jc = [M̂
c Mc,r] has row rank k and b = − K(qc − q̄c) is continuously parameterized by 

q̄c.

Due to the recursively cyclic and upper-triangular structure of M̂, it is easily shown that 

scaling matrices  have no dependence on configuration elements q1,…i 

in row i, for i ∈ 1,.., k. We then see that equation (10) represents a homogeneous first-order 

linear system in qc with time-varying coefficients based on trajectories (qr(t), q̇r (t)). The 

diagonal blocks of inertia matrix M are positive definite, implying that  is also 

positive definite. System (10) then has negative gain linearity in qc, by which we can prove 

the existence of a unique T-periodic orbit  in a neighborhood about q̄c given the 

existence of a T-periodic orbit . We can similarly prove that asymptotic 

convergence to the reduced orbit implies asymptotic convergence to the constrained orbit 

[14]. These constraints decompose the control problem into upper triangular form, allowing 

us to construct limit cycles for locomotor patterns in a manner analogous to forwarding/

backstepping [15].

The first of these k constraints is achieved with passive joint-velocity feedback (e.g., viscous 

damping from friction), which we will exploit in underactuated controlled reduction.

Lemma 1: Letting q1 in configuration vector q correspond to the first DOF and , 

then passive feedback

(11)

in system (2) implies the functional conservation law
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(12)

for some constant q̄1 satisfying initial boundary condition

(13)

Proof: Recursively cyclic M and  imply that q1 is cyclic, so plugging (11) into (2) 

implies ṗ1 = − K1q̇1. Momentum p1 is no longer conserved as a constant but rather as a 

function by the fundamental theorem of calculus:

Given (13), then p1(t) = −K1(q1(t)− q̄1) for all t ≥ t0.

Remark 1: Every initial condition has an associated conservation law, so we have rendered 

invariant infinitely-many submanifolds, each parameterized by q̄1:

(14)

This so-called foliation of manifold T  will be the result of underactuated controlled 

reduction in Section III.

Lemma 1 suggests that viscous damping, whether from a mechanical damper or friction, will 

be helpful in enforcing the constraints needed for controlled reduction.

III. CONTROLLED GEOMETRIC REDUCTION

We now render the reduced dynamics (e.g., the sagittal plane of a biped) decoupled from the 

coordinates constrained by (9). Although Lagrangian/energy shaping is used in [6], [7], we 

will instead insert joint accelerations that directly enforce the desired constraints and 

decouple the reduced coordinates as in the fully actuated approach of [9].

Constraint Jacobian Jc = [M̂
c Mc,r] maps joint velocities to momenta in first-order constraint 

(4), but this Jacobian can also map joint accelerations to torques. We take the time-

derivative of (4) to obtain the second-order constraint

(15)

where J̇
c = [M̂̇c Ṁc,r] and ḃ = −Kq̇c. This second-order constraint, which does not depend on 

set-point q̄c, renders invariant infinitely-many first-order submanifolds q̇c in a foliation of 

T . This includes all possible conservation laws provided by passive feedback in Lemma 1.

We now design joint accelerations q̈d ∈ ℝn that enforce (15) and follow a reference 

acceleration  within the constraint nullspace. This can be interpreted in 
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terms of hierarchical operational space control [16], where constraint enforcement is the 

primary task and tracking q̈ref is a secondary task that complies with the primary. All 

solutions for this desired acceleration can be given by

(16)

where  denotes any generalized inverse of Jc (i.e., a matrix such that .

Since Jc is full row rank, we can choose an inverse of the form , 

where W ∈ ℝn × n is a positive definite weight matrix that manipulates how accelerations 

q̈ref are projected into the null space of the constraints. We choose W = M̂−T to find that 

, so the nullspace projector takes the simple form

(17)

This choice of weight matrix (and nullspace projector) renders orthogonal the projections of 

the constrained and unconstrained dynamics (recall that Jc is defined by M̂, and M̂W = WM̂ 

= I). We can now express desired accelerations (16) in terms of the partitions

(18)

where v ∈ ℝk−1 is an auxiliary control term in the constrained dynamics. We see that 

nullspace projector (17) has removed any dependence on q̈cd – the first k coordinates instead 

evolve according to the constraints – leaving command over the reference acceleration q̈rd in 

the decoupled reduced partition. This term also appears in the constrained partition, which 

will provide synchrony between different planes-of-motion in our biped application, i.e., the 

constrained orbit will have the same period as the reduced orbit.

