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Abstract

Objective

Only a small fraction of coronary artery disease (CAD) heritability has been explained by
common variants identified to date. Interactions between genes of importance to cardiovas-
cular regulation may account for some of the missing heritability of CAD. This study aimed
to investigate the role of gene-gene interactions in common variants in candidate cardiovas-
cular genes in CAD.

Approach and Results

2,101 patients with CAD from the British Heart Foundation Family Heart Study and 2,426 CAD-
free controls were included in the discovery cohort. All subjects were genotyped with the lllu-
mina HumanCVD BeadChip enriched for genes and pathways relevant to the cardiovascular
system and disease. The primary analysis in the discovery cohort examined pairwise interac-
tions among 913 common (minor allele frequency >0.1) independent single nucleotide poly-
morphisms (SNPs) with at least nominal association with CAD in single locus analysis.

A secondary exploratory interaction analysis was performed among all 11,332 independent
common SNPs surviving quality control criteria. Replication analyses were conducted in

2,967 patients and 3,075 controls from the Myocardial Infarction Genetics Consortium. None of
the interactions amongst 913 SNPs analysed in the primary analysis was statistically significant
after correction for multiple testing (required P<1.2x10°). Similarly, none of the pairwise
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gene-gene interactions in the secondary analysis reached statistical significance after correc-
tion for multiple testing (required P = 7.8x107'°). None of 36 suggestive interactions from the pri-
mary analysis or 31 interactions from the secondary analysis was significant in the replication
cohort. Our study had 80% power to detect odds ratios > 1.7 for common variants in the
primary analysis.

Conclusions

Moderately large additive interactions between common SNPs in genes relevant to cardio-
vascular disease do not appear to play a major role in genetic predisposition to CAD. The
role of genetic interactions amongst less common SNPs and with medium and small magni-
tude effects remain to be investigated.

Introduction

The past few years have seen a major success in identifying common alleles associated with cor-
onary artery disease (CAD) risk through genome wide association studies (GWAS) [1,2]. Inter-
estingly, the identified variants to date explain only about 10% of the heritable component of
inter-individual variation in CAD risk [1]. Amongst possible mechanisms that may account
for some of the missing heritability, gene-gene interactions are intuitively attractive [3]. The bi-
ological mechanisms mediating genetic effects usually involve several genes. Strategies investi-
gating such genes individually, risk overlooking their effects unless they take into account their
possible interactions [3]. Furthermore, uncovering gene-gene interactions may yield key infor-
mation to help understand the biological mechanisms underlying complex traits and diseases
[4]. The role of gene-gene interactions has been systematically examined only in a number of
complex human diseases [5,6] and only a Few studies have examined gene-gene interactions in
CAD mainly through candidate gene approaches [7-9].

Analysis of genetic interactions poses a significant computational challenge and results in
heavy penalty for multiple testing. Full two-way interaction analysis of 550,000 SNPs from
1200 individuals may take up to 120 days to complete when performed on a single 3GHz com-
puter [10]. Furthermore, unlike conventional single SNP-based GWAS, there is no widely ac-
cepted significance threshold for genome-wide interaction analysis. Becker et al. [11] suggested
an uncorrected P-value of 1.0x10'? as a cut-off for statistical significance in an allelic interac-
tion test conducted on 500,000 SNPs assuming type 1 error at 0.05.

Given these challenges inherent to genome-wide interaction analysis, prioritisation of the
tested SNPs to enhance the chances to detect genuine interactions has considerable appeal. Bio-
logical plausibility, involvement in specific biological pathways and nominal level of statistical
significance at an individual SNP level are among the commonly proposed approaches to re-
duce the size of the tested SNP population and therefore minimise the penalty for multiple
testing [10,12].

In this study we selected common SNPs from a gene-centric array (Illumina HumanCVD
BeadChip—IBC 50K array) enriched for genes and pathways relevant to the cardiovascular sys-
tem and cardiovascular disease [13]. First, we conducted gene-gene interaction analysis among
a set of independent SNPs with a minor allele frequency of >10% and at least nominal single
marker association with CAD. This method has the potential advantage of testing interactions
with higher prior probability of disease association, as well as testing a smaller set of makers
with potential interactions which requires less correction for multiple testing. We then
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conducted an additional more exploratory interaction analysis among all the independent
SNPs on the chip meeting quality filter criteria, irrespective of whether they demonstrated any
individual effect. This analysis was performed to identify epistasis between variants that exhibit
no marginal effects individually.

Methods
Study population

Discovery cohort

The discovery cohort consisted of 2,101 unrelated subjects with CAD originally recruited
into the British Heart Foundation Family Heart Study (BHF-FHS) and 2,426 unrelated controls
recruited into the Wellcome Trust Case Control Consortium (WTCCC). CAD was defined
as history of myocardial infarction (MI), percutaneous coronary intervention or coronary
artery bypass surgery prior to 66 birthday, as reported before [14]. The control subjects
were either recruited from the British 1958 Birth Cohort or from healthy blood donors as
part of the common controls for the WTCCC genome-wide association (GWAS) study [15].
The phenotypic information available from the controls was limited to age, sex and geographic
region of recruitment. Extensive analysis of the WTCCC GWAS data had shown no
evidence of population stratification between cases and controls or between the two control
groups [15].

