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SUMMARY

Decision-makers are curious and consequently value advance information about future events. We 

made use of this fact to test competing theories of value representation in Area 13 of orbitofrontal 

cortex (OFC). In a new task, we found that monkeys reliably sacrificed primary reward (water) to 

view advance information about gamble outcomes. While monkeys integrated information value 

with primary reward value to make their decisions, OFC neurons had no systematic tendency to 

integrate these variables, instead encoding them in orthogonal manners. These results suggest that 

the predominant role of the OFC is to encode variables relevant for learning, attention, and 

decision-making rather than integrating them into a single scale of value. They also suggest that 

OFC may be placed at a relatively early stage in the hierarchy of information-seeking decisions, 

before evaluation is complete. Thus, our results delineate a circuit for information-seeking 

decisions and suggest a neural basis for curiosity.

INTRODUCTION

Decision-makers are often confronted with the opportunity to make choices that provide 

information about the world (Gottlieb et al., 2013). This information generally comes at a 

cost, even if it’s just the opportunity cost associated with foregoing other possible options. 

Nonetheless, information is so useful that we may be endowed with a basic drive to seek it 

out, even when it serves no obvious immediate purpose (Loewenstein, 1994). This drive for 

information is poorly understood but is relevant for understanding learning, decision-

making, and social interactions (Gottlieb et al., 2013). Recent studies have begun to identify 
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the structures associated with curiosity and motivated information-seeking more generally 

(Bromberg-Martin and Hikosaka, 2009, 2011; Gruber et al., 2014; Kang et al., 2009; Phillips 

et al., 2012).

Like any other good, information can enter into decision-making processes and influence 

our reward-based (i.e. economic) decisions. For example, monkeys performing an 

information-seeking choice task will preferentially choose to have the outcomes of risky 

gambles revealed immediately, rather than to remain in a state of uncertainty while waiting 

for the outcome to be delivered (Bromberg-Martin and Hikosaka, 2009, 2011). Their 

behavior can then be modeled in a standard economic framework in which monkeys 

integrate two dimensions of an option (here, its information content and the volume of its 

primary reward, e.g. water or juice), into a single scale to create a single dimension of 

subjective value. The monkey’s subjective value then serves as the basis for its choices 

(Padoa-Schioppa, 2011).

The fact that information and primary rewards are integrated to produce behavior suggests 

that they are also integrated neurally. Because information and primary rewards such as food 

and water are distinct in many respects (visual vs. gustatory, abstract vs. appetitive, etc.,) 

they are presumably first detected by different neural systems, then combined to create a 

common scalar value signal (Levy and Glimcher, 2012; Montague and Berns, 2002; Padoa-

Schioppa, 2011; Padoa-Schioppa and Assad, 2006; Raghuraman and Padoa-Schioppa, 

2014). Data from monkeys performing the information-seeking task suggests that one neural 

instantiation of this value scale may be the firing patterns of neurons that encode reward 

prediction errors (RPEs) (Bromberg-Martin and Hikosaka, 2009, 2011). Specifically, during 

this task, RPE-coding cells generate similar signals for both primary rewards and 

informational rewards, a pattern found in both midbrain dopamine neurons (DA neurons) 

and one of their major inputs, the lateral habenula (LHb) (Bromberg-Martin and Hikosaka, 

2009, 2011). These data suggest that integration of different value types onto a single scale 

occurs prior to the neural circuitry that computes RPEs (see also Lak et al., 2014).

We hypothesize that this integration process involves outputs from the OFC, a reward area 

that is anatomically early in the reward hierarchy and that serves as an indirect input to the 

dopamine system (Takahashi et al., 2011). The OFC is important for signaling information 

about rewards, reward-learning, and regulation of reward-related cognition (Rushworth et 

al., 2011; Wallis, 2007; Wilson et al., 2014; Padoa-Schioppa, 2011). OFC may be involved 

in economic choice at least two ways. First, it could be a stage where all choice-relevant 

features are maintained in separate buffers, constituting a complete representation of task 

state. This would then be used as raw material from which downstream areas could compute 

an integrated value signal (Wilson et al., 2014). In this case, OFC neurons would code the 

presence of information or the presence of appetitive reward, but would not code their 

combined value or utility. Alternatively, the OFC could implement the next stage of 

evaluation where features are combined to create the value that guides decisions (Padoa-

Schioppa, 2011; Padoa-Schioppa and Assad, 2006; Raghuraman and Padoa-Schioppa, 

2014). In this case, activity in OFC would depend on both appetitive reward and information 

in a correlated manner, and precisely to the extent that the two variables influence decisions.
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To test between these hypotheses, we recorded activity of OFC neurons using a novel 

curiosity tradeoff task. This task is a variant of the information-seeking task developed by 

Bromberg-Martin and Hikosaka (Bromberg-Martin and Hikosaka, 2009, 2011). On each 

trial of our task, a monkey chose between gambles that differed on two dimensions: (1) 

water amount associated with winning the gamble and (2) informativeness, i.e. whether a 

cue revealed the gamble outcome in advance of its delivery. Importantly, the information 

allowed monkeys to fully predict the chosen gamble's outcome but could not be used to 

influence the outcome in any way. Thus, any value the monkeys assigned to information 

was due to its intrinsic worth rather than any objective benefit for gathering water rewards.

We find that monkeys reliably choose to sacrifice water to obtain immediate information 

about the outcome of the gamble. Furthermore, our task allows us to measure the precise 

manner in which animals integrate water amount and informativeness into their judgments 

of subjective value. We could then test whether OFC neurons integrate these variables in the 

same manner as the animals do in their choice behavior (if the OFC represents subjective 

value) or whether OFC neurons encode these variables independently (if the OFC represents 

an abstract task state).

