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Estimates of Continental Ancestry Vary Widely
among Individuals with the Same mtDNA Haplogroup

Leslie S. Emery,1,4 Kevin M. Magnaye,2,4 Abigail W. Bigham,3 Joshua M. Akey,1 and Michael J. Bamshad1,2,*

The association between a geographical region and an mtDNA haplogroup(s) has provided the basis for using mtDNA haplogroups to

infer an individual’s place of origin and genetic ancestry. Although it is well known that ancestry inferences using mtDNA haplogroups

and those using genome-wide markers are frequently discrepant, little empirical information exists on the magnitude and scope of such

discrepancies between multiple mtDNA haplogroups and worldwide populations. We compared genetic-ancestry inferences made by

mtDNA-haplogroupmembership to thosemade by autosomal SNPs in ~940 samples of the HumanGenomeDiversity Panel and recently

admixed populations from the 1000 Genomes Project. Continental-ancestry proportions often varied widely among individuals sharing

the same mtDNA haplogroup. For only half of mtDNA haplogroups did the highest average continental-ancestry proportion match

the highest continental-ancestry proportion of amajority of individuals with that haplogroup. Prediction of an individual’s mtDNAhap-

logroup from his or her continental-ancestry proportions was often incorrect. Collectively, these results indicate that for most individ-

uals in the worldwide populations sampled, mtDNA-haplogroup membership provides limited information about either continental

ancestry or continental region of origin.
Introduction

The high level of polymorphism, lack of recombination,

and high copy number of mtDNA have made it a useful

tool for studying human demographic history.1 Early

studies classified branches of the human mtDNA phylo-

genetic tree into groups of closely related haplotypes,1,2

defined by lineage-specific polymorphisms in continen-

tal-scale populations such as Native Americans,3,4 sub-

Saharan Africans,5 and Europeans.6,7 Populations with

recent shared ancestry and/or living in geographical prox-

imity displayed similar haplotypes that were grouped

by relatedness into haplogroups.1,2 These standardized

haplotypes and haplogroups8 facilitated detailed studies

of population origins, genetic structure, gene flow,9,10

and detection of sex-biased demography.11–13

For a little over a decade, commercial genetic-testing lab-

oratories have leveraged the information captured by the

analysis ofmtDNA haplogroups with widespread public in-

terest in genealogical research and human origins to pro-

vide direct-to-consumer (DTC) ancestry tests. Specifically,

the association between a geographical region and an

mtDNA haplogroup(s) provided the basis for using mtDNA

haplogroups to infer an individual’s place of origin and

genetic ancestry. However, such lineage-based analyses

overlook the contribution of the vast majority of an indi-

vidual’s ancestors to his or her genome.14 Moreover, DTC

ancestry tests have proven controversial because they

use proprietary methods that lack transparency, present

conflicts between cultural and scientific conceptions of

ancestry, and lack federal regulation.14–22

The major alternative to lineage-based ancestry tests is

model-based ancestry inference using either genome-
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wide, multi-locus, SNP genotype data23–25 or ancestry-

informative markers (AIMs), which are autosomal SNPs

with differing allele frequencies between populations.26

Both genome-wide SNPs and AIMs can be used for

estimating an individual’s proportion of ancestry from

inferred populations that are assumed to correspond to

unique ancestral populations. Several recent popula-

tion-specific studies have recently assessed the relation-

ship between ancestry inferences using mtDNA

haplogroups versus autosomal SNPs and have found

frequent discrepancies, particularly in recently admixed

populations.27–30 However, little empirical information

exists on the magnitude and scope of such discrepancies

across multiple mtDNA haplogroups and worldwide

populations.

In 2008 and again in 2012, the American Society of

Human Genetics acknowledged the popularity of com-

mercial ancestry testing and provided a series of recom-

mendations for academic scientists and for companies

that perform DTC ancestry testing.18,21 These recom-

mendations expressed concern that commercial testing

provides little information about how the accuracy

of lineage-based ancestry estimation compares to that

of multi-locus ancestry estimation from autosomal

markers.18 In particular, the extent to which ancestry

information is, in general, captured by mtDNA hap-

logroups is unknown. To begin to address some of

these concerns, we quantified and compared the varia-

tion in continental-ancestry proportions among indi-

viduals with the same mtDNA haplogroup in 938

individuals from 52 worldwide populations and 327 indi-

viduals from recently admixed populations in the 1000

Genomes Project (1KGP) dataset.
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Material and Methods

HGDP Dataset
We downloaded Illumina 650Y SNP array genotype data for the

HGDP-CEPH Human Genome Diversity Cell Line Panel,31 which

consists of 1,043 individuals from 52 worldwide populations

(Figure 1A), as previously reported.33 After removing previously

identified relatives and duplicate samples,34 as well as samples

with low-quality SNP genotype data, we were left with 938

samples in our HGDP dataset. Next, we obtained hypervariable re-

gion 1 (HVR1) sequence data for 891 of these 938 samples from

the NCBI (PopSet accession number 189174470). For the 47

individuals without publicly available sequence data, we Sanger

sequenced HVR1 by using DNA obtained from the CEPH.
1KGP Dataset
We downloaded 1KGP35 variant call format (.vcf) files for phase 1

low-coverage whole-genome sequence data (release 20101123).