Replication cohort

2,967 patients with early onset MI (< 50 years in men and < 60 years in women) and
3,075 age and sex matched controls from Myocardial Infarction Genetics Consortium
(MIGen) [16] was used as the replication sample. The database of Genotypes and Phenotypes
(dbGaP; http://www.ncbi.nlm.nih.gov/gap; project number #2120) was the source for informa-
tion on genotype and phenotype data used for the validation analysis.

Ethics Statement

The original ethics approval was for the BHF-FHS study by the Northern and Yorkshire
Research Ethics Committee. The approval number is MREC/0/3/2. The analysis that we

did for this study was an in silico analysis on the original data which is covered by the original
ethics and does not normally require a separate ethics. Written informed consent for inclusion
was obtained previously from all the participants of both the discovery and replication

studies [15,16].

DNA analysis

In the discovery cohort, we used genotypes from IBC 50K array (version 1) with 45,707 single
nucleotide polymorphisms (SNPs) spanning around 2,100 loci with high relevance to cardio-
vascular system, inflammation, lipids, diabetes and thrombosis [17,18], typed in both cases and
controls. The selection of genes and loci typed on this array comprised a three tier system. Tier
1 included genes and loci known to contribute to cardiovascular disease as well as variants
identified through GWAS at the time the array was developed in 2008 [17]. Loci that are poten-
tially related to cardiovascular disease or those requiring high number of tags due to large locus
size were included under Tier 2. Tier 3 included lower priority loci and also included non-
synonymous and established functional SNPs. Quality control checks of genotyping of the dis-
covery cohort did not show any batch effects [18].

The replication cohort was typed using the Affymetrix 6.0 GeneChip GWAS array and com-
prised 727,496 directly genotyped SNPs that passed quality filters as described previously [16].
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Statistical Analysis

SNP selection

Out of the 45,707 SNPs on the IBC array, 1,781 SNPs which belonged to ancestry informa-
tive and admixture controls were removed as were 39 SNPs that represented copy number vari-
ants and 600 SNPs located on the sex chromosomes. 12,018 rare SNPs (MAF < 1%), 8,487 low
frequency SNP (MAF < 10%) and 759 SNPs with low (<90%) genotyping call rate were also
removed. Application of a Hardy-Weinberg equilibrium P value cut-off of 1x10™* in the con-
trols led to the removal of 124 SNPs, leaving 21,899 SNPs.

For the primary analysis, we identified SNPs that individually showed a nominal statistical
association (P <0.05) with CAD, unadjusted, under an additive model analysed using logistic
regression in PLINK as described before [18]. Of 1452 SNPs that met this criterion, pruning
for independence (r*<0.5) left 913 independent SNPs that were included in the interaction
analysis (Fig. 1). For the secondary analysis, of the 21,899 SNPs surviving quality filters, we
took forward 11,332 SNPs that resulted from pruning for independence at r* <0.5. These SNPs
were included irrespective of their individual level of association with CAD (Fig. 2).

Interaction analysis

In all analyses we used a logistic regression test for additive allelic interaction adjusted for
age and sex implemented in a freely available software package designed to examine genetic
interactions—INTERSNP [10]. Assuming three SNPs, the allelic effect for each SNP i,i=1,2,3
was modelled as x; = -1,0,1 by coding the genotypes as (1,1), (1,2) and (2,2), respectively [10].
An interaction term was then derived by multiplying the individual allelic effect of each SNP.
For example, the allelic interaction between SNPs 1 and 2 is denoted x;x,. B, represents the
baseline likelihood L, = logit(p) = By. The likelihood containing allelic terms only is denoted

L Lo = o 1 B1x1 + B2x, whereas the likelihood containing both allelic and interaction terms is

)

Al
designated L Lo = Bo + B1x1 1 Baxz + P1,2%1 X,. The test we employed in this study (Test 5 in

)

A Al
INTERSNP) compares L Lo versus L . This test has one degree of freedom.

For the secondary analysis, because of the size of the dataset we first used the logistic regres-
sion test for allelic interaction employed in PLINK (—epistasis). Adjustment for age or sex was
not possible as this is not available in PLINK-based interaction commands. 579 interactions
with at least suggestive significance (P<1.0x10") found in this analysis were then taken into
INTERSNP to carry out age and sex adjusted pairwise allelic interaction analysis as
described above.

Similar age and gender adjusted logistic regression analysis for interactions was undertaken in
the replication cohort for the selected pairs of SNPs from the analysis of the discovery cohort.