We find that OFC neurons encode both water amount and informativeness, consistent with a 

role for the OFC in curiosity-guided choices. Furthermore, much as OFC primary reward 

signals reflect the value subjects assign to those rewards (Critchley and Rolls, 1996; Padoa-

Schioppa and Assad, 2006; Tremblay and Schultz, 1999), OFC information signals are 

correlated with the value that monkeys assign to information. However, OFC neurons had 

no systematic tendency to integrate the values of water and information in an appropriate 

manner to code the overall subjective value that guides decisions. Instead, we find that OFC 

neurons coded these variables in orthogonal manners, consistent with a representation of 

abstract task state. For example, if a given neuron was positively tuned for water amount, it 

was no more likely than chance to be either positively or negatively tuned for 

informativeness. These results are consistent with the idea that OFC precedes the value 

computation that guides decisions, and suggest a role in motivating curiosity-guided choices.

RESULTS

Monkeys value advance information about gamble outcomes

On each trial, monkeys chose between two gambles represented by visual stimuli on the left 

and right sides of a screen. Each gamble yielded either a water reward or no reward with 

equal probability. The water amount for each gamble was drawn randomly from the range 

75–375 µl in 15 µl steps, and was indicated to the monkey by the height of a white inset bar 

(Figure 1). Gambles also varied in their informativeness, which was indicated to the monkey 

by their color. Choosing the informative gamble (Figure 1, cyan bar) always led to the 

presentation of a visual stimulus that cued the gamble's outcome. Choosing the 

uninformative gamble (Figure 1, magenta bar) led to the presentation of a visual stimulus 

that provided no new information. Monkeys could not make use of the information to 

influence the outcome of the gamble; the information merely gave them 2.25 seconds of 

advance notice.
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Monkeys preferred both greater water amounts and informative cues. They chose the option 

with the greater water amount on 81% of trials, and the option with greater informativeness 

on 67% of trials (both P < 0.0001, binomial test). Monkeys exhibited only small choice 

biases favoring offers based on non-reward features such as their location on the screen 

(choice of rightmost offer: subject B 54%, subject H 53%) or presentation order (choice of 

first presented offer: subject B 51%, subject H 51%).

We calculated each monkey's probability of choosing the informative option as a function of 

the difference in water amount between the two options (Figure 2A). When the two options 

had equal water amounts, both monkeys strongly preferred information (subject B: 83% 

choice, subject H: 83% choice). Monkeys were only indifferent when the informative option 

offered a considerably smaller amount of water (subject B: on average 74 µl difference, 

subject H: 44 µl difference). This indifference point identifies the monkey's willingness to 

pay for information, and hence serves as a measure of the subjective value that the monkey 

assigns to that information (cf. Deaner et al., 2005). Once we account for the 50% 

probability of gambles, our data indicate that the monkeys would give up 37 µl (subject B) 

or 22 µl (subject H) of water to gain information. This translates to a substantial fraction of 

the water they were offered. The expected reward size averaged over all offers was 112.5 ul 

of water. Thus, monkeys paid an average of 33% of offered water (subject B) or 20% of 

offered water (subject H) in exchange for just a few seconds of advance information.

Do monkeys adjust their willingness to pay for information about a gamble's outcome based 

on the water amount at stake? To test this, we estimated the monkey's probability of 

choosing info as a function of the water amounts of both the informative and uninformative 

options (Figure 2C,D). We then plotted an indifference curve, tracing through all 

combinations of water amounts for the two options for which the monkeys chose the two 

options with equal probability (Figure 2C,D, black line). If monkeys assigned a fixed value 

to information regardless of the stakes, then the indifference curve would be a straight line 

with a slope of 1. Instead, the indifference curve had a slope steeper than 1 for both monkeys 

(m=1.24 for subject B, 1.23 for subject H). The subjective value of information was an 

essentially linear function of the stakes in both monkeys (Figure 2B). These data suggest 

that the value of information may have a multiplicative effect on the value of water amount, 

just as probability does in a conventional gambling task, time does in a discounting task, or 

effort does in an effort task rther analysis confirmed that the increasing value of information 

was not due to decreasing marginal utility of water (Figure S2). Thus, monkeys integrated 

both the availability of information and the amount of water at stake in order to arrive at 

their decisions.

OFC neurons code offered water amount and informativeness

We collected responses of 113 OFC neurons (n=72 in subject B and n=41 in subject H). We 

obtained an average of 522 trials per neuron (range: 396 to 818 trials). We first examined 

neural coding of water amount and informativeness. These two features of each offer were 

chosen independently, making it straightforward to separately measure their influences on 

neural activity. Furthermore, we presented the offers to the monkey one-by-one, which 

allowed us to separately measure neural coding of the two offers.
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To compare tuning properties of neurons, we quantified each neuron's tuning with the 

regression coefficients from a linear regression of firing rate against offered water amount 

and informativeness. To compare between regression coefficients from neurons with 

different firing properties we first normalized (z-scored) neural firing rates (see 

Supplementary Experimental Procedures). However, we obtained the same qualitative 

results from performing regression on the raw data (data not shown). Neurons with 

significant regression coefficients for water amount or informativeness (P<0.05 for this and 

all further statistical tests) were deemed to code these variables.

We observed significant coding of its water amount for offer 1 in 30% of neurons 

(n=34/113; Figure 3A,C,E) and its informativeness in 15% of neurons (n=17/113; Figure 

3B,D,E). The number of informativeness coding neurons was greater than expected by 

chance (P=0.0005, one-sided binomial test against the 5% expected by chance). When the 

second offer was presented, we observed significant coding of water amount in 29% of 

neurons (n=33/113) and its informativeness in 25% of neurons (n=28/113). Both proportions 

were greater than chance (P<0.001). Latency analysis suggested that OFC water amount and 

information signals are present simultaneously in OFC (Figure S3).

