ARTICLE

CLPB Mutations Cause 3-Methylglutaconic Aciduria,
Progressive Brain Atrophy, Intellectual Disability,
Congenital Neutropenia, Cataracts, Movement Disorder
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We studied a group of individuals with elevated urinary excretion of 3-methylglutaconic acid, neutropenia that can develop into leuke-
mia, a neurological phenotype ranging from nonprogressive intellectual disability to a prenatal encephalopathy with progressive brain
atrophy, movement disorder, cataracts, and early death. Exome sequencing of two unrelated individuals and subsequent Sanger
sequencing of 16 individuals with an overlapping phenotype identified a total of 14 rare, predicted deleterious alleles in CLPB in 14 in-
dividuals from 9 unrelated families. CLPB encodes caseinolytic peptidase B homolog ClpB, a member of the AAA+ protein family. To
evaluate the relevance of CLPB in the pathogenesis of this syndrome, we developed a zebrafish model and an in vitro assay to measure
ATPase activity. Suppression of cIpb in zebrafish embryos induced a central nervous system phenotype that was consistent with cerebellar
and cerebral atrophy that could be rescued by wild-type, but not mutant, human CLPB mRNA. Consistent with these data, the loss-of-
function effect of one of the identified variants (c.1222A>G [p.Arg408Gly]) was supported further by in vitro evidence with the mutant
peptides abolishing ATPase function. Additionally, we show that CLPB interacts biochemically with ATP2A2, known to be involved in
apoptotic processes in severe congenital neutropenia (SCN) 3 (Kostmann disease [caused by HAX1 mutations]). Taken together, muta-
tions in CLPB define a syndrome with intellectual disability, congenital neutropenia, progressive brain atrophy, movement disorder, cat-
aracts, and 3-methylglutaconic aciduria.

Introduction

The implementation of exome sequencing (ES) and
genome sequencing has expanded our knowledge of genes
that cause pediatric syndromic phenotypes.' For a subset
of these individuals, the diagnostic approach can be assis-
ted by findings from metabolic markers in blood and urine
that might point toward hitherto unappreciated inborn
errors of metabolism (IEMs).?

3-methylglutaconic acid (3-MGA) detected in urine sam-
ples is such a marker, showing consistently and signifi-
cantly elevated levels in a rapidly growing group of IEMs
with a syndromic phenotype.® This group encompasses
several disorders in which phospholipid remodeling and
other mitochondrial membrane-related processes are
defective. Clinical features are heterogeneous but distinc-
tive. For example, Barth syndrome (MIM 302060), caused

by mutations in TAZ (MIM 300394), is associated with

’Nijmegen Centre for Mitochondrial Disorders (NCMD), Amalia Children’s Hospital, Radboudumc, 6500HB Nijmegen, the Netherlands; 2Department of
Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdarnisk, Ktadki str. 24, 80822 Gdansk, Poland; *Center for Human
Disease Modeling, Duke University Medical Center, Durham, NC 27710, USA; “Clinical Genomics, Maastricht UMC+, PO Box 616, 6200MD Maastricht,
the Netherlands; *Institute of Human Genetics, Helmholtz Zentrum Munich, 85764 Neuherberg, Germany; SInstitute of Human Genetics, Technische Uni-
versitdt Miinchen, 81675 Munich, Germany; 7Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University,
80337 Munich, Germany; ®Department of Pediatrics, University Children’s Hospital, University Medical Center Eppendorf, 20246 Hamburg, Germany;
“Institute of Neurogenetics, University of Liibeck, 23562 Liibeck, Germany; '°Departments of Pediatrics and Laboratory Genetic Metabolic Diseases, Maas-
tricht University Medical Center, 6202AZ Maastricht, the Netherlands; ' Department of General Pediatrics, Neonatology and Pediatric Cardiology, Univer-
sity Children’s Hospital, Heinrich-Heine University, Moorenstr. 5, 40225 Diisseldorf, Germany; '*Department of Laboratory Medicine, Laboratory of
Hematology, Radboudumc, 6525GA Nijmegen, the Netherlands; '®Division of Biochemical Diseases, Department of Pediatrics, B.C. Children’s Hospital,
Treatable Intellectual Disability Endeavour, Vancouver, BC V6H 3N4, Canada; 14Child and Family Research Institute, Centre for Molecular Medicine &
Therapeutics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; 15Department of Neuropediatrics, University Children’s Hospital, Ruhr
University Bochum, 44791 Bochum, Germany; 16Department of Genetics, United Laboratories, Tartu University Hospital, Tartu 51014, Estonia;
17Metabolic Genetics, Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; 18Department of Human Genetics,
Donders Institute for Brain, Cognition and Behaviour, Radboudumc, 6500HB Nijmegen, the Netherlands; 19BjoMediTech, University of Tampere, 33014
Tampere, Finland; 2°Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Disease, Academic Medical Center, 1100AZ Amster-
dam, the Netherlands; 2‘Department of Medical Genetics, Warsaw Medical University, 02-106 Warsaw, Poland; 22Department of Pediatrics, Nutrition and
Metabolic Diseases, Department of Medical Genetics, Children’s Memorial Health Institute, 20 Aleja Dzieci Polskich, 04-730 Warsaw, Poland; 23Department
of Neurology, Radboudumc, 6500HB Nijmegen, the Netherlands; Z4Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboudumc,
6525GA Nijmegen, the Netherlands