Power calculation

Power to detect significant SNP-SNP interaction in the discovery cohort was calculated
using Quanto programme [19]. The calculation was conducted assuming additive model for al-
lelic interaction, MAF for both interacting alleles from 0.1 to 0.5, and a range of expected effect
size of the interaction (odds ratio between 1.1 and 2.5). The power calculation was based on the
primary analysis SNP sample (913 SNPs) and the resultant 416,328 independent interaction
tests. Due to the large burden of multiple testing, the study had sufficient (>>80%) power to de-
tect only moderately large size effects (>1.7) of the interaction between the more common al-
leles (MAF > 0.2) when using Bonferroni correction. Full details of the power calculation are
shown in the Table A in S1 File.
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Fig 1. A schematic illustration of SNP selection process for the primary analysis.

doi:10.1371/journal.pone.0117684.9001
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Fig 2. SNP selection process for the secondary analysis.

doi:10.1371/journal.pone.0117684.9002
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Table 1. Baseline Characteristics of cases in the British Heart Foundation-Family Heart Study and
the Myocardial Infarction Genetics studies.

N (%) BHF-FHS MIGen

n 2101 2943

Age (years) 60.1 (8.1) 42.82 (7.25)
Age at diagnosis (years) 49.8 (7.7) 42.82 (7.25)
Male (n, %) 1655 (78.8) 2287 (77.71%)
MI (n, %) 1538 (73.2) 2943 (100%)
Type 2 diabetes (n, %) 235 (11.2) 315 (10.70%)
Hypertension (n, %) 920 (43.8) 988 (33.57%)
Family history (n, %) 2101 (100) -

BMI (kg/m?) 27.7 (4.3) 27.67 (5.14)
Current smoker (n, %) 914 (43.5) 1441 (48.96)

Data are means and standard deviations or counts and percentages, BHF-FHS: British Heart Foundation
Family Heart Study; MIGen: Myocardial Infarction Genetics Consortium; MI: myocardial infarction; BMI:
body mass index.

doi:10.1371/journal.pone.0117684.t001

Results

A summary of the baseline characteristics of both the discovery and replication cohorts is
shown in Table 1.

Primary analysis

We tested for all possible pairwise interactions among the mutually independent 913 SNPs
with at least nominal association with CAD in the single locus analysis. Out of the 416,328
interaction tests executed, none reached Bonferroni adjusted threshold for significance

(P = 1.2x107). There were 6 SNP pairs with interaction at suggestive level of statistical signifi-
cance (P<1x107°). The top interaction was identified between rs12989423 in phosphodiestera-
sel1A (PDE11A) gene on chromosome 2 and rs8103121 in a pseudogene on chromosome

19 called secretory blood group 1, pseudogene (SEC1P) (P = 1.79x10°°) (Table 2). Of 49 pairs
of SNPs that achieved interaction at P<1x10™%, a total of 36 SNP pairs could be evaluated in the
replication cohort. None showed a statistically significant association with CAD after applying
Bonferroni correction for multiple testing (1.4x10%) (Table B in S1 File). There were no Sys-
tematic differences in the allele frequencies of the SNP pairs taken for replication between the
discovery and replication cohorts to explain the lack of replication based on differences in pop-
ulation sub-structure. The 913 SNPs used in this analysis included 9 SNPs that either was pre-
viously associated with CAD or tagging a SNP (r* > 0.8) that was associated with CAD in
GWAS reported by Deloukas et al [2]. None of these SNPs showed any significant interactions.

Secondary analysis

The complete two locus analysis of 11,332 SNPs resulted in 64,204,446 tests. After applying
Bonferroni cut-off for significance (calculated at P = 7.8x10™'%), no statistically significant inter-
actions were identified in this analysis. A total of 7 SNP pairs showed suggestive interaction
(P<107%) (Table 3). Of these the most significant was between rs9840469 in FERM domain
containing 4B (FRMD4B) gene on chromosome 3 and rs10911935 in phospholipase A2, group
IVA (PLA2G4A) gene on chromosome 1 (P = 4.6x10”). After applying an arbitrary interaction
threshold of suggestive significance (P = 1.0x107°) 51 pairs of SNPs were taken forward for
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Table 2. Suggestive SNP-SNP interactions—primary analysis.

SNPA

rs12989423
rs17094917
rs10095188
rs7248719
rs4464383
rs11101992
rs3779130
rs25644
rs2709800

ChrA Gene

2 PDE11A

14 SERPINA12
8 ZHX2

19 ANGPTL4
3 RPSAP15

1 GSTM3

7 TBXAS1

12 P2RX4

7 NOD1

MAF

0.10
0.26
0.18
0.45
0.33
0.24
0.34
0.11
0.43

SNPA Pvalue SNPB
9.90x102 rs8103121
5.50x10° rs17150369
6.10x10°® rs3790840
6.90x10° rs10884342
1.70x10°® rs10741762
3.62x102 rs12131634
3.20x102 rs4526299
5.50x102 rs3816248
5.60x107® rs901782

ChrB

19
7
1
10
11
1
7
4
11

Gene

SEC1P
SRI
NR5A2
NRG3
CSRP3
RYR2
TACH
SCARB2
PDGFD

MAF

0.34
0.18
0.15
0.28
0.16
0.15
0.17
0.14
0.35

SNPB Pvalue

2.67x102
2.04x102
4.36x102
3.02x102
2.70x10°®
3.68x102
4.82x102
1.82x1072
2.35x102