We find a strong positive correlation between the signals our population of neurons used to 

encode water amount in offer 1 and water amount in offer 2 (r=+0.68, P<0.001; Figure 

4A,C). In other words, a neuron that is excited by the presentation of a large water amount 

for offer 1, will also tend to be excited by large water amounts for offer 2. We find a similar 

positive correlation for informativeness signals between the two offers (r=+0.33, P<0.001; 

Figure 4B,C). Thus, neural tuning to the individual aspects of the two offers was similar 

regardless of the order of presentation. Further analysis confirmed that neurons consistently 

coded features of the currently presented offer, regardless of other variables. For instance, 

neurons used similar codes for the water amounts of the informative and non-informative 

offers, and did not have a predominant tendency to encode the water amount of the second 

offer relative to the previously presented first offer (Figure S4) consistent with previous 

studies (Rudebeck et al., 2013).

OFC information signals grow with the value of information

OFC signals for primary rewards are known to be sensitive to the subjective value of those 

rewards. We therefore asked whether the same was true for OFC information signals. Did 

OFC neurons simply encode a binary distinction, information vs. no-information? Or did 

OFC neurons signal the value that the information has to the animal? Our data allows us to 

test between these hypotheses because animals assigned greater value to information when a 

greater amount of water was at stake. Thus, if OFC neurons signal the value of information, 

their information signals should grow with the offered water amount.

Indeed, OFC information signals were enhanced during high-stakes offers. The cell in 

Figure 5A, for instance, had activity negatively related to offer informativeness, and this 

negative informativeness signal was stronger on trials when the offered water amount was 

high (Figure 5A). To quantify this phenomenon, we examined the neuron's regression 

coefficient for the term representing the interaction between informativeness and water 

amount ("Info × Water", Figure 5B). This cell had a significant negative coefficient for 
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informativeness, indicating that it was inhibited by informative offers, and a significant 

negative coefficient for the Info × Water interaction, indicating that it's inhibition was 

stronger on trials when the offered water amount was high.

The OFC population as a whole had a similar response pattern. Neurons were generally 

modulated by the Info × Water interaction in consistent manners for both offers (r = +0.31, P 

< 0.001), similar to their consistent coding of main effects (Figure 4). Hence, for this 

analysis we pooled data by averaging each neuron's regression coefficients from the two 

offers. We then asked whether neural responses to information, measured as the main effect 

of informativeness, were consistently modulated by water amount, measured by the Info × 

Water interaction. Indeed, these regression coefficients had a clear positive correlation (r = 

+0.41, P < 0.001, Figure 5C,E; similar results were found from analyzing individual offers, 

Offer1: r = +0.20, P = 0.032; Offer2: r = +0.31, P = 0.001). In other words, cells that were 

responsive to information were more responsive during high-stakes offers, when animals 

assigned the information greater value.

Our data also allow us to test between two hypotheses about the detailed mechanisms that 

generate information seeking. One hypothesis is that subjects value information because it 

allows them to physically or mentally prepare for reward delivery, thus increasing the 

amount of subjective value they can extract from the primary reward (Perkins Jr., 1955). If 

this was the case then OFC water signals should be enhanced for informative offers, because 

informed water rewards would have higher value than uninformed water rewards. 

Alternately, the brain could assign a distinct value to information in its own right. If that was 

the case then OFC water signals should have no net enhancement by information, because 

the presence of information would have no effect on the value of water.

Our data support the latter view: there was no systematic tendency for signals coding water 

rewards to be enhanced by the promise of information about those rewards. There was no 

significant correlation between neural modulation by the Info × Water interaction and neural 

coding of water amount (r = −0.13, P = 0.175; Figure 5D,E). Furthermore, the neural 

interaction effect was significantly more correlated with information signals than water 

amount signals (difference of correlations = 0.54, bootstrap 99.5% CI excludes zero; Figure 

5E). This suggests that information is assigned value in its own right rather than merely 

enhancing the value of water rewards, at least at the level of the OFC.

Orthogonal, not integrated, coding of offered water amount and informativeness

OFC neurons appear to signal the value of information to the animal. However, monkeys 

prefer both water and information. This raises the question: do OFC neurons integrate the 

values of both water and information, and thus encode the overall subjective value of the 

option that guides decisions? If so, they should respond to water amount and 

informativeness with the same sign, and with strength proportional to their influence on 

choice. In contrast, if neurons code multiple task variables independently, then they ought to 

use unrelated signals to encode water amount and informativeness.

Some neurons coded both variables in similar manners – for instance, neurons that fired 

more for informative offers and fired more for large water amounts (Figure 3A,B). 
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However, other neurons coded them in opposite manners – for instance, neurons that fired 

more for informative offers but fired more for small water amounts (Figure 3C,D). If 

neurons tend to be tuned in the same way for the two variables then their regression 

coefficients should be positively correlated; if neurons code the variables independently, 

their correlation should be zero. We found that the regression coefficients for water amount 

and informativeness had no significant correlation, with an r-value close to zero. The same 

result occurred consistently for neural responses to the first offer (r=−0.08, 95% CI 

[−0.26,+0.11], P=0.414; Figure 6A,D) and for responses to the second offer (r=−0.06, 95% 

CI [−0.24,+0.13], P=0.514; Figure 6B,D). Furthermore, there was no significant correlation 

between the regression coefficients for water amount and for the interaction that modulated 

the value of information (Figure 5E).

It is possible we did not detect a correlation between water and information coding because 

we had too few trials to detect these signals. This seems unlikely, however, as we were able 

to detect strong and significant correlations between the same regression coefficients when 

comparing within-attribute, e.g. water coding of offer 1 vs water coding of offer 2 (Figure 

4). Furthermore, we also detected clear correlations between regression coefficients when 

comparing across-attribute, e.g. informativeness coding vs. interaction effects (Figure 5). As 

an additional test, we used a cross-validation procedure to test whether our analysis could 

reliably detect correlations between neural signals. We separated our data for each neuron 

into two halves, consisting of odd-numbered trials and even-numbered trials, and repeated 

the same regression procedure as above on each half of the data. Then, we compared the 

water regression coefficient calculated from the odd trials to the water regression coefficient 

calculated from the even trials, and the informativeness coefficient calculated from the odd 

trials to the informativeness coefficient calculated from the even trials. If unreliable 

estimation of regression coefficients was the major contributor to our null effect, then the 

coefficients estimated from the two halves of the data would likewise show little or no 

correlation. Instead, the regression coefficients were strongly and significantly correlated. 

