Correction. In the article "Identification of spacer tRNA genes in individual ribosomal RNA transcription units of *Escherichia coli*" by Edward A. Morgan, Toshimichi Ikemura, and Masayasu Nomura, which appeared in the July 1977 issue of *Proc. Natl. Acad. Sci. USA* 74, 2710–2714, some printing errors occurred in Fig. 1. The correct Fig. 1 is reprinted below with its legend.

FIG. 1. Structure of hybrid plasmids pLC7-21 (*A*), pLC22-11 (*B*), pLC19-3 (*C*), and pLC21-9 (*D*). Circular DNA molecules are shown with two horizontal bars connected with two solid lines, one repre-

Correction. In the article "Independent expression of the adrenergic phenotype by neural crest cells *in vitro*" by A. M. Cohen, which appeared in the July 1977 issue of *Proc. Natl. Acad. Sci. USA* 74, 2899–2903, the center heading "**RESULTS**" was omitted by printer's error from the second column on page 2899. It should have appeared just before the heading "**Growth** and CA fluorescence."

Correction. In the article "Nerve growth factor in mouse serum and saliva: Role of the submandibular gland" by R. A. Murphy, J. D. Saide, M. H. Blanchard, and M. Young, which appeared in the June 1977 issue of *Proc. Natl. Acad. Sci. USA* 74, 2330–2333, the authors request the following addition to the acknowledgments: "This work was also supported by a grant from the Muscular Dystrophy Association to R.A.M."

senting ColE1 DNA (lower bars) and the other, the bacterial DNA region. Hatched regions represent rRNA genes. Crosshatched regions are spacer regions; filled regions are chromosomal DNA outside rRNA operons. Structures were deduced from heteroduplex analysis (Kenerley *et al.*, unpublished data), digestion of the plasmid DNAs with various restriction enzymes, including *Eco*RI, *Sal* I, *Sma*, and *Hind*III, and hybridization of 16S, 23S, and 5S rRNA to various fragments (see Table 3; other data not shown).

Correction. In the article "Inhibition of DNA synthesis in cultures of 3T3 cells by isolated surface membranes" by B. Whittenberger and L. Glaser, which appeared in the June 1977 issue of *Proc. Natl. Acad. Sci. USA* 74, 2251–2255, an editorial error resulted in an incorrect alignment in Table 1. The correct Table 1 is:

	Ехр. 1					Exp. 2	
		Phospho-	Acid	NADH	Cytochrome c		Na+,K+_
Fraction	Protein	diesterase	phosphatase	diaphorase	oxidase	Protein	ATPase
3T3							
Homogenate	(100)*	0.76	11.82	2.66	20.8	(100)†	0.24
$27,000 \times g$ supernatant	(57.0)	0.25(24.4)	4.45(21.4)	1.24(26.6)	n.d. [‡]	(64.5)	n.d.‡
B-1	(4.0)	6.44(34.6)	18.31(6.3)	4.39(6.6)	4.8(0.9)	(3.9)	3.22(52.4)
B-2	(6.3)	1.58(13.3)	10.55(5.7)	2.14(5.1)	6.7(2.0)	(4.8)	1.80(35.8)
B-3	(1.2)	0.31(5.0)	38.80(4.0)	1.17(5.3)	277.8(5.7)	(10.8)	0.43(19.3)
Pellet	(4.0)	1.10(5.9)	32.65(11.2)	9.96(15.1)	149.7(29.0)	(1.6)	n.d.‡
SV3T3							
Homogenate	(100)§	0.23	4.04	0.88	11.0	(100)¶	0.04
$27,000 \times g$ supernatant	(66.1)	0.18(51.8)	2.82(46.11)	0.15(11.6)	n.d.‡	(78.3)	n.d.‡
B-1	(3.4)	1.41(20.7)	8.87(7.4)	1.71(6.5)	2.4(0.7)	(4.5)	0.25(29.4)
B-2	(3.9)	0.93(15.8)	8.03(7.8)	2.38(10.6)	9.8(3.5)	(7.5)	0.15(29.4)
B-3	(0.4)	0.39(0.7)	4.39(0.4)	1.75(0.8)	3.2(0.1)	(8.6)	0.15(32.6)
Pellet	(13.9)	0.38(22.5)	3.70(12.7)	1.12(17.6)	40.9(51.3)	(18.5)	0.02(9.5)

Table 1. Distribution and activities of protein and subcellular markers in the fractionation of 3T3 and SV3T3 cells

3T3 and SV3T3 cells fractionated as described in *Materials and Methods*. B-1 was on top of the 9% Ficoll, B-2 was between 9% and 25% Ficoll, B-3 was between 25% and 35% Ficoll, and the pellet was at the bottom of the gradient tube. Because the membrane fraction was prepared in the presence of serum albumin (5 mg/ml), the relative enzyme specific activities were determined by using cells uniformly labeled with [³H]leucine and are expressed as μ mol/hr per 10⁶ dpm [³H]leucine counts for ATPase, phosphodiesterase, and acid phosphatase, μ mol/min per 10⁶ dpm for NADH diaphorase, and nmol/min per 10⁶ dpm for cytochrome c oxidase. Numbers in parentheses are the percent recovery of activity relative to the homogenate taken as 100%. The specific activities (in μ mol/hr per 10⁶ dpm) for β -glucuronidase in Exp. 1 for 3T3 cells were 1.09 in the homogenate and 0.25 in B-1; for SV3T3 cells the specific activities were 0.33 in the homogenate and 0.13 in B-1. The specific activity of phosphodiesterase in B-1 from Exp. 2 was increased over the value in the homogenate 8-fold for 3T3 and 6-fold for SV3T3.

* 1.6×10^6 dpm for 1.3×10^7 cells.

[†] 5.2 × 10⁶ dpm from 4.0×10^7 cells.

[‡] No detectable activity.

§ 2.2×10^7 dpm from 11.0×10^7 cells.

 10.5×10^{7} dpm from 12.8×10^{7} cells.