Int. Pvalue

BHF-FHS

1.79x10
2.11x10®
7.40x10°®
7.67x10°®
8.57x10®
9.97x10°®
1.14x10°®
1.42x107°
1.62x10°

Int. Pvalue
MIGen
4.05x10™"
3.88x10°
2.93x10™"
NA

NA

NA

NA
2.72x10™"
3.71x10™

SNP: single nucleotide polymorphism, Chr: chromosome; MAF: minor allele frequency; BHF-FHS: British Heart Foundation Family Heart Study; MIGen:
Myocardial Infarction Genetics Consortium; SNPA Pvalue: level of nominal statistical significance for single marker association with coronary artery
disease for SNP A; SNPB Pvalue: level of nominal statistical significance for single marker association with coronary artery disease for SNP B; Int. Pvalue
BHF-FHS: interaction P value in BHF-FHS; Int. Pvalue MIGen: interaction P value in MIGen; N/A: replication not available. PDE11A: phosphodiesterase
11A; SEC1P: secretory blood group 1, pseudogene; SERPINA12: serpin peptidase inhibitor, clade A; SRI: sorcin; ZHX2: zinc fingers and homeoboxes 2;
NR5A2: nuclear receptor subfamily 5, group A, member 2; ANGPTL4: angiopoietin-like 4; NRG3: neuregulin 3; RPSAP15: ribosomal protein SA
pseudogene 15; CSRP3: cysteine and glycine-rich protein 3; GSTM3: glutathione S-transferase mu 3; RYR2: ryanodine receptor 2; TBXAS1:
thromboxane A synthase 1; TAC1: tachykinin, precursor 1; P2RX4: purinergic receptor P2X, ligand-gated ion channel, 4; SCARB2: scavenger receptor
class B, member 2; NOD1: nucleotide-binding oligomerization domain containing 1; PDGFD: platelet derived growth factor D.

doi:10.1371/journal.pone.0117684.t002

Table 3. Suggestive SNP-SNP interactions—secondary analysis.

SNPA ChrA Gene MAF SNPA Pvalue SNPB ChrB Gene MAF SNPB Pvalue Int. Pvalue Int. PvalueMIGen
BHF-FHS

rs9840469 3 FRMD4B 0.38 7.00x10™ rs10911935 1 PLA2G4A 0.21 4.84x10™ 4.63x107 NA
rs3759929 15 FURIN 0.39 7.29x10" rs780825 10 CUBN 0.31 9.54x10 5.18x107 NA
rs2740502 19 KLK1 0.40 6.61x10™ rs7910038 10 PRKCQ 047 8.08x10™" 5.64x107 6.24x10™"
rs3748107 7 SBDS 0.28 2.95x10™" rs7130671 11 NCAM1 0.35 3.48x10 6.2x107 7.73x102
rs7629902 3 RARB 0.15 2.03x10™ rs6472228 8 PDE7A 0.15 5.59x10™ 7.26x107 8.98x10™"
rs2245121 10 SFTPD  0.43 2.28x10™ rs4418583 1 LDLRAP1 050 7.18x10™" 7.51x107 NA
rs613089 1 BCL9 0.31  6.00x10™ rs11466521 3 TGFBR2 023 9.28x10" 8.79x107 NA
rs9862 22 TIMP3 0.49 3.40x10" rs753424 1 HMGCS2 0.46 5.34x10™" 1.09x10° 3.01x10™"
rs11807878 1 BCL9 0.12  1.14x10™ rs12060491 1 PDE4B 0.17 1.82x10™ 1.15x10° 1.61x102

SNP: single nucleotide polymorphism, Chr: chromosome; MAF: minor allele frequency; BHF-FHS: British Heart Foundation Family Heart Study; MIGen:
Myocardial Infarction Genetics Consortium; SNPA Pvalue: level of nominal statistical significance for single marker association with coronary artery
disease for SNP A; SNPB Pvalue: level of nominal statistical significance for single marker association with coronary artery disease for SNP B; Int. Pvalue
BHF-FHS: interaction P value in BHF-FHS; Int. Pvalue MIGen: interaction P value in MIGen; N/A: replication not available. FRMD4B: FERM domain
containing 4B; PLA2G4A: phospholipase A2, group IVA; FURIN: furin (paired basic amino acid cleaving enzyme); CUBN: cubilin (intrinsic factor-
cobalamin receptor); KLK1: kallikrein 1; PRKCQ protein kinase C, theta; SBDS: Shwachman-Bodian-Diamond syndrome; NCAM1: neural cell adhesion
molecule 1; RARB: retinoic acid receptor, beta; PDE7A: phosphodiesterase 7A; SFTPD: surfactant protein D; LDLRAP1: low density lipoprotein receptor
adaptor protein 1; BCL9: B-cell CLL/lymphoma 9; TGFBR2: transforming growth factor, beta receptor Il (70/80kDa); TIMP3: TIMP metallopeptidase
inhibitor 3; HMGCS2: 3-hydroxy-3-methylglutaryl-CoA synthase 2 (mitochondrial); PDE4B: phosphodiesterase 4B, cAMP-specific.

doi:10.1371/journal.pone.0117684.t003
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replication in the MIGen cohort. None of 33 pairs that could be evaluated for in the replication
cohort exceeded the significance threshold based on Bonferroni correction (1.5x107) (Table C
in S1 File).