This was true for both water amount and informativeness coding, and for both the first and 

second offers (water amount: first offer r=+0.72, P<0.001; second offer r=0.67, P<0.001. 

Informativeness: first offer r=+0.31, P=0.002; second offer r=+0.51, P<0.001). Thus, we 

were able to consistently detect neural signals, even when we calculated them using only 

half of our dataset. It therefore seems unlikely that our finding of near-zero correlations was 

a consequence of insufficient data or some other cause of poor signal-to-noise.

Furthermore, the lack of detectable correlation between water and informativeness 

regression coefficients was not due to the presence of non-responsive neurons. The result 

persisted even if we restricted our analysis to neurons that had significant coding of at least 

one of the two variables (first offer: n=42/113, r =−0.06, P=0.698; second offer: n=52/113, r 

=−0.06, P=0.655; Figure 6D, squares). Nor does this result appear to be an artifact of our 

normalization procedure. Performing the analysis using non-normalized firing rates and 

regressors produced either no significant correlation (first offer: r=−0.04, P=0.671) or, if 

anything, a weak tendency for negative correlation due to two outlier neurons with large 

firing rate modulations (second offer: r =−0.25, P=0.010; reduced to r=−0.02, P=0.824 after 

removal of outliers). Even a correlation of vectors containing only the sign of coding 
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directions for each neuron (that is, either +1 or −1) produced no significant correlation (first 

offer: r=−0.06, P=0.431; second offer: r=−0.08, P=0.311; Figure 6D, triangles). In other 

words, cells that were excited or inhibited by water amount were equally likely to be excited 

or inhibited by informativeness. Thus, although a large fraction of OFC neurons encode 

water amount and informativeness of the offers, we conclude that they do so using 

orthogonal codes, rather than integrating them into a single scalar value signal.

It is important to note that our findings do not rule out the possibility that a subset of OFC 

neurons have value-like signals. After all, if the OFC uses an orthogonal code, there should 

be subpopulations of neurons that signal water and information in all possible combinations. 

We were indeed able to find a small subpopulation of neurons with trends for value-like 

integration. These neurons coded information and water with the same sign and even 

appeared to assign higher value to information as the stakes increased (Figure S5B), as seen 

in behavior (Figure 2B). However, there was a similarly large subpopulation of neurons with 

exactly the opposite response pattern, anti-value-like integration (Figure S5C). These 

neurons coded the absence of information with the same sign as water, and signaled the 

absence of information more strongly as the stakes increased. Thus, OFC activity was 

significantly different from the pattern expected under the null hypothesis that cells 

predominantly coded subjective value (Figure S6). However, this finding is exactly what 

one would expect if OFC neurons carry all possible combinations of water and information 

signals, and by chance, some neurons happened to carry a combination that resembled the 

way monkeys computed subjective value during our task. Thus, OFC value-like signals in 

our task appear to be due to orthogonal coding of offer features, rather than due to value 

coding having a privileged status in OFC.

Orthogonal coding during choice period

So far, our results indicate that OFC neurons encode features of valued offers in 

uncorrelated manners. It is possible that OFC neurons do predominantly signal the 

subjective value that guides choices, but only for the chosen offer at the time of choice. We 

therefore calculated water and informativeness coding indices, as we did above, but this time 

for the chosen offer, and in a time window encompassing the time just before and after the 

choice was made. To ensure that our analysis was not biased by the animals' tendency to 

choose offers with specific water and information parameters, we used a trial-matching 

procedure (see Supplementary Experimental Procedures). In essence, we performed our 

analysis on a subset of trials such that each trial where the informative option was chosen 

was paired with a trial where the non-informative option was chosen and had a similar water 

amount.

We found that a considerable fraction of neurons significantly coded the chosen offer's water 

amount (23% of neurons, n=26/113) and informativeness (35% of neurons, n=40/113; 

Figure 3F). Both of these proportions are much higher than expected by chance (P<0.001, 

one-sided binomial tests). Furthermore, as in the offer epochs, neural information signals 

grew with the stakes of the chosen offer (correlation between regression coefficients for 

informativeness and Info × Water interaction: r = +0.21, P=0.025).
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However, as we found in the offer epochs, OFC had no systematic tendency to integrate 

these features into a single value scale. There was no significant correlation between 

regression coefficients for water amount and informativeness (r=+0.05, 95% CI 

[−0.14,+0.23], P=0.622; Figure 6C,D). Once again, the same result held even if the analysis 

was performed on the subset of cells with significant coding of at least one feature 

(n=53/113, r=+0.10, P=0.470; Figure 6D, squares), or performed using un-normalized firing 

rates and regressors (r=+0.07, P=0.471), or performed using only the sign of the regression 

coefficients (r=0.00, P=0.957; Figure 6D, triangles), or performed between coefficients for 

water amount and the Info × Water interaction (r=0.05, P=0.626). And once again, our 

cross-validation analysis was able to reliably detect neural signals, to the extent that 

regression coefficients calculated from one half of the data were correlated with the same 

coefficients calculated from the other half of the data (water amount: r=+0.39, P<0.001; 

informativeness: r=+0.63, P<0.001). Thus, OFC neurons encode the features of the chosen 

offer, but have little systematic tendency to integrate them into a single value scale, even 

around the time of choice.