We selected five populations from world regions with high levels

of recent admixture: ASW (Americans of African ancestry in south-

west USA), CLM (Colombians from Medellin, Colombia), GBR

(British in England and Scotland), MXL (Mexican ancestry from

Los Angeles, CA, USA), and PUR (Puerto Ricans from Puerto

Rico). Our total sample consisted of data from 327 people. Using

Tabix36 (v.0.2.6) and VCFtools37 (v.0.1.10), we removed indels,

extracted variant sites with rs numbers matching SNPs from the

HGDP 650Y SNP data, and converted the data to PLINK’s map/

ped file format. In PLINK38 (v.1.07), we merged the 1KGP data

with the HGDP data and removed 77 SNPs with unresolvable

strand mismatches and 141 SNPs that could not be converted

from hg18 to hg19 coordinates (UCSC Genome Browser). Our

final dataset consisted of 646,356 SNPs. We also downloaded .vcf

files for all mitochondrial variants in each 1KGP population.
mtDNA-Haplogroup Typing
We obtained DNA for 965 of the HGDP individuals from the CEPH

for use in mtDNA-haplogroup typing. To begin, we first reviewed

the literature for SNPs that uniquely identify each of the 23 major

mtDNA haplogroups (diagnostic SNPs). Initially, we selected 24

candidate SNPs from Mitomap39 and the Genographic Project32

(one haplogroup required two diagnostic SNPs). We checked

each of these candidate diagnostic SNPs in the PhyloTree8

comprehensive mtDNA phylogeny to confirm that the SNP was

diagnostic. If a candidate diagnostic SNP was not supported by

information from PhyloTree, we selected an additional diagnostic

SNP on the basis of the PhyloTree phylogeny. Using a total of

28 diagnostic SNPs, we classified samples into the 23 mtDNA

haplogroups (Figure S1).

Next, we used the Genographic Project’s nearest-neighbor hap-

logroup prediction tool to assign a predicted haplogroup to each

sample on the basis of its HVR1 sequence. The prediction tool

uses a sample’s haplotype affinity to HVR1 sequences in the

Genographic Project’s extensive reference database to predict the

sample’s haplogroup.32 (The Genographic Project Haplogroup Pre-

diction Tool appears to no longer be available on the website we

accessed.) Next, we experimentally confirmed these haplogroup

predictions by genotyping each HGDP sample (either by Sanger

sequencing or restriction digest) for the diagnostic SNP(s) of its

predicted haplogroup (see Table S1 for reaction conditions for all

28 diagnostic SNPs). Finally, if our initial prediction was incorrect,

we genotyped the sample by using our 28 diagnostic SNPs; we
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began with the SNP diagnostic of ancestral haplogroup L0/L1

and traversed the mtDNA phylogeny from trunk to tips.

For samples from the 1KGP, we used mitochondrial variant calls

from phase 1 low-coverage genome data. We extracted all of the

variants corresponding to our 28 diagnostic SNPs and used these

diagnostic-SNP variant calls to assign a mitochondrial haplogroup

to samples from all 327 people.
Continental-Ancestry Estimation from

Autosomal SNPs
We used ADMIXTURE24 (v.1.22) to estimate ancestry proportions

from each of seven continental regions in each sample from the

HGDP Illumina 650Y genotype data. Because ADMIXTURE does

not account for linkage disequilibrium (LD), we pruned the geno-

type markers according to observed correlation coefficients in

the data by using a threshold of R2 R 0.1 and a 50-SNP window

advancing by ten SNPs in PLINK. We used this dataset in

ADMIXTURE with k ¼ 7 according to previously established pop-

ulation-structure parameters in the HGDP.33 The seven inferred

populations correspond to continental regions: Africa, the Ameri-

cas, Central and South Asia, East Asia, Europe, theMiddle East, and

Oceania. Continental-ancestry proportions for each sample in

each HGDP population are shown in Figure S2, and estimated

individual ancestry proportions are reported in Table S2.

To estimate continental ancestry in samples from the 1KGP da-

taset, we first selected HGDP pseudo-ancestors.25 For each of the

seven continental groups, we selected the 20 HGDP individuals

with the highest fraction of ancestry from their respective

continents, resulting in 140 pseudo-ancestors. By including these

proxies for ancestral populations, we ensured that the seven con-

tinental-ancestry components identified in the 1KGP data would

match those identified in the HGDP dataset. Combining SNP

data from the pseudo-ancestors and the 1KGP populations, we

used PLINK to prune the SNPs according to the same pruning

settings described above and estimated ancestry from this pruned

dataset. We estimated ancestry proportions for the pseudo-ances-

tors twice (once with the HGDP data and once with the 1KGP

data). Each sample’s two sets of estimated ancestry proportions

were highly correlated (Pearson’s R2 > 0.99, p < 0.0001;

Figure S3). Continental-ancestry proportions for each sample in

each 1KGP population are shown in Figure S4, and estimated

individual ancestry proportions are reported in Table S3.
Analysis of Continental-Ancestry Estimates within

Each mtDNA Haplogroup
We first examined the average continental-ancestry proportions

within each mtDNA haplogroup (Table S4). This produced an

h 3 7 matrix of means, where h is the number of haplogroups

and 7 is the number of continental regions. To determine whether

each average continental-ancestry component was significantly

higher within a haplogroup than we would expect by chance,

we performed a permutation test. For each replicate of the permu-

tation test, we shuffled the haplogroup labels for the sample and

recalculated the h 3 7 matrix of means. Then we used 999 repli-

cates, plus the original data, to calculate p values for each of the

means in the original matrix.