Discussion

Here we report findings from a systematic evaluation of gene-gene interactions in coronary ar-
tery disease. Using a selective policy focusing on common variants in cardiovascular genes, we
show that none of the analysed interactions survived correction for multiple testing and the
majority of the suggestive interactions were not replicated in the validation cohort. These find-
ings indicate a lack of moderately large size additive gene-gene interactions amongst common
genetic variants based on known cardiovascular pathways.

The major proportion of heritability of CAD remains unexplained despite the flurry of data
produced by GWAS. The ~50 loci identified to date through large international collaborations
only account for ~10% of CAD heritability [2]. The remainder of the heritability may be attrib-
uted to other factors such as rare variants with large effects, gene-environment interactions,
gene-gene interactions and epigenetic factors [20]. The evidence emerging from both experi-
mental studies and association analyses suggests that gene-gene interactions may contribute to
inter-individual variation in susceptibility to complex diseases [6,21-24]. Several studies have
attempted to delineate gene-gene interactions in relation to a variety of complex traits with
very limited success [3]. A number of practical challenges plagued these endeavours to uncover
gene-gene interactions including the heavy penalty for multiple testing which renders standard
GWAS samples underpowered to detect such effects. Furthermore, such exhaustive analyses
can be computationally prohibitive and require massive parallelisation [10]. Various strategies
have been developed to improve the power to identify gene-gene interactions in GWAS data-
sets [3]. For example, prioritising SNPs for interaction analysis based on their performance in
the single-marker GWAS analysis [9,12]. Incorporating knowledge from protein-protein inter-
actions and biological pathways are other potentially appropriate criteria for candidate SNP se-
lection [25-27]. While gene-gene interactions are more likely to take place between loci that
show some effects individually, pure epistatic loci may contribute to the genetic risk variation
without having single locus effects. Such loci can be overlooked if not tested for specifically [8].

In this study we minimised our search space for gene-gene interactions by selecting the IBC
50K chip which is enriched for genetic markers in or near genes linked to the cardiovascular
system and related risk factors. This reduced the starting number of SNPs from over 500,000 in
a standard GWAS array to just under 50,000 SNPs. Using biological pathway information to
prioritise genetic loci for interaction analysis proved successful in certain complex traits and
conditions such as asthma [28,29] and lipid levels [5]. By virtue of its design, the IBC 50K array
provides good coverage for loci related to cardiovascular, inflammatory and metabolic syn-
dromes and hence provides indirect strategy for utilising pathway knowledge [17]. It is howev-
er important to note that the IBC 50K array was designed a few years ago, and therefore many
of the CAD loci discovered in the past three years are not included on the array.

The statistical approach we employed here is based on logistic regression models since re-
gression models are thought to be one of the most efficient ways to investigate interacting ge-
netic loci that modify disease risk [3]. We have also elected to use an allelic test for interaction
(1 degree of freedom) as opposed to a genotype test for interaction (4 degrees of freedom) be-
cause the latter has more degrees of freedom and hence will require larger sample size to have
equivalent power. Mindful of the limited sample size available for this study we sought to ex-
amine potential interactions among the more common variants with MAF >10% as this al-
lowed enough power to detect moderate interaction effects (OR > 1.7).
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While our primary analysis was meant to maximise the chances to detect gene-gene interac-
tions within a relatively small sample of candidate SNPs with at least nominal association with
CAD, our secondary exploratory analysis was implemented to ensure that potential pure epi-
static SNPs that have no marginal effects on their own are captured by this study. Recognising
the very limited power of this analysis we did not find any replicated interactions under this
model either.

Our primary analytical approach is similar to that recently employed by Lucas et al. [9]
who tested a biological hypothesis, under which MI risk is modulated by interactions between
variants that are known to be relevant for its risk factors; and a statistical hypothesis, under
which interacting variants individually show weak marginal association with MI were exam-
ined. Consistent with our findings they did not find any significant interactions. Compared
to the work by Lucas et al, our analysis has the potential advantage of not being restricted
to those variants which were previously significantly associated with cardiovascular risk factors.
Additionally we were able to implement a large scale search for gene-gene interactions among
cardiovascular genes benefiting from the IBC 50K array that was not feasible on the GWAS
platform used by Lucas et al [9]. Other groups have used different methods to examine gene-
gene interactions bearing in mind the methodical and computational challenges. For example,
Wan et al [30] were able to examine pairwise interactions efficiently in GWAS data using
a method called Boolean Operation-based Screening and Testing (BOOST). They claim to
have achieved increased testing efficiency through fast logic operations made possible by
the Boolean representation of genotype data. They did not identify any significant interactions
in relation to CAD which is consistent with our findings. Recently, Lippert et al demonstrated
that one can increase the power of interaction studies through combining data sets [31]
and using certain disease cohorts as controls for other diseases. They exploited linear mixed
models to overcome relatedness and population structure. Using genotypes available from
the Wellcome Trust Case Control Consortium (WTCCC) GWAS study, they identified
42 SNP-SNP interactions related to the risk of CAD, although these findings require
further validation.