Neurons respond differently to outcome-related cues and outcomes themselves

Although neurons generally did not integrate the water amount and informativeness of 

offers, it remained possible that they might respond consistently to water-related events 

throughout a trial. For instance, OFC neurons might respond similarly to water-predictive 

cues and to unpredicted water outcomes themselves, as dopamine and lateral habenula 

neurons do (Bromberg-Martin and Hikosaka, 2009, 2011). We therefore analyzed neural 

responses to cues and outcomes. Following informative cue onset on informative trials, 

neurons quickly encoded whether the cue indicated a gamble win or loss, i.e. whether water 

would be delivered or omitted (Figure 7A, black line). Importantly, these signals were not 

simply encoding the red/green color of the visual cue, because neurons had little more than 

chance discrimination between the same red/green cues on uninformative trials when they 

were irrelevant to the task (Figure 7A, dashed gray line). Instead, on uninformative trials 

many neurons were strongly responsive when the gamble was resolved by water reward 

delivery or omission (Figure 7A).

We next asked whether neurons used similar signals to encode the offered water amount and 

the resolution of the gamble. There was indeed a significant positive correlation between 

water coding in response to offers and win/loss coding in response to informative cues (r=

+0.31, P=0.001; Figure 7D). Thus OFC neurons tended to have consistent water-amount 

tuning for stimuli in the same sensory modality (visual offer versus visual cue). However, 

this correlation was not absolute, and some neurons signaled offered and cued water in 

different directions (Figure 7D). For instance, the cell in Figure 7B was more activated by 

offers of high rather than low water amounts, but was more activated by cue and outcome 

feedback indicating that water would be omitted rather than delivered.

Furthermore, OFC neurons did not appear to use a consistent code to signal feedback about 

water conveyed through different sensory modalities (e.g. visual cue vs. water outcome). 

Those water signals had weak negative correlation (offer vs. outcome, r=−0.20, P=0.037; 

Figure 7E) or no significant correlation (cue vs. outcome, r = +0.09, P=0.331, Figure 7F). 
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The weak correlation between cue and outcome coding was especially striking. Both 

informative cues and uninformed outcomes conveyed very similar feedback to the animal: 

they were the first stimulus during the trial that told the animals whether they would receive 

a water reward. Yet in our task, OFC neurons were similarly likely to encode the cues and 

outcomes in the same direction (e.g. Figure 7B) or in opposite directions (e.g. Figure 7C).

This response pattern very different from cells such as lateral habenula and dopamine 

neurons, which generally signal cue and outcome feedback in the same direction. To test this 

explicitly, we applied the same analysis to 95 lateral habenula neurons previously recorded 

in a similar information seeking task (Bromberg-Martin and Hikosaka, 2011; dopamine 

neurons were also recorded in this task, but could not be fairly analyzed for this purpose 

because they were selected for recording on the basis of their cue and outcome responses; 

Bromberg-Martin and Hikosaka, 2009). Indeed, lateral habenula neurons had a very strong 

correlation between win/loss coding in response to informative cues and uninformed 

outcomes (r=+0.77), and this was significantly greater than the correlation in OFC neurons 

(difference of correlations = 0.68, bootstrap 99.9% CI excludes zero).

DISCUSSION

We recorded responses of single neurons in Area 13 of the OFC of two monkeys performing 

a curiosity tradeoff task. The prospect of immediate, rather than delayed resolution of the 

gamble increased its subjective value. We made use of this fact to study the representation 

of value in OFC neurons. We find that individual OFC neurons encode the two variables 

that influence value – water amount and informativeness of the gamble. However, they do 

not appear to integrate these variables, and instead use orthogonal codes. They also do not 

respond consistently to predictive cues and the receipt of the outcome. Thus, although these 

dimensions are integrated in dopamine neurons, they are largely uncorrelated in OFC. These 

results are consistent with the idea that OFC activity precedes and influences dopamine 

responses, and that OFC can be situated prior to the computations that instantiate reward-

based decisions (McDannald et al., 2012; Noonan et al., 2010; Rushworth et al., 2011; 

Takahashi et al., 2011). Moreover, they support the idea that OFC represents task state 

rather than integrated value (Wilson et al., 2014).

Implications for OFC function

Value representation in OFC is important for understanding the neural bases of economic 

choice. The goods-based model holds that the primary function of OFC neurons is to 

represent the values of offers and choices in a single value scale (Padoa-Schioppa, 2011; 

Padoa-Schioppa and Assad, 2006; Raghuraman and Padoa-Schioppa, 2014). Our results 

suggest that this integration does not extend to information, even when it is assigned 

subjective value. Other models of OFC function highlight its role as a structure that 

regulates learning, task-switching, executive control, and even metacognition (Kepecs et al., 

2008; Ogawa et al., 2013; Roesch et al., 2006; Rushworth et al., 2011; Schoenbaum et al., 

2011; Tsujimoto et al., 2009). Our results are broadly consistent with the predictions of the 

“task state” theory of OFC (Wilson et al., 2014). According to this theory, the function of 

OFC is to represent the current task state for use in guiding both choice and reinforcement 
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learning. OFC is thus an input to and first stage of choice. Task state includes (but is not 

limited to) variables that influence value. Because task variables may influence choice and 

learning in different ways depending on the context, they may not be integrated into a single 

value variable. Our results support this prediction.

OFC neurons did encode some task variables in related ways. For instance, neurons carried 

similar water amount signals in response to the first and second offers, and for offers and 

cues. Previous work has shown that OFC responses to stimuli predicting a primary reward 

are proportional to the amount of value that reward has to the subject (Critchley and Rolls, 

1996; Padoa-Schioppa and Assad, 2006; Roesch and Olson, 2005; Tremblay and Schultz, 

1999) and are correlated with their evoked behavioral responses (Morrison and Salzman, 

2009). We find a similar result here, suggesting that OFC information signals may reflect 

the value of information to the animal.

This suggests that OFC is at an early intermediate stage of computations, where abstract 

features of the task have begun to be combined into meaningful signals suitable to guide 

learning and decision-making, but have not yet been integrated into decision variables such 

as subjective value. We might call this the “aspects of value” hypothesis. In this view, OFC 

neurons might encode the amount of water associated with a cue (an abstract feature) or the 

subjective value of that water (an intermediate computation), but few neurons would 

integrate water with all other forms of reward to compute the subjective value of the option.