To examine inter-individual variation in the composition of

each individual’s continental-ancestry proportions withinmtDNA

haplogroups, we calculated SDs for each of the continental regions

within each haplogroup. To measure this variability in more

detail, we calculated the mean pairwise Euclidean distance (d)
5, 2015
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Figure 1. Geographic Location, mtDNA-Haplogroup Frequencies, and Average Ancestry Proportions in the HGDP Populations
(A) World map showing sample locations (points) for each of the populations included in the HGDP (labels).
(B) Left column: barplots of continental-ancestry proportions averaged within each HGDP population. Barplots are colored by continen-
tal region (labeled by colored bars on the left) and sorted by continental ancestry. Right column: barplots of haplogroup frequencies
within each population. Barplots are colored by mtDNA haplogroup (labeled by the haplogroup tree in C).
(C) Barplots of continental-ancestry proportions averaged within each mtDNA haplogroup within the HGDP dataset. Barplots
are colored by continental region (labeled by colored bars on the left of A). The unscaled phylogeny on the left shows the relationships
between the mtDNA haplogroups.32
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within each mtDNA haplogroup. Specifically, we considered each

individual Pi ¼ (p1, p2, . p7) to be a point in seven-dimensional

(7D) space (defined by his or her ancestry proportions). Then we

calculated the 7D Euclidean distance between each pair of individ-

uals (Pi, Qj) within the haplogroup. Finally, we averaged these

distances for all unique pairs within haplogroups according to

the equation below:

d ¼
Pn�1

i¼1

Pn
j¼iþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
i¼1

�
qi � pi

�2q

ðn2Þ
To determine how well an mtDNA haplogroup could be linked

to a particular continental region, we estimated a consistency

score, the proportion of individuals within anmtDNA haplogroup

whose highest continental-ancestry proportion was the same as

the mtDNA haplogroup’s highest average continental ancestry

(Table S5). For example, the highest average continental ancestry

within mtDNA haplogroup L2 in the HGDP dataset was Africa.

The consistency score of mtDNA haplogroup L2 in the HGDP da-

taset was 0.67, given that the highest continental-ancestry propor-

tion was Africa in 67% of people with this mtDNA haplogroup.
Multinomial Logistic Regression Model
To explore whether there was a significant predictive relationship

between mtDNA haplogroups and continental-ancestry composi-

tion, we used a training set of HGDP and 1KGP samples combined

to fit a multinomial logistic regression (logit) model. First, we

excluded all haplogroups with fewer than ten total samples or

fewer than six samples in either dataset. The remaining ten

mtDNA haplogroups included L0/L1, L2, L3, C, D, A, H, B, T,

and U. The training set consisted of a randomly selected third of

the samples from each dataset. The remaining two-thirds of sam-

ples were reserved for the test set.

We first used the R package nnet40 to fit a preliminary logit

model in which the mtDNA haplogroup was the dependent vari-

able and continental-ancestry proportions were the independent

variables. To prevent collinearity, we excluded one continental

region—the least common ancestry (Oceania) within our data-

set—as a variable. Each of the six continental-ancestry variables

improved the fit of the model to the data (likelihood-ratio test

[LRT], p < 0.001). We observed possible nonlinear patterns in

the data, so we tested logarithmic and exponential relationships

for each of the continental-ancestry variables and included any

nonlinear relationships that improved the model fit by a LRT

(p < 0.001). With six independent variables, 57 possible interac-

tion terms could be included in the model. We used LRTs to deter-

mine which of these interaction terms contributed significantly to

a better fit of the model and identified 39 significant interaction

terms to include; the inclusion of these interaction terms signifi-

cantly improved the fit of the model (LRT, p < 0.001).

Our final model produced a set of nine logit equations

describing the relative odds of belonging to each mtDNA hap-

logroup instead of the reference mtDNA haplogroup, L0/L1. We

used these relative odds to determine each sample’s classification

probability for each of our ten mtDNA haplogroups. Additionally,

we used the logit equations to calculate the fitted classification

probabilities of each sample in our test set for each mtDNA hap-

logroup (Table S9). For each individual, the mtDNA haplogroup

with the highest classification probability was the mtDNA hap-

logroup predicted by the model. We repeated the model-fitting

procedure with three different randomly selected training subsets
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from our data. Although particular details did change depending

on the training set used, the general performance of the model

was consistent for multiple training sets.
Results

Composition of mtDNA Haplogroups Varies among

Populations

We first explored the relationship between mtDNA hap-

logroups and continental ancestry within populations of

the HGDP. For each of the samples in the HGDP dataset,

we classified the mtDNA haplogroup and estimated the

proportion of autosomal ancestry from each of the seven

continental regions (sub-Saharan Africa, the Middle East,

Europe, Central and South Asia, East Asia, Oceania, and

the Americas). We then averaged continental-ancestry pro-

portions among samples in each population (Figure 1B, left

column). Additionally, we tabulated the frequency of each

mtDNA haplogroup in each population (Figure 1B, right

column).

Each mtDNA haplogroup was found in several popula-

tions, most populations (50/52) contained more than

onemtDNAhaplogroup, and 46/52 populations contained

three or more mtDNA haplogroups (the median was six

mtDNA haplogroups per population; Figure 1B). Popula-

tions from sub-Saharan Africa (e.g., Biaka Pygmy, Bantu,

and Yoruba) consisted almost exclusively of samples

assigned to mtDNA haplogroups L0/L1, L2, or L3. Hap-

logroup H appeared at relatively high frequencies in popu-

lations from Europe and the Middle East. Haplogroups M,

C, D, and A were most frequent in populations from East

Asia and the Americas. Haplogroup M was frequent in

populations of mostly East Asian, Central and South Asian,

or Oceanian ancestry. Overall, the relationship between

a population’s continental origin and its haplogroup

composition was markedly heterogeneous.