Our study has several limitations. The principal one relates to low power arising from
a combination of the modest size of the discovery cohort and the heavy penalty from the cor-
rection required for the large number of interactions analysed. To limit the impact of these is-
sues we decided a priori to only analyse common variants. Despite this we only had sufficient
power to detect relatively high odds ratios although in the range that one might have anticipat-
ed for powerful interactions, if these exist. Therefore our study does not exclude interactions
between lower frequency variants or those that are of modest strength even within the candi-
date cardiovascular genes analysed. In addition, the true underlying interaction model may dif-
fer from the one we applied in this study. However, there is a trade-off between choosing
a highly parameterized model such as the saturated model that is very likely to encompass the
true underlying model at the expense of higher degrees of freedom and the resulting decreased
power [3]. Applying novel strategies such as adaptive locus-based validation as demonstrated
by Liu et al [32] and applied by Ma et al [5] also shows promise especially as more sequencing
data is becoming available. Finally, we have only analysed a very small proportion of the totali-
ty of genomic variation, albeit in genes with biological plausibility.

In summary, we found no evidence of large effect interactions amongst common variants in
a large set of cardiovascular system related genes impacting on CAD risk. The key challenge for
gene-gene interactions moving forward is whether sufficiently large sample sizes with individu-
al level data will become available to undertake genome-wide analysis and whether analytical
approaches can be developed which can distinguish true interactions amongst the large num-
ber of possibilities examined.

PLOS ONE | DOI:10.1371/journal.pone.0117684 February 6, 2015 10/12



@' PLOS ‘ ONE

Gene-Gene Interactions in Coronary Artery Disease Candidate Genes

Supporting Information

S1 File. Supplementary material containing Supplementary tables A-D.
(DOCX)

Acknowledgments

NJS holds a British Heart Foundation Chair of Cardiology and is a NIHR Senior Investigator.
The authors would like to thank the contributors to the BHF-FHS, WTCCC and
MIGen studies.

Author Contributions

Conceived and designed the experiments: MDM WYSW JRT RE NJS MT. Performed the ex-
periments: MDM WYSW CPN CL RD IS GL. Analyzed the data: MDM WYSW CPN CL IS
GL. Contributed reagents/materials/analysis tools: MDM WYSW AJB SGB ASH SK RE NJS
MT. Wrote the paper: MDMWYSW NJS MT. Reviewed and revised the manuscript: MDM
WYSW CPN CL RD IS RE AJB SGB ASH SK JRT GL NJS MT.

References

1. Schunkert H, Konig IR, Kathiresan S, Reilly MP, Assimes TL, et al. (2011) Large-scale association
analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 43: 333-338. doi:
10.1038/ng.784 PMID: 21378990

2. The CARDIoGRAMplusC4D Consortium, Deloukas P, Kanoni S, Willenborg C, Farrall M, et al. (2012)
Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet 45:
25-33. doi: 10.1038/ng.2480 PMID: 23202125

3. Cordell HJ (2009) Detecting gene-gene interactions that underlie human diseases. Nat Rev Genet 10:
392-404. doi: 10.1038/nrg2579 PMID: 19434077

4. Moore JH (2003) The ubiquitous nature of epistasis in determining susceptibility to common human dis-
eases. Hum Hered 56: 73—-82. PMID: 14614241

5. Mal, Brautbar A, Boerwinkle E, Sing CF, Clark AG, et al. (2012) Knowledge-Driven Analysis Identifies
a Gene—Gene Interaction Affecting High-Density Lipoprotein Cholesterol Levels in Multi-Ethnic Popu-
lations. PLoS Genet 8: €1002714. doi: 10.1371/journal.pgen.1002714 PMID: 22654671

6. Wei WH, Hemani G, Gyenesei A, Vitart V, Navarro P, et al. (2012) Genome-wide analysis of epistasis
in body mass index using multiple human populations. Eur J Hum Genet 20: 857-862. doi: 10.1038/
ejhg.2012.17 PMID: 22333899

7. Araujo MA, Goulart LR, Cordeiro ER, Gatti RR, Menezes BS, et al. (2005) Genotypic interactions of
renin-angiotensin system genes in myocardial infarction. Int J Cardiol 103: 27-32. PMID: 16061119

8. TsaiCT, Hwang JJ, Ritchie MD, Moore JH, Chiang FT, et al. (2007) Renin-angiotensin system gene
polymorphisms and coronary artery disease in a large angiographic cohort: detection of high order
gene-gene interaction. Atherosclerosis 195: 172-180. PMID: 17118372