Our data also have implications for the role of the OFC in processing feedback about the 

outcomes of choice. In our task, the first feedback about whether the choice would yield a 

reward was conveyed by either informative cues or by outcome delivery. In contrast with 

dopamine neurons, OFC neurons did not respond to water-predicting cues the same way that 

they respond to the water outcome. We do find, however, that OFC neurons had related 

water-coding responses to visually-presented offers and visual reward cues. Thus, OFC 

responses to rewards and reward-related stimuli may depend on the sensory modality of the 

stimuli (in our task, visual vs. tactile) rather than coding reward feedback per se.

OFC reward signals: integrated vs. independent coding

Multiple groups have reported that OFC neurons do not necessarily integrate multiple task 

variables into a single value signal (Schoenbaum et al., 2009; Wilson et al., 2014). For 

example, OFC neurons rarely integrate reward size, probability, and effort costs (Kennerley 

et al., 2009), reward size and risk (O’Neill and Schultz, 2010), and reward size and delay 

(Roesch et al., 2006). These studies required subjects to choose between options that varied 

along a single dimension at a time, and hence did not require subjects to integrate multiple 

attributes to make their decisions. Thus, it remained possible that the OFC neurons would 

have encoded integrated value if it had been required. One study addressed this issue using a 

choice task in which monkeys integrated social and liquid rewards (Watson and Platt, 2012). 

They reported that largely separate populations of OFC neurons encode the receipt of social 

and liquid reward; however, they did not report whether these neurons integrated these 

rewards at the time when the options were presented and the decision was being made, 

leaving open the possibility that OFC neurons do encode integrated value at the time of 

decision making. Our work addresses these limitations directly, by using a task in which 
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monkeys traded off multiple attributes of reward, and by examining OFC neural activity at 

the time when monkeys made their decisions.

Our results may appear to paint a different picture of OFC than careful work by Padoa-

Schioppa and colleagues. In their experiments, a clear majority of OFC neurons encoded 

integrated values, and did so in a manner matching behavioral preferences (Padoa-Schioppa 

and Assad, 2006; Raghuraman and Padoa-Schioppa, 2014). However, careful examination 

shows that these findings are fully compatible and paint a nuanced picture of OFC function. 

A critical point is that the multiple attributes in their experiments were all related to a single 

event, an upcoming liquid reward, such as its taste, quantity, and probability (Padoa-

Schioppa and Assad, 2006; Raghuraman and Padoa-Schioppa, 2014). In contrast, the two 

attributes in our experiment were related to different events: the stakes were related to the 

liquid reward, while informativeness was related to an upcoming visual cue. This meant that 

the two attributes in our task were linked to distinct future events that differed in their 

sensory modality (visual vs. gustatory), timing (immediate presentation of the cue vs. 

delayed delivery of water), and reason for being valued (curiosity vs. thirst). Thus, even if 

OFC neurons are capable of integrating multiple attributes of a liquid reward, they may use 

different signals to code informational reward. Notably, OFC neurons in our task did 

integrate a pair of features that were both related to the same form of reward, the 

informational reward (Figure 5).

Implications for curiosity-guided behavior

Our results show that desire for information (i.e. curiosity) can be captured and quantified in 

the laboratory. This makes it possible to use standard economic economic models to 

estimate the value of information to the subject as well as the combined value of offers that 

differ in water amount, risk, and informativeness. In particular, we found that the subjective 

value of information about future rewards increased strongly and linearly with the stakes of 

the gamble.

What is not clear is exactly what causes information to have value in our task, as it does not 

lead to any benefit in terms of earning a greater amount of primary reward. Our data do 

place a constraint on models of information seeking by suggesting that, at least at the level 

of the OFC, information is assigned a true value of its own rather than merely modulating 

the value of primary rewards (Figure 5E). One viable mechanism would be for the 

informative option to have greater salience because it is followed by cues with variable 

values (those that predict either reward or no reward), thus causing the informative option to 

be reinforced more strongly than the uninformative option (Esber and Haselgrove, 2011). 

This explanation fits with our neural results as well, as OFC neurons have previously been 

shown to respond to risk/uncertainty and salience (Kepecs et al., 2008; Ogawa et al., 2013; 

O’Neill and Schultz, 2010). Future work should explore the possible link between the value 

of information and salience.

The information coding signals we observed in OFC neurons are most directly comparable 

to those found in LHb and DA neurons (Bromberg-Martin and Hikosaka, 2009, 2011). LHb 

and DA neurons used a common code for water amount and informativeness: cells that 

responded to water-predictive cues responded in the same direction to information-
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predictive cues, consistent with a 'common currency' representation of subjective value 

(similar integration has been found in DA neurons for other attributes of rewards, such as 

juice type and risk; Lak et al., 2014). Thus, LHb and DA neurons appear to reflect the output 

of value computations.

Our results therefore suggest a potential circuit for curiosity-based decisions, in which 

informational and primary rewards are represented independently in OFC and then 

combined into a single value scale in downstream areas. Integrated value does appear to be 

represented in vmPFC and in the dopamine system, as well as in areas even further 

downstream, like dACC and dlPFC. Previous work suggests an involvement of vmPFC in 

choice (Strait et al., 2014) and places dACC post-decisionally (Blanchard and Hayden, 

2014; Cai and Padoa-Schioppa, 2012). Thus, the OFC may have an important role in 

curiosity-guided behavior, and in decision-making more generally, as a cortical area where 

task-relevant choice features can be highlighted and then sent to areas that perform value 

computations, decision making, and learning.

What is the precise role of the OFC in these value computations? Our neural data raise one 

intriguing possibility, that the 'hunger for information' may be more than just a metaphor. 

We found that OFC information signals were greater when monkeys assigned higher value 

to information. Previous studies of our targeted region of OFC (13) found similar results for 

food rewards. OFC responses to the sight, smell, and taste of food are greater with hunger 

(Critchley and Rolls, 1996; Pritchard et al., 2007; but see Bouret and Richmond, 2010). 