In each of the five 1KGP populations (ASW, CLM, GBR,

MXL, and PUR), we identified eight different mtDNA hap-

logroups, significantly higher than the median value of six

mtDNA haplogroups per population found in HGDP pop-

ulations (one-tailed t test, p < 0.001). The high frequency

of haplogroup H in GBR and of haplogroup L3 in ASWwas

consistent with the coincidence of these haplogroups with

European ancestry and African ancestry, respectively, in

the HGDP populations. Haplogroup A was the most com-

mon haplogroup in the PUR, MXL, and CLM populations,

even though it was not observed in any European HGDP

populations, and in fact was most frequent in the Maya.

These observations suggest that the relationship between

mtDNA haplogroups and geographic origin breaks down

in recently admixed populations.
Estimates of Continental Ancestry within mtDNA

Haplogroups

To assess variation in continental ancestry among individ-

uals with the same mtDNA haplogroup, we averaged the
5, 2015



Figure2. Individual Continental-Ancestry
Proportions within Each Haplogroup in
the HGDP
Each horizontal line is a barplot for a single
HGDP sample and indicates individual
continental-ancestry proportions. Conti-
nental regions are colored according to
the key at the top. Individual barplots
are grouped into the 23 mtDNA hap-
logroups as indicated on the top left. Each
haplogroup is labeled with the mean pair-
wise Euclidean distance (see Material and
Methods), and haplogroups are sorted by
increasing mean pairwise Euclidean dis-
tance from top to bottom and left to right.
individual ancestry proportions among samples within

each mtDNA haplogroup in populations from the HGDP

(Figure 1C) and the 1KGP (Figure 3B). The maximum pro-

portion of ancestry from any single continental region

for each haplogroup was, on average, higher in the 1KGP

(one-tailed t test, p < 0.01). This might be attributed to

higher diversity in continental-ancestry proportions in

the HGDP populations than in the 1KGP populations

and to the larger contribution of continental ancestry

from Europe in 1KGP populations.

Next, we performed a permutation test to determine

whether, in any mtDNA haplogroup, one or more of the

seven continental-ancestry proportions were higher than

expected by chance. In each haplogroup, one or two con-

tinental-ancestry components were significantly higher

than expected (Figure S5). These results suggest that

some haplogroups are associated with a higher average

ancestry proportion from a specific continental region

than expected by chance. This affirms the ad hoc visual re-

lationships suggested by the co-occurrence of high average

continental ancestry and high haplogroup frequency

within the HGDP populations (Figure 1B).

Except for ASW, the 1KGP populations had higher

average proportions of ancestry from Europe than from

other geographical regions, presumably because of recent

admixture, and this decreased our ability to detect associa-
The American Journal of Human Ge
tions between continental ancestry

regions and mtDNA haplogroups by

using a permutation test (Figure S5).

Accordingly, many of the associa-

tions we observed within the HGDP

populations were also present in the

1KGP dataset, but fewer of these asso-

ciations were significant.

Heterogeneity of Individual

Continental-Ancestry Proportions

within mtDNA Haplogroups

Even if certain mtDNA haplogroups

are significantly associated with a

higher proportion of ancestry from

a specific geographical region, the
extent to which estimates of individual continental-

ancestry proportions can be accurately inferred is unclear.

To address this issue, we first examined the inter-individual

variation in continental-ancestry composition within

mtDNA haplogroups. We found that individual continen-

tal-ancestry proportions, as measured by the SD of ancestry

proportions within eachmtDNA haplogroup, in the HGDP

dataset varied considerably among individuals (Table S6).

For example, the SD of East Asian ancestry was >0.40 in

mtDNA haplogroups M, C, D, N, A, and HV, which limited

the conclusions we could make regarding East Asian

ancestry in individuals with these haplogroups. SDs

of continental-ancestry proportions within each mtDNA

haplogroup were generally lower in the 1KGP populations,

perhaps because the geographical origin of individuals in

these populations is less diverse than that in the HGDP.

Next, we calculated the mean pairwise Euclidean dis-

tance between continental-ancestry proportions among

individuals within each mtDNA haplogroup (Figure 2;

Figure 3C). This distance is a quantitative measure of the

inter-individual variability in continental-ancestry propor-

tions within a haplogroup. The mean pairwise Euclidean

distance was relatively low (i.e.,<0.5) in a fewmtDNA hap-

logroups (e.g., R9 in HGDP and T and H in the 1KGP), sug-

gesting a stronger association between individual conti-

nental-ancestry proportions and an mtDNA haplogroup.
netics 96, 183–193, February 5, 2015 187



A C

B

Figure 3. mtDNA-Haplogroup Fre-
quencies, Population-Averaged and Hap-
logroup-Averaged Continental-Ancestry
Proportions, and Individual Continental-
Ancestry Proportions in the 1KGP Samples
(A) Left column: barplots of continental-
ancestry proportions averaged within
each 1KGP population. Barplots are
colored by continental region (labeled by
colored bars in Figure 1A) and sorted by
continental ancestry. Right column: bar-
plots of mtDNA-haplogroup frequencies
within each population. Barplots are
colored by haplogroup (labeled by the hap-
logroup boxes in B).
(B) Barplots of continental-ancestry pro-
portions averaged within each mtDNA
haplogroup within the 1KGP. Barplots are
colored by continental region (see key at
bottom). The unscaled phylogeny on the
left is the same as in Figure 1C. Numbers
to the right of haplogroup labels are the
sample size for each haplogroup. Some
haplogroups were not observed in the
1KGP samples.
(C) Individual continental-ancestry pro-
portions within each haplogroup. Each
horizontal line is a barplot for a single
1KGP sample and indicates individual con-
tinental-ancestry proportions. Continen-
tal regions are colored according to the
key at bottom. Individual barplots are
grouped into mtDNA haplogroups as indi-
cated on the top left. Each haplogroup is
labeled with the mean pairwise Euclidean
distance (see Material and Methods), and
haplogroups are sorted by increasing
mean pairwise Euclidean distance from
top to bottom and left to right. NA indi-
cates not available.
However, the mean pairwise Euclidean distance of most

mtDNA haplogroups (17/23) was high (e.g., J, HV, and M

in HGDP and L3 in 1KGP), indicating that these mtDNA

haplogroups are less informative for inferring individual

genetic ancestry.