In order to impose joint accelerations (18), we first define the fully-actuated inverse 

dynamics controller

(19)

Applying control (19) to system (3), the closed-loop dynamics are finally decomposed into 

upper-triangular form (18).

Although second-order constraint (15) is always enforced under (19), initial conditions 

determine one of infinitely-many first-order constraints (4). System (18) possesses a 

symmetry with respect to set-points of the constrained coordinates. This may be desirable in 

some coordinates, e.g., biped dynamics should be invariant with respect to yaw/heading on a 

flat surface. We can achieve this foliation of T  even if the first DOF is unactuated, 

provided that it is subject to viscous damping from passive forces.
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Proposition 1: Letting v = 0, the first term of control (19) reduces to passive feedback (11), 

i.e., [1 0]τ⊥ = −K1q̇1.

Proof: Plugging (18) into (19) and noting that , we first evaluate

Because q1 is a cyclic variable of the Lagrangian and thus the potential energy, 

. The definition of Coriolis matrix C (computed from M) can be invoked to 

show that .

Hence, the first control term can be provided by passive forces instead of actuation. This 

term enforces the second-order constraint with respect to q1 by Lemma 1, and the remaining 

control terms in (19) need only know the friction coefficient in (11) to enforce the remaining 

k − 1 second-order constraints. Any given solution trajectory belongs to a submanifold 

defined by some first-order constraint (4), and we can invoke Lemma 1, specifically (13), to 

determine the specific vector q̄c parameterizing this submanifold.

We let the initial conditions determine q̄1 in this manner, but the remaining k − 1 constrained 

coordinates can be controlled to desired set-points through auxiliary input v. We wish to 

render globally exponentially attractive the surface k−1 defined by the last k − 1 first-order 

constraints of (4), where q̄c ⊂ k−1. This is equivalent to zeroing k − 1 outputs y ≔ [0 I]

(Jcq̇ − b), so we will feedback linearize the associated output dynamics into the 

exponentially stable system ẏ = −Ly, for some positive-definite gain matrix L ∈ ℝk−1 × k−1. 

In terms of the constraints this system is

(20)

Plugging (18) into q̈, we solve for the linearizing control law:

(21)

This proportional controller is zero when restricted to the constraint surface, i.e., v| k−1 = 0, 

allowing us to invoke Proposition 1. Letting torque map B = [0 I]T in system (3), the 

underactuated version of (19) is finally given by

(22)

We will see that the biped’s discontinuous impact events tend to violate first-order 

constraints (4), i.e., k−1 is not hybrid invariant, but subcontroller (21) will correct these 

errors shortly after each impulsive event.
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IV. FIVE-LINK 3D BIPED RESULTS

The 3D biped model in Fig. 1 has two phases during single-support: a knee-swing phase 

with six DOFs and a knee-lock phase with five DOFs. The knee of the stance leg remains 

locked during that leg’s entire single-support cycle. We assume the biped walks on a flat 

surface with sufficient Coulomb friction to prevent slipping and non-zero viscous friction in 

the yaw DOF. This can be interpreted as a point foot in contact with a textured surface or as 

a flat foot with passive elements in the yaw DOF of the ankle (e.g., tissue).

This biped has coordinates q = (ψ, φ, θT)T in configuration space  = ℝ6, where ψ, φ ∈ ℝ 

are respectively the heading/yaw and roll/lean variables at the stance foot, and vector θ = (θs, 

θt, θth, θsh)T contains the sagittal-plane (pitch) variables for the stance leg, torso, swing 

thigh, and swing shank, respectively. Knee-lock phase provides θth ≡ θsh. Yaw is the first 

DOF in the kinematic chain and is defined about the gravity vector on a flat surface, 

implying that variable ψ is cyclic in both kinetic and potential energy.