Furthermore, this region of OFC is critical for updating the value of food-associated objects 

when hunger gives way to satiety (Rudebeck and Murray, 2011; West et al., 2011). We 

therefore hypothesize that, just as the OFC regulates seeking of appetitive rewards in 

response to internal states like hunger and thirst, the OFC may regulate information seeking 

in response to internal states like uncertainty and curiosity.

More generally, our results show that the chance to get information is not simply assigned a 

fixed value and immediately integrated into other value representations. Instead, its value 

must be constructed by a neural computation process that is sensitive to the statistics of 

predicted future rewards. Our work provides a basis for future studies to delineate the 

circuits that perform these computations and generate curiosity-guided behavior.

EXPERIMENTAL PROCEDURES

Information tradeoff task

Monkeys performed a two-option gambling task (Figure 1). Two offers were presented in 

sequence on each trial. The first offer appeared for 500 ms, followed by a 250 ms blank 

period; a second option appeared for 500 ms followed by a 250 ms blank period. Every trial 

had one informative and one uninformative option. The order of presentation (informative 

vs. uninformative) and location of presentation (info-on-left vs. info-on-right) varied 

randomly by trial. The offered water amount varied randomly for each option (75 to 375 µL 

water in 15 µL increments).
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Each offer was represented by a rectangle 300 pixels tall and 80 pixels wide (11.35 degrees 

tall and 4.08 degrees wide). All options offered a 50% probability of gamble win, to be 

delivered 2.25 seconds after the choice. Gamble offers were defined by two parameters, 

informativeness and water amount. Informative gambles (cyan rectangle) indicated that the 

subject would see a 100% valid cue immediately after choice indicating whether the gamble 

was won or lost (although receipt always occurred 2.25 seconds after choice). 

Uninformative gambles (magenta rectangle) indicated that a random cue would appear 

immediately after choice, and thus the animal had to wait the full 2.25 sec delay to discover 

whether the gamble was won or lost. Valid and invalid cues were physically identical (green 

and red circles inscribed on the chosen rectangle). Each offer contained an inner white 

rectangle. The height of this rectangle linearly scaled with the water amount to be gained in 

the case of a gamble win.

Offers were separated from the fixation point by 550 pixels (27.53 degrees). Monkeys were 

free to fixate upon the offers when they appeared (and in our observations almost always did 

so). After the offers were presented, a central fixation spot appeared. Following 100 ms 

fixation, both offers reappeared simultaneously and the animal chose one by shifting gaze to 

it for 200 ms. Failure to maintain gaze returned the monkey to a choice state; thus monkeys 

were free to change their mind within 200 ms (although they seldom did so). Then the 2.25 s 

delay began, and the cue was immediately displayed. After the delay, if the gamble was 

won, a reward was delivered. If it was lost, no reward was delivered. All trials were 

followed by a 750 ms inter-trial interval (ITI) with a blank screen.

Statistical methods

To calculate the subjective value of information for each water amount (Figure 2B), we first 

determined the subjective value of informative and uninformative options for each possible 

reward amount. We fit a separate logistic regressions for each water amount w. This 

regression model regressed choice of the informative option (1 or 0) against the water 

amount offered by the uninformative option for trials where the informative option offered 

w. We then calculated the subjective value of the informative option, in terms of µL of water 

offered by the uninformative option, using a point of subjective equality (where the logistic 

regression curve crossed 0.5 of the y-axis). We only included points from 75–270 µL, 

because above this range the animal’s preference for information is near ceiling, which 

prevents accurate estimations of the value of information. We calculated the indifference 

point for the highest and lowest values of the 95% confidence interval for our logistic 

regression estimate (error bars in Figure 2B). To calculate indifference lines in the heat maps 

(Figure 2C&D), we used the same calculation. Because subjective values are in terms of a 

water amount for an uninformative option, the subjective value of each informative option 

corresponds to a unique point on our heatmap. We fit a linear function through these points 

to create the curve.

PSTHs of neural activity were constructed by aligning spike rasters to task events and 

averaging rates across trials. Single-unit PSTHs were smoothed with a 200 ms time bin 

(Figures 3A–D) or a Gaussian filter with SD= 30 ms (Figures 6B–C). The analysis of the 

percent of cells with significant signals, in Figures 3E,F and 6A, were performed using a 
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running 500 ms boxcar. The time windows for the scatterplots were as follows. Offers 1 and 

2: 480 ms windows starting 260 ms after offer onset. Chosen offer: a 500 ms window 

centered at the time of choice. Cues and outcomes: 800 ms windows starting 200 ms after 

event onset.

Some statistical tests of neuron activity were only appropriate when applied to single 

neurons because of variations in response properties across the population. In such cases, a 

binomial test was used to determine if a significant portion of single neurons reached 

significance on their own, thereby allowing conclusions about the neural population as a 

whole.

Neural coding was quantified using the fitted coefficients from a linear regression model in 

which a neuron's single-trial firing rates were modeled as a constant factor plus a weighted 

linear combination of multiple variables. The main analysis used the offer's water amount 

(in µL) and informativeness (0 if non-informative, 1 if informative). Analyses involving 

interaction effects used a model with an additional term representing the interaction between 

water amount and informativeness ((water amount – mean water amount) × (informativeness 

– mean informativeness)). Unless otherwise stated, both the firing rates and regressors for 

each neuron were z-scored (i.e. they were shifted and scaled to have mean = 0 and standard 

deviation = 1), to allow comparison between cells with different firing rates, and comparison 

of the effects of regressors with different units (µL for water amount vs. a binary variable for 

informativeness). The regression coefficients, their standard errors, and their p-values were 

calculated using the MATLAB function 'glmfit'. For some analyses, data was pooled from 

offer 1 and offer 2 by averaging their regression coefficients (Figure 5). The standard errors 

of correlations between the regression coefficients (Figures 4C, 5E, 6D) were calculated 

using bootstrapping, as the standard deviation of the correlations calculated from 200 

bootstrap datasets in which the neurons were resampled with replacement.