Overall, the mean pairwise Euclidean distance within

each mtDNA haplogroup was much lower in the 1KGP

populations (Figure S6) than in the HGDP. Additionally,

mean pairwise Euclidean distances were not necessarily

similar for the same mtDNA haplogroup in 1KGP and

HGDP (Figure 2; Figure 3C). For example, haplogroup H

had a much lower mean pairwise Euclidean distance in

1KGP populations (d ¼ 0.15) than in HGDP populations

(d ¼ 0.60). This indicates that inferences drawn from the

HGDP dataset are not necessarily portable to the 1KGP

populations and vice versa.

To quantitatively assess how informative each mtDNA

haplogroup in the HGDP populations was for predicting

individual continental-ancestry proportions, we calculated

the consistency score within each mtDNA haplogroup in

the HGDP (Table S7). The consistency score measures the

frequency with which an individual’s highest continen-

tal-ancestry proportion matches the highest average conti-
188 The American Journal of Human Genetics 96, 183–193, February
nental-ancestry proportion in that individual’s mtDNA

haplogroup. In HGDP, consistency ranged from 0.28 to

0.93 with a mean of 0.56. However, only 14/23 mtDNA

haplogroups had a consistency score > 50%, meaning

that in slightly more than half of mtDNA haplogroups

in the HGDP, individuals’ highest continental-ancestry

proportions matched their corresponding mtDNA hap-

logroup’s highest average continental-ancestry proportion

(Figure S7). HGDP mtDNA haplogroups with high consis-

tency scores had low mean pairwise Euclidean distances

(Pearson’s product-moment correlation, R2 ¼ �0.86,

p < 0.001). For example, haplogroup R9, found only in

East Asians, had the lowest mean pairwise Euclidean

distance (d ¼ 0.17) and was also the most consistent

(consistency ¼ 0.92), suggesting that individuals from R9

could reasonably be described as having recent East Asian

genetic ancestry.

For the 1KGP, we measured consistency by using the

HGDP as a reference panel to determine the maximum

continental-ancestry component for each mtDNA

haplogroup. About half of the mtDNA haplogroups in

1KGP had consistency scores > 50%, and in many cases,

the scores were higher than in the HGDP (Figure S7;
5, 2015



Table S7). The correlation between consistency and mean

pairwise Euclidean distances was both weaker and not sta-

tistically significant in the 1KGP data (R2 ¼ �0.49, p ¼
0.07), and several haplogroups (M, C, D, W, B, U, and K)

even had consistency scores of 0. The consistency scores

of some haplogroups varied substantially between the

HGDP and 1KGP datasets (e.g., haplogroup A had d ¼
0.67 in HGDP and d ¼ 0.26 in 1KGP).

Measuring the Association between mtDNA-

Haplogroup Membership and Autosomal Estimates of

Continental Ancestry

To determine the association between individual conti-

nental autosomal ancestry and mtDNA-haplogroup mem-

bership, we fit a multinomial logit model to predict each

individual’s mtDNA haplogroup from his or her specific

combination of continental-ancestry proportions. Our

logit model was a significantly better fit to the data than

a null model (LRT, p < 0.001). McFadden’s pseudo-R2 for

this final model was 0.84, indicating a very good fit to

the data. When we used the logit model to predict

mtDNA-haplogroup membership for each of the individ-

uals in our test set, 24% of the predictions were correct

in the HGDP populations; for comparison, a random

assignment of mtDNA haplogroup would be expected to

be correct 10% of the time. Furthermore, the classification

probabilities for the correct mtDNA haplogroup of each

sample were significantly higher (t test, p < 0.001) than

the classification probabilities for incorrect mtDNA

haplogroups. Classification probabilities for the correct

mtDNA haplogroup were also significantly higher (t test,

p¼ 0.02) than classification probabilities for incorrect hap-

logroups in 1KGP populations (Figure S8). However, only

7% of the predictions were correct in the 1KGP popula-

tions. Prediction accuracy was significantly higher in the

HGDP (c2 test, p ¼ 1 3 10�14), even though both datasets

were used for building the model. For both datasets, there

were a considerable number of samples for which the pre-

diction’s classification probability was very high, but the

prediction was nonetheless incorrect (points in the upper

left corner of each panel in Figure S9). The effect sizes of

the estimated coefficients revealed interesting relation-

ships between autosomal continental-ancestry propor-

tions and mtDNA haplogroups (Table S8). For example,

the combination of Middle Eastern and Central and South

Asian ancestry drastically decreased an individual’s proba-

bility of belonging to haplogroup C—the highest coeffi-

cient effect size (b ¼ �1,166.12).