9. Lucas G, Lluis-Ganella C, Subirana I, Musameh MD, Gonzalez JR, et al. (2012) Hypothesis-Based Analy-
sis of Gene-Gene Interactions and Risk of Myocardial Infarction. PLoS One 7:e41730. PMID: 22876292

10. Herold C, Steffens M, Brockschmidt FF, Baur MP, Becker T (2009) INTERSNP: genome-wide interac-
tion analysis guided by a priori information. Bioinformatics 25: 3275-3281. doi: 10.10983/bioinformatics/
btp596 PMID: 19837719

11. Becker T, Herold C, Meesters C, Mattheisen M, Baur MP (2011) Significance levels in genome-wide in-
teraction analysis (GWIA). Ann Hum Genet 75: 29-35. doi: 10.1111/j.1469-1809.2010.00610.x PMID:
20950400

12.  Marchini J, Donnelly P, Cardon LR (2005) Genome-wide strategies for detecting multiple loci that influ-
ence complex diseases. Nat Genet 37:413-417. PMID: 15793588

13. Tomaszewski M, Debiec R, Braund PS, Nelson CP, Hardwick R, et al. (2010) Genetic architecture of
ambulatory blood pressure in the general population: insights from cardiovascular gene-centric array.
Hypertension 56: 1069—1076. doi: 10.1161/HYPERTENSIONAHA.110.155721 PMID: 21060006

PLOS ONE | DOI:10.1371/journal.pone.0117684 February 6, 2015 11/12


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0117684.s001
http://dx.doi.org/10.1038/ng.784
http://www.ncbi.nlm.nih.gov/pubmed/21378990
http://dx.doi.org/10.1038/ng.2480
http://www.ncbi.nlm.nih.gov/pubmed/23202125
http://dx.doi.org/10.1038/nrg2579
http://www.ncbi.nlm.nih.gov/pubmed/19434077
http://www.ncbi.nlm.nih.gov/pubmed/14614241
http://dx.doi.org/10.1371/journal.pgen.1002714
http://www.ncbi.nlm.nih.gov/pubmed/22654671
http://dx.doi.org/10.1038/ejhg.2012.17
http://dx.doi.org/10.1038/ejhg.2012.17
http://www.ncbi.nlm.nih.gov/pubmed/22333899
http://www.ncbi.nlm.nih.gov/pubmed/16061119
http://www.ncbi.nlm.nih.gov/pubmed/17118372
http://www.ncbi.nlm.nih.gov/pubmed/22876292
http://dx.doi.org/10.1093/bioinformatics/btp596
http://dx.doi.org/10.1093/bioinformatics/btp596
http://www.ncbi.nlm.nih.gov/pubmed/19837719
http://dx.doi.org/10.1111/j.1469-1809.2010.00610.x
http://www.ncbi.nlm.nih.gov/pubmed/20950400
http://www.ncbi.nlm.nih.gov/pubmed/15793588
http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.155721
http://www.ncbi.nlm.nih.gov/pubmed/21060006

@ PLOS | one

Gene-Gene Interactions in Coronary Artery Disease Candidate Genes

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

Samani NJ, Burton P, Mangino M, Ball SG, Balmforth AJ, et al. (2005) A genomewide linkage study of
1,933 families affected by premature coronary artery disease: The British Heart Foundation (BHF) Fam-
ily Heart Study. Am J Hum Genet 77: 1011-1020. PMID: 16380912

Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, et al. (2007) Genomewide association
analysis of coronary artery disease. N Engl J Med 357: 443-453. PMID: 17634449

Myocardial Infarction Genetics Consortium (2009) Genome-wide association of early-onset myocardial
infarction with single nucleotide polymorphisms and copy number variants. Nat Genet 41: 334—341.
doi: 10.1038/ng.327 PMID: 19198609

Keating BJ, Tischfield S, Murray SS, Bhangale T, Price TS, et al. (2008) Concept, design and imple-
mentation of a cardiovascular gene-centric 50 k SNP array for large-scale genomic association studies.
PLoS One 3:e3583. doi: 10.1371/journal.pone.0003583 PMID: 18974833

The IBC 50K CAD Consortium (2011) Large-Scale Gene-Centric Analysis Identifies Novel Variants for
Coronary Artery Disease. PLoS Genet 7: €1002260. doi: 10.1371/journal.pgen.1002260 PMID:
21966275

Gauderman WJ MJ (2006) QUANTO 1.1: A computer program for power and sample size calculations
for genetic-epidemiology studies, Available: http://hydra.usc.edu/gxe.

Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, et al. (2009) Finding the missing heritability
of complex diseases. Nature 461: 747-753. doi: 10.1038/nature08494 PMID: 19812666

Mackay TF (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35: 303-339. PMID:
11700286

Segre D, Deluna A, Church GM, Kishony R (2005) Modular epistasis in yeast metabolism. Nat Genet
37: 77-83. PMID: 15592468

Shimomura K, Low-Zeddies SS, King DP, Steeves TD, Whiteley A, et al. (2001) Genome-wide epistatic
interaction analysis reveals complex genetic determinants of circadian behavior in mice. Genome Res
11:959-980. PMID: 11381025

Ma L, Ballantyne CM, Belmont JW, Keinan A, Brautbar A (2012) Interaction between SNPs in the
RXRA and near ANGPTL3 gene region inhibit apolipoprotein B reduction following statin-fenofibric acid
therapy in individuals with mixed dyslipidemia. Journal of Lipid Research 53: 2425-2428. doi: 10.1194/
jlr.M028829 PMID: 22896670

Jia P, Zheng S, Long J, Zheng W, Zhao Z (2011) dmGWAS: dense module searching for genome-wide
association studies in protein-protein interaction networks. Bioinformatics 27: 95-102. doi: 10.1093/
bioinformatics/btq615 PMID: 21045073

Sun YV, Kardia SL (2010) Identification of epistatic effects using a protein-protein interaction database.
Hum Mol Genet 19: 4345-4352. doi: 10.1093/hmg/ddq356 PMID: 20736252

Emily M, Mailund T, Hein J, Schauser L, Schierup MH (2009) Using biological networks to search for in-
teracting loci in genome-wide association studies. Eur J Hum Genet 17: 1231-1240. doi: 10.1038/
ejhg.2009.15 PMID: 19277065

Millstein J, Conti DV, Gilliland FD, Gauderman WJ (2006) A testing framework for identifying suscepti-
bility genes in the presence of epistasis. Am J Hum Genet 78: 15-27. PMID: 16385446

Baurley JW, Conti DV, Gauderman WJ, Thomas DC (2010) Discovery of complex pathways from ob-
servational data. Stat Med 29: 1998-2011. doi: 10.1002/sim.3962 PMID: 20683892

Wan X, Yang C, Yang Q, Xue H, Fan X et al. (2010) BOOST: A fast approach to detecting gene-gene
interactions in genome-wide case-control studies. Am J Hum Genet 87: 325-340. doi: 10.1016/j.ajhg.
2010.07.021 PMID: 20817139

Lippert C, Listgarten J, Davidson RI, Baxter S, Poon H, et al. (2013) An exhaustive epistatic SNP asso-
ciation analysis on expanded Wellcome Trust data. Sci Rep 3: 1099. doi: 10.1038/srep01099 PMID:
23346356

LiuY, Xu H, Chen S, Chen X, Zhang Z, et al. (2011) Genome-wide interaction-based association analy-
sis identified multiple new susceptibility Loci for common diseases. PLoS Genet 7: e1001338. doi:
10.1371/journal.pgen.1001338 PMID: 21437271

PLOS ONE | DOI:10.1371/journal.pone.0117684 February 6, 2015 12/12


http://www.ncbi.nlm.nih.gov/pubmed/16380912
http://www.ncbi.nlm.nih.gov/pubmed/17634449
http://dx.doi.org/10.1038/ng.327
http://www.ncbi.nlm.nih.gov/pubmed/19198609
http://dx.doi.org/10.1371/journal.pone.0003583
http://www.ncbi.nlm.nih.gov/pubmed/18974833
http://dx.doi.org/10.1371/journal.pgen.1002260
http://www.ncbi.nlm.nih.gov/pubmed/21966275
http://hydra.usc.edu/gxe
http://dx.doi.org/10.1038/nature08494
http://www.ncbi.nlm.nih.gov/pubmed/19812666
http://www.ncbi.nlm.nih.gov/pubmed/11700286
http://www.ncbi.nlm.nih.gov/pubmed/15592468
http://www.ncbi.nlm.nih.gov/pubmed/11381025
http://dx.doi.org/10.1194/jlr.M028829
http://dx.doi.org/10.1194/jlr.M028829
http://www.ncbi.nlm.nih.gov/pubmed/22896670
http://dx.doi.org/10.1093/bioinformatics/btq615
http://dx.doi.org/10.1093/bioinformatics/btq615
http://www.ncbi.nlm.nih.gov/pubmed/21045073
http://dx.doi.org/10.1093/hmg/ddq356
http://www.ncbi.nlm.nih.gov/pubmed/20736252
http://dx.doi.org/10.1038/ejhg.2009.15
http://dx.doi.org/10.1038/ejhg.2009.15
http://www.ncbi.nlm.nih.gov/pubmed/19277065
http://www.ncbi.nlm.nih.gov/pubmed/16385446
http://dx.doi.org/10.1002/sim.3962
http://www.ncbi.nlm.nih.gov/pubmed/20683892
http://dx.doi.org/10.1016/j.ajhg.2010.07.021
http://dx.doi.org/10.1016/j.ajhg.2010.07.021
http://www.ncbi.nlm.nih.gov/pubmed/20817139
http://dx.doi.org/10.1038/srep01099
http://www.ncbi.nlm.nih.gov/pubmed/23346356
http://dx.doi.org/10.1371/journal.pgen.1001338
http://www.ncbi.nlm.nih.gov/pubmed/21437271