Analysis of previously recorded lateral habenula neurons (Bromberg-Martin and Hikosaka, 

2011) was done using the same procedure, using the analysis time windows from the 

previously published paper (cue response: 100–350 ms after cue onset; outcome response: 

200–450 ms after outcome onset). That task was similar to the present task except that 

options varied only in informativeness, not water amount. Trials were gambles for reward 

that were equally likely to end in a win (big reward, 880 µL water) or a loss (small reward, 

40 µL water), and these outcomes were cued by either informative or non-informative visual 

cues. For details, see (Bromberg-Martin and Hikosaka, 2011).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Task design and recording location
A. Basic task design. Two offers were presented in sequence, followed by a blank period. 

The monkey then had to fixate a central target. The two options then reappeared and the 

monkey chose one with a gaze shift. Then a cue appeared which was either informative 

(indicating whether the trial would be rewarded) or uninformative (leaving the monkey in a 

state of uncertainty). Following a 2.25 second delay, the monkey obtained the outcome. 

Cyan and magenta bars indicated informative and uninformative options, respectively. An 

inscribed white rectangle indicated gamble stakes. An inscribed red or green circle was the 

cue. B. MRI indicating position of 13m (see Figure S1 for a more detailed figure).
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Figure 2. Monkeys pay for information about future rewards
A. Monkey preference for the informative option as a function of the water amount 

difference between the informative and uninformative options. Error bars indicate standard 

error. B. The subjective value of information (i.e. the amount of offered stakes the monkey 

paid to gain the information) as a function of offered water amount. Error bars indicate 95% 

confidence intervals. C&D. Heatmap, showing preference for the informative option as a 

function of the water amount of the informative and uninformative options. Black line 

indicates the indifference curve, indicating the indifference points of the animal (i.e. when 

preference for the two options is equivalent)

Blanchard et al. Page 19

Neuron. Author manuscript; available in PMC 2016 February 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. OFC neurons signal offered water amount and informativeness
A–D. PSTHs of two example neurons, showing (A&C) responses to first offers with 

different water amounts and (B&D) responses to first offers with different informativeness. 

E. Percentage of cells showing significant correlation between firing rate and the water 

amounts of the two offers as well as the informativeness of the offers (note that there is only 

one 'informativeness' variable here because if the first offer was informative the second offer 

was always non-informative, and vice versa). Dashed line indicates the percent of significant 
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cells expected by chance. F. Percentage of cells showing significant correlation between 

firing rate and the chosen offer's water amount and informativeness.

Blanchard et al. Page 21

Neuron. Author manuscript; available in PMC 2016 February 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4. OFC neurons signal both offers in similar manners
A&B. The correlation between each neuron’s regression coefficients for (A) water amount 

and (B) informativeness for the two offers. Black lines indicate the line of best fit (linear 

regression). Red points are neurons that significantly encode the variable for offer 1, black 

significantly encode the variable for offer 2, purple significantly encode both, and grey fail 

to reach significance for either. Error bars indicate standard error of estimated regression 

coefficients. C. Correlation between the regression coefficients (± 1 SE).
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Figure 5. OFC information signals grow with the value of information
A–B. An example neuron that responded to Offer 1 with activity related to informativeness. 

The neural response (A) and mean firing rate (B) are plotted separately based on the offer's 

informativeness and water amount. In parallel with behavior, this neuron’s information-

related activity was strongest f or high-stakes offers. Thus, this neuron had a negative main 

effect of Informativeness and a negative Informativeness × Water Amount interaction. C. 
Neural modulations by the (Info × Water) interaction (y-axis) were strongly correlated with 

coding of Info (x-axis). Each data point is a single neuron. Each neuron’s coding of these 

variables was measured using the average of its regression coefficients from independent 

analyses of Offer1 and Offer2; analyses of each individual offer gave similar results. Same 

format as Figure 4A–B. D. Neural modulations by the (Info × Water) interaction (y-axis) 

were not significantly correlated with coding of Water Amount (x-axis). E. Summary of 

results from C,D. The positive correlation between Interaction coding and Info coding 

indicates that neural information signals were larger for offers with high water amounts 

(black dot, *** indicates P < 0.001). However, water amount signals had no significant 

tendency to be larger for informative or non-informative offers (gray dot). The former 
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correlation was significantly greater than the latter (** indicates that the difference between 

correlations had a bootstrap 99% confidence interval that excluded zero).
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Figure 6. OFC neurons code water amount and information in uncorrelated manners
A–C. The correlation between each neuron’s regression coefficient for water amount and 

informativeness for (A) the first offer, (B) the second offer, and (C) the chosen offer. Panels 

follow a similar layout as Figure 4A–B. (D) Correlation between the regression coefficients 

(± 1 SE), calculated using all cells (black), cells with at least one significant effect (gray 

squares), or the signs of regression coefficients regardless of their magnitudes (gray 

triangles).
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Figure 7. OFC neurons respond differently to outcome-related cues and outcomes themselves
A. Percentage of cells showing significant correlation between firing rate and the win/loss 

outcome of the gamble on informative trials (black) and uninformative trials (gray solid 

line), as well as the cue color of the non-informative cues (gray dashed line). Horizontal 

black line indicates chance levels. Neurons respond to informative cues but not 

uninformative cues. B. Example neuron that was excited by high-water offers but was also 

excited by cues and outcomes indicating a gamble loss. C. Example neuron that was excited 

by cues indicating a gamble loss but outcomes indicating a gamble win. D–F. The 
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correlation between each neuron’s regression coefficients for (D) water amount and 

informative cue, (E) water amount and uninformed gamble outcome, and (F) informative 

cue and uninformed gamble outcome. Panels follow a similar layout as Figure 4A–B.
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