We examined the classification probabilities in more

detail to identify which mtDNA haplogroups were most

likely to be classified incorrectly by our logit model

(Figure 4). In the HGDP samples, classification accuracy

ranged from 9% (L3) to 57% (L0/L1) (Figure 4A), and

except for haplogroup L0/L1, all mtDNA haplogroups

were more likely to be classified incorrectly. For many hap-

logroups, the highest classification probability did not

match the correct haplogroup. For example, L2 was classi-
The Americ
fied as L0/L1 42% of the time and classified correctly only

9%, and T was classified incorrectly as U 39% of the time

and classified correctly 13% of the time. Samples from hap-

logroups A–D were often incorrectly classified as one other

(Figure 4A). Classification probabilities for a given hap-

logroup in the 1KGP dataset usually differed from their

counterparts in the HGDP populations, and overall, classi-

fication of mtDNA haplogroups showed even poorer per-

formance in the 1KGP dataset. All mtDNA haplogroups

in 1KGP populations had higher probabilities of misclassi-

fication than did HGDP populations, and none were more

likely to be classified correctly (Figure 4B). One haplogroup

(D) was never classified correctly.
Discussion

We compared genetic-ancestry inferences made by

mtDNA-haplogroup membership to those made by

autosomal SNPs in worldwide populations. Continental-

ancestry proportions often varied widely among individ-

uals sharing the same mtDNA haplogroup (e.g., Figure 5).

For only half of the mtDNA haplogroups did the majority

of individuals have their highest continental-ancestry

proportion match the haplogroup’s highest average conti-

nental-ancestry proportion. Predicting an individual’s

mtDNA haplogroup from his or her continental-ancestry

proportions was usually incorrect. Collectively, these re-

sults indicate that for most individuals in our sample,

mtDNA-haplogroup membership provides limited infor-

mation about either continental ancestry or geographical

origin.

Mean individual ancestry proportions varied substan-

tially in all but a few of the major mtDNA haplogroups.

Moreover, high inter-individual variation in continental-

ancestry proportions, as measured by mean pairwise

Euclidean distance (Figure 2), indicates that many mtDNA

haplogroups consist of individuals with diverse ancestry

backgrounds. Thus, even for haplogroups that have high

average continental-ancestry proportions, many individ-

uals within that haplogroup do not have more than 50%

ancestry from that same continent. For example, 24% of

the Brahui population belonged to haplogroup H, but

the average European ancestry in the Brahui was only

0.01. mtDNA-haplogroup distributions in the HGDP agree

with previously observed descriptions of geographic distri-

butions (e.g., L0/L1, L2, and L3 are frequent in Africa andH

is frequent in Europe, etc.). However, there are some signif-

icant departures from these generalizations.

Our results show that most mtDNA haplogroups are

associated with higher average continental ancestry from

a particular continental region than predicted by chance

(Figure S5). This result is consistent with our observa-

tion that the highest continental-ancestry proportion for

most individuals is the same as that of the haplogroup to

which they belong. In other words, mtDNA-haplogroup

membership does capture some information about
an Journal of Human Genetics 96, 183–193, February 5, 2015 189
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Figure 4. Misclassification Probabilities
in the HGDP and 1KGP
Each cell (row i, column j) denotes the
probability that a sample experimentally
determined as haplogroup i is classified as
haplogroup j on the basis of a fitted logit
model. Cells are colored by increasing
classification probabilities from white to
blue (see key at bottom). Diagonal entries
(gray outlines) are the probability of being
classified correctly. Barplots on the right
show the average probability of misclassifi-
cation for each haplogroup, which is the
total of all non-diagonal values in each
row. The top 10% of non-zero classification
probabilities are labeled (white text).
(A) Misclassification in the HGDP.
(B) Misclassification in the 1KGP.
continental origins. Although this information appears

to support the usefulness of mtDNA haplogroups for

estimating genetic ancestry, approximately one-third of

mtDNA haplogroups do not exhibit this pattern (Table

S7). For example, haplogroups C, D, and R9 are found pre-

dominantly in East Asian populations in the HGDP dataset

(Figure 1C); however, a substantial number of individuals

with haplogroups C and D have negligible East Asian

autosomal ancestry and predominately Native American

autosomal ancestry (Figure 2).

The second-highest and third-highest continental-

ancestry proportions within an individual’s overall

ancestry profile often varied significantly within a hap-

logroup (Figure S5). Several mtDNA haplogroups also

showed significant associations with higher-than-average

continental ancestry from a second continental region,

but most did not. Thus, although an mtDNA-haplogroup
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classification might provide accurate

information about an individual’s

highest continental-ancestry compo-

nent, information regarding an indi-

vidual’s other ancestry components

is limited.

It is also important to note that

sex-biased admixture can result in a

mismatch between an individual’s

highest autosomal-ancestry propor-

tion and mtDNA haplogroup. For

example, Hispanic and Latino popula-

tions have high European autosomal-

ancestry proportions but have almost

exclusively Native American mtDNA

haplogroups as a result of dispro-

portionate contributions from Euro-

pean men and Native American

women.41,42 We observed a similar

pattern in the PUR, MXL, and CLM

1KGP populations.

If the association between an indi-

vidual’s mtDNA haplogroup and his
or her combination of continental-ancestry proportions

is high, then we should be able to use an individual’s con-

tinental-ancestry proportions to predict that individual’s

mtDNA haplogroup. However, our logit-based mtDNA-

haplogroup predictions were often incorrect (76% incor-

rect in the HGDP), despite the good fit of our model.