The system state is x = (qT, q̇T)T in domain D, defined as the subset of T  such that the 

swing foot height is nonnegative. We assume that both knee-strike and ground-strike impact 

events are instantaneous and perfectly plastic, resulting in transitions between the six and 

five DOF dynamics according to hybrid system ℋ of Fig. 1. The ground-strike guard Gg is 

defined as the set of states in D where the swing foot height is zero, and its reset map Δg(x) 

is computed following the method of [2]. The knee-strike guard Gk is the set of states in D 

where θth − θsh = 0, and its reset map Δk(x) is computed as in [17]. Bilateral symmetry 

across the sagittal plane provides that hybrid dynamics are mirrored between left and right 

leg stance, where the signs of hip width w and angle ρ are flipped at ground strike.

Model-Specific Controller

We partition this model’s configuration into constrained coordinates qc = (ψ, φ)T and 

reduced coordinates qr = θ. Ankle yaw is unactuated, cyclic, and subject to viscous damping 

as in (11). Each phase of ℋ has an associated controller (22), which switches with the model 

during walking. Control gains are uniform across phases, and control torques are saturated at 

Umax.

Lean is the only constrained coordinate that is controlled by output linearizing control (21) 

to a specific set-point, φ̄ = 0 corresponding to upright. We build pseudo-passive walking 

gaits by closing an outer feedback loop that inserts sagittal-plane dynamics into the 

unconstrained accelerations of (18):

(23)

where vpd = −kpθt − kd θ̇
t is a torso controller and we have virtually rotated the gravity vector 

to mimic downhill dynamics (slope angle β = 0.06 rad) on flat ground [18]. This slope-

changing “controlled symmetry” exploits passive limit cycles to render system (18) strictly 

minimum phase.
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Simulation Results

We set the rotational friction coefficient to K1 = 0.5 and adopt the parameters given in Fig. 

2. Recall that system ℋ under (22) is invariant with respect to heading, implying that no 

isolated orbits exist in the given coordinate system. We therefore analyze the hybrid system 

modulo yaw, for which a hybrid limit cycle may exist with respect to the change in heading 

over two steps.

1) Gait stability: We show the existence and local exponential stability of a hybrid limit 

cycle by the method of Poincaré sections [3]. Defining a return map P : Gg → Gg between 

intersections with the ground-strike guard, we find a fixed-point x* = P2(x*) corresponding 

to the hybrid limit cycle shown in Fig. 2. We numerically linearize the Poincaré map P2 

about x* to show that all eigenvalues are within the unit circle (|eig|max = 0.58), confirming 

exponential stability of the discrete system and thus the hybrid system.

The yaw conserved quantity hψ = [1 0]Jcq̇ + K1ψ is piecewise constant throughout the 

walking gait in Fig. 2, switching signs every double-support transition due to the biped’s 

heading about ψ = 0. The hybrid dynamics in fact stabilize the relative difference between 

these output values. Recall that a constant value of hψ does not imply that yaw is constant, 

but rather that the biped rotates toward some heading ψ̄ parameterizing the first-order 

constraint (4) during that continuous phase. Directional changes in yaw correspond to jumps 

in hψ at discrete events, and the resulting yaw trajectory in Fig. 2 resembles internal/external 

rotation of the tibia during human walking [1, Fig. 1–15].

The control and joint trajectory plots in Fig. 2 also show that the biped leans and yaws in the 

direction of the swing leg after the knee-lock event. The passive damping element in the 

yaw DOF contributes two orders of magnitude less torque than the actuators, but yaw 

motion remains bounded and stable due to our momentum constraints.

2) Viscous friction: We next examine the effect of viscous friction coefficient K1, which 

enters into control (22). Decreasing the coefficient from K1 = 1, instability ensues for 

coefficients smaller than K1 = 0.4, which demonstrates that the yaw DOF requires a certain 

degree of damping for gait stability. The smallest maximum eigenvalue modulus is 0.518 for 

K1 = 0.7. We also find that yaw range-of-motion increases as we decrease the damping 

coefficient.