Some haplogroups were difficult to distinguish from one

another, and many samples were misclassified as a phylo-

genetically distant mtDNA haplogroup (e.g., C misclassi-

fied as L2; Figure 4A). Our failed predictions were not

necessarily ‘‘close’’ to being correct. Often the failed predic-

tions had very high classification probabilities, so the

strength of the prediction did not necessarily indicate its

confidence level (Figure S9). These inaccurate predictions

underscore the observation that a substantial amount of

ancestry information is not captured by mtDNA-hap-

logroup classifications.
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Figure 5. mtDNA-Haplogroup Member-
ship Might Not Be Associated with Auto-
somal Ancestry Proportions
Each point on the map marks a sampled
population, and the population’s mtDNA-
haplogroup frequencies are shown in the
horizontal barplots below (color key corre-
sponds to haplogroups in Figures 1C and
3B). One individual from each population,
alongwith a vertical barplot of the individ-
ual’s autosomal-ancestry proportions, is
shownbelow themap. The two individuals
from haplogroup R9 have highly similar
autosomal-ancestry proportions, whereas
those from haplogroup J are very different.
A highly informative mtDNA haplogroup would have a

strong association with ancestry proportion(s) from spe-

cific continental region(s), a low mean pairwise Euclidean

distance among individuals within the haplogroup, and a

high consistency score. Only three haplogroups satisfy

these criteria: R9, K, and L0/L1. Ideally, a haplogroup

should also have a high consistency score in both the

HDGP reference panel and in admixed populations. This

is the case for L0/L1, but not for K (R9 was not present in

1KGP).

Our results demonstrate that the majority of mtDNA

haplogroups convey information about one, or possibly

two, top ancestry components, whereas other ancestry in-

formation is lost. Accordingly, most mtDNA haplogroups

that are assigned to a continental group (e.g., an ‘‘African

haplogroup’’ or a ‘‘European haplogroup’’) offer an incom-

plete picture of the complexity of continental ancestry

within an mtDNA haplogroup. Effectively communicating

this complexity to a consumer or the public poses a sub-

stantial challenge,22 and failure to communicate this infor-

mation could perpetuate misinterpretations.

Overall, our results question the validity of making any-

thing but fairly crude inferences of continental ancestry on

the basis of most mtDNA lineage tests. The limitations of

lineage-based ancestry inference should be acknowledged

by researchers and made explicit to consumers of commer-

cial ancestry-testing products. Although this might merely

bolster DTC justifications for independent ancestry infer-

ence using autosomal markers, we think it highlights the

continued development and refinement of guidelines for

genetic-ancestry inference. Finally, it also suggests that

additional consumer education is required for more fully

understanding the relationship between lineage- and auto-

somal-based ancestry testing.
The Americ
Supplemental Data

Supplemental Data include nine figures and nine tables and can be

found with this article online at http://dx.doi.org/10.1016/j.ajhg.

2014.12.015.
Acknowledgments

We acknowledge Arthur Baines and Matthew P. Conomos for sta-

tistical consulting through the University of Washington’s Biosta-

tistics Consulting program. This research was supported in part by

NIH grant R01GM110068 and an NIH National Human Genome

Research Institute Genome Training Grant.

Received: July 25, 2014

Accepted: December 9, 2014

Published: January 22, 2015
Web Resources

The URLs for data presented herein are as follows:

1000 Genomes, http://www.1000genomes.org

HGDP SNP data, http://www.hagsc.org/hgdp/files.html

PLINK, http://pngu.mgh.harvard.edu/purcell/plink/

UCSC Genome Browser, http://genome.ucsc.edu/
References

1. Underhill, P.A., and Kivisild, T. (2007). Use of y chromosome

and mitochondrial DNA population structure in tracing hu-

man migrations. Annu. Rev. Genet. 41, 539–564.

2. Cavalli-Sforza, L.L., and Feldman, M.W. (2003). The applica-

tion of molecular genetic approaches to the study of human

evolution. Nat. Genet. 33, 266–275.

3. Torroni, A., Schurr, T.G., Cabell, M.F., Brown, M.D., Neel, J.V.,

Larsen, M., Smith, D.G., Vullo, C.M., and Wallace, D.C.
an Journal of Human Genetics 96, 183–193, February 5, 2015 191

http://dx.doi.org/10.1016/j.ajhg.2014.12.015
http://dx.doi.org/10.1016/j.ajhg.2014.12.015
http://www.1000genomes.org
http://www.hagsc.org/hgdp/files.html
http://pngu.mgh.harvard.edu/purcell/plink/
http://genome.ucsc.edu/


(1993). Asian affinities and continental radiation of the four

founding Native American mtDNAs. Am. J. Hum. Genet. 53,

563–590.

4. Torroni, A., Sukernik, R.I., Schurr, T.G., Starikorskaya, Y.B.,

Cabell, M.F., Crawford, M.H., Comuzzie, A.G., and Wallace,

D.C. (1993). mtDNA variation of aboriginal Siberians reveals

distinct genetic affinities with Native Americans. Am. J.

Hum. Genet. 53, 591–608.

5. Chen, Y.S., Torroni, A., Excoffier, L., Santachiara-Benerecetti,

A.S., and Wallace, D.C. (1995). Analysis of mtDNA variation

in African populations reveals the most ancient of all hu-

man continent-specific haplogroups. Am. J. Hum. Genet. 57,

133–149.

6. Torroni, A., Huoponen, K., Francalacci, P., Petrozzi, M., Mor-

elli, L., Scozzari, R., Obinu, D., Savontaus, M.L., and Wallace,

D.C. (1996). Classification of EuropeanmtDNAs from an anal-

ysis of three European populations. Genetics 144, 1835–1850.

7. Herrnstadt, C., Elson, J.L., Fahy, E., Preston, G., Turnbull,

D.M., Anderson, C., Ghosh, S.S., Olefsky, J.M., Beal, M.F.,

Davis, R.E., and Howell, N. (2002). Reduced-median-network

analysis of complete mitochondrial DNA coding-region

sequences for the major African, Asian, and European hap-

logroups. Am. J. Hum. Genet. 70, 1152–1171.

8. van Oven, M., and Kayser, M. (2009). Updated comprehensive

phylogenetic tree of global human mitochondrial DNA varia-

tion. Hum. Mutat. 30, E386–E394.