3) Gait efficiency: Integrating q̇T Bu to obtain the net work per step, we find that the specific 

average mechanical power is 0.52 W/kg. Moreover, the specific mechanical cost of transport 

(work done per unit weight per unit distance) is cmt = 0.037, which compares favorably with 

popular walking robots such as the Cornell biped at cmt = 0.055 and Honda ASIMO at cmt = 

1.6 [19]. By choosing momentum constraints based on symmetries and reinserting the 

original planar dynamics, our inverse dynamics approach retains the energetic efficiency 

that is characteristic of dynamic walking.

4) Contact constraints: Bipedal locomotion is unilaterally constrained in the ground reaction 

forces (GRF). In order to validate the fixed-base assumption in our simulations, we need to 

show that the GRF vector F = (Fx, Fy, Fz)T keeping the stance foot fixed satisfies two 
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conditions: the vertical GRF component remains strictly positive, i.e., Fz (t) > 0 for all t, and 

the GRF vector remains within the friction cone, i.e., |Fx (t)/Fz(t)|, |Fy (t)/Fz(t)| < η for all t 

with Coulomb friction coefficient η = 1 (e.g., rubber feet). We verify these conditions (Fig. 

2) using the procedure outlined in [2].

V. CONCLUSIONS

By proving that the first control term reduces to passive feedback, we have shown that 

controlled reduction can be achieved with one degree of underactuation in the presence of 

viscous damping from friction. This underactuated control strategy produced asymptotically 

stable walking for a five-link 3D biped with passive yawing at the foot contact point.

Future work will construct steering gaits for motion planning applications [20]. Our 

controller does not provide direct control of heading set-point ψ̄, but a desired lean set-point 

φ̄ can be forced by output linearizing law (21). This angle can be chosen to lean into the 

direction of the desired heading.

The human-like yawing in our simulations was based on anthropomorphic ankle actuation, 

where viscous damping comes from passive elements such as tissues or ground friction. We 

unexpectedly found that the inclusion of knees in the model contributed to more natural 

GRF curves in Fig. 2, such as the double hump in vertical force that is characteristic of 

human walking. The addition of feet is not necessary for this profile but would likely 

improve the comparison.

Our walking model was not intended to be validated as human-like behavior, but it can be 

studied for insight into fundamental biped mechanics, such as the emergence of asymmetry 

[21]. This will guide the design of human subject experiments and ultimately novel 

interventions for locomotor deficits caused by stroke, amputation, or spinal injury.
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Fig. 1. 
Diagrams of the 3D biped’s hybrid system ℋ (left), frontal and sagittal planes (middle), and 

controlled reduction (right). The first stage reduces the yaw DOF of the transverse plane, 

and the second stage reduces the lean DOF of the frontal plane, yielding the dynamics of the 

sagittal-plane biped.
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Fig. 2. 
Gait animation (top left), conserved quantity errors (top right), joint trajectory (middle left), 

phase portrait (middle right), saturated control torques (lower middle left), yaw friction 

torque (lower middle right), vertical ground reaction force (bottom left), and Coulomb 

friction ratios (bottom right). A supplemental downloadable movie of this 3D walking 

simulation is available at: http://vimeo.com/20956363.

Model : Mt = 15 kg, ℓt = 0.55 m, Mh = 10 kg, m = 5 kg, mth = 0.7m, msh = 0.3m, ℓ = 1 m, α = 

0.5, w = 0.2 m, ρ = 0.0564 rad
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Gains : K1 = 0.5, K2 = 25, L = 68, kp = 700, kd = 265, β = 0.06 rad, Umax = 40 Nm

x* ≈ (−0.0741, −0.0016, 0.3089, −0.0498, −0.3084, −0.3084, 0.2008, 0.0450, −0.8307, 

−1.1639, 0.7324, 0.7324)T
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