9. Kivisild, T., Rootsi, S., Metspalu, M., Mastana, S., Kaldma, K.,

Parik, J., Metspalu, E., Adojaan, M., Tolk, H.-V., Stepanov, V.,

et al. (2003). The genetic heritage of the earliest settlers persists

both in Indian tribal and caste populations. Am. J. Hum.

Genet. 72, 313–332.

10. Kong, Q.-P., Yao, Y.-G., Liu, M., Shen, S.-P., Chen, C., Zhu,

C.-L., Palanichamy, M.G., and Zhang, Y.-P. (2003). Mitochon-

drial DNA sequence polymorphisms of five ethnic popula-

tions from northern China. Hum. Genet. 113, 391–405.

11. Boattini, A., Martı́nez-Cruz, B., Sarno, S., Harmant, C., Useli,

A., Sanz, P., Yang-Yao, D., Manry, J., Ciani, G., Luiselli, D.,

et al.; Genographic Consortium (2013). Uniparental markers

in Italy reveal a sex-biased genetic structure and different

historical strata. PLoS ONE 8, e65441.

12. Wen, B., Xie, X., Gao, S., Li, H., Shi, H., Song, X., Qian, T., Xiao,

C., Jin, J., Su, B., et al. (2004). Analyses of genetic structure of

Tibeto-Burman populations reveals sex-biased admixture in

southern Tibeto-Burmans. Am. J. Hum. Genet. 74, 856–865.

13. Wood, E.T., Stover, D.A., Ehret, C., Destro-Bisol, G., Spedini,

G., McLeod, H., Louie, L., Bamshad, M., Strassmann, B.I., Soo-

dyall, H., and Hammer, M.F. (2005). Contrasting patterns of

Y chromosome and mtDNA variation in Africa: evidence for -

sex-biased demographic processes. Eur. J. Hum. Genet. 13,

867–876.

14. Shriver, M.D., and Kittles, R.A. (2004). Genetic ancestry and

the search for personalized genetic histories. Nat. Rev. Genet.

5, 611–618.

15. Bolnick, D.A., Fullwiley, D., Duster, T., Cooper, R.S., Fujimura,

J.H., Kahn, J., Kaufman, J.S., Marks, J., Morning, A., Nelson, A.,

et al. (2007). Genetics. The science and business of genetic

ancestry testing. Science 318, 399–400.

16. Frudakis, T. (2008). The legitimacy of genetic ancestry tests.

Science 319, 1039–1040, author reply 1039–1040.

17. Sarata, A.K. (2008). Genetic Ancestry Testing: CRS Re-

port for Congress. http://assets.opencrs.com/rpts/RS22830_

20080312.pdf
192 The American Journal of Human Genetics 96, 183–193, February
18. The American Society of Human Genetics (2008). Ancestry

testing statement. http://www.ashg.org/pdf/ASHGAncestry

TestingStatement_FINAL.pdf

19. Lee, D.Y., Hayes, J.J., Pruss, D., and Wolffe, A.P. (1993). A pos-

itive role for histone acetylation in transcription factor access

to nucleosomal DNA. Cell 72, 73–84.

20. Via, M., Ziv, E., and Burchard, E.G. (2009). Recent advances of

genetic ancestry testing in biomedical research and direct to

consumer testing. Clin. Genet. 76, 225–235.

21. Royal, C.D., Novembre, J., Fullerton, S.M., Goldstein, D.B.,

Long, J.C., Bamshad, M.J., and Clark, A.G. (2010). Inferring

genetic ancestry: opportunities, challenges, and implications.

Am. J. Hum. Genet. 86, 661–673.

22. Wagner, J.K., Cooper, J.D., Sterling, R., and Royal, C.D. (2012).

Tilting at windmills no longer: a data-driven discussion of

DTC DNA ancestry tests. Genet. Med. 14, 586–593.

23. Pritchard, J.K., Stephens, M., and Donnelly, P. (2000). Infer-

ence of population structure using multilocus genotype

data. Genetics 155, 945–959.

24. Alexander, D.H., Novembre, J., and Lange, K. (2009). Fast

model-based estimation of ancestry in unrelated individuals.

Genome Res. 19, 1655–1664.

25. Tang, H., Peng, J., Wang, P., and Risch, N.J. (2005). Estimation

of individual admixture: analytical and study design consider-

ations. Genet. Epidemiol. 28, 289–301.

26. Shriver, M.D., Smith, M.W., Jin, L., Marcini, A., Akey, J.M.,

Deka, R., and Ferrell, R.E. (1997). Ethnic-affiliation estimation

by use of population-specific DNA markers. Am. J. Hum.

Genet. 60, 957–964.

27. Salas, A., Acosta, A., Alvarez-Iglesias, V., Cerezo, M., Phillips,

C., Lareu, M.V., and Carracedo, A. (2008). The mtDNA

ancestry of admixed Colombian populations. Am. J. Hum.

Biol. 20, 584–591.

28. Watkins, W.S., Xing, J., Huff, C., Witherspoon, D.J., Zhang, Y.,

Perego, U.A., Woodward, S.R., and Jorde, L.B. (2012). Genetic

analysis of ancestry, admixture and selection in Bolivian and

Totonac populations of the New World. BMC Genet. 13, 39.

29. Cardena, M.M.S.G., Ribeiro-Dos-Santos, A., Santos, S., Man-

sur, A.J., Pereira, A.C., and Fridman, C. (2013). Assessment

of the relationship between self-declared ethnicity, mitochon-

drial haplogroups and genomic ancestry in Brazilian individ-

uals. PLoS ONE 8, e62005.

30. Poetsch,M.,Wiegand, A., Harder, M., Blöhm, R., Rakotomavo,
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