2These authors contributed equally to this work

*Correspondence: saskia-wortmann@gmx.de

http://dx.doi.org/10.1016/j.ajhg.2014.12.013. ©2015 by The American Society of Human Genetics. All rights reserved.

P

\!} CrossMark

The American Journal of Human Genetics 96, 245-257, February 5, 2015 245


mailto:saskia-wortmann@gmx.de
http://dx.doi.org/10.1016/j.ajhg.2014.12.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2014.12.013&domain=pdf

(cardio)myopathy, neutropenia, and delayed motor mile-
stones; Sengers syndrome (MIM 212350), driven by muta-
tions in AGK (MIM 610345), manifests cardiomyopathy
and cataracts; and MEGDEL syndrome (MIM 614739),
caused by mutations in SERACI (MIM 614725), is associ-
ated with deafness and dystonia.” In addition, congenital
neutropenia and central nervous system involvement
have also been reported in disorders without 3-MGA-uria,
such as Kostmann syndrome (MIM 610738; HAX1 [MIM
605998]), Shwachman-Bodian-Diamond disease (MIM
260400; SBDS [MIM 607444]), and Cohen syndrome
(MIM 216550; VPS13B [MIM 607817]).

Here we present a constellation of pathologies that
cannot be reconciled with any known clinical entity.
This phenotypic spectrum encompasses intellectual
disability (ID)/developmental delay (DD), congenital neu-
tropenia, progressive brain atrophy, movement disorder,
and bilateral cataracts. Though all individuals share
3-MGA-uria as a characteristic biomarker, the severity of
the other signs and symptoms shows interindividual vari-
ability. Nonetheless, under the hypothesis that the consis-
tently observed metabolic signature underpins a discrete
molecular genetic disorder, we performed ES in two unre-
lated individuals, followed by subsequent candidate gene
testing in a further 16 affected individuals. Through these
studies, the implementation of an in vivo model that reca-
pitulated key neuroanatomical aspects of the disorder, and
biochemical in vitro testing, we report the identification of
loss-of-function mutations in CLPB (RefSeq accession
number NM_030813.4).

Subjects and Methods

Clinical Cohort

Individuals #6 and #9 manifested an overlapping phenotype of ID,
neutropenia, cataracts, and 3-MGA-uria and were independently
evaluated by ES at two different centers (RadboudUMC, Nijmegen,
the Netherlands; Helmholtz Zentrum Munich, Germany). After
identification of the genetic defect in these cases, we selected 16
additional individuals with an overlapping clinical presentation
from the internal database at RadboudUMC. This study adhered
to the Declaration of Helsinki and written informed consent was
obtained from each individual.

Exome Sequencing and Variant Identification

ES for individual 6 was performed as previously described.® In
brief, we used a SureSelect Human All Exon 50 Mb Kit (Agilent)
for enrichment and a HiSeq2500 (Illumina). Reads were aligned
to the UCSC human reference assembly (hgl9) with BWA
v.0.5.8. More than 90% of the exome was covered at least 20X.
Single-nucleotide variants (SNVs) and small insertions and dele-
tions were detected with SAMtools v.0.1.7. Variant prioritization
was performed based on an autosomal-recessive pattern of inheri-
tance. ES for individual 9 was performed as previously described
with minor adjustments.2 In brief, we used the SureSelectXT Hu-
man All Exon 50Mb Kit (Agilent) for enrichment and a SOLiD
5500XL (Life Technologies). We excluded all nongenic, intronic
(other than canonical splice sites), and synonymous variants

and all known variants with a frequency >1% in dbSNP v.132
and our in-house variant database consisting of 672 exomes.
Next, because a recessive disease model was expected and given
the assumption of a common ancestral allele (based on parental
consanguinity), we prioritized variants according the percentage
of variant reads. For this, we used the threshold of >75% variant
reads as an indicator for homozygous variants.

Mutation Analysis by Sanger Sequencing

Primer sequences for amplification of all protein coding exons of
CLPB (RefSeq NM_030813.4) are shown in Table S1 available
online. PCR conditions are available upon request. PCR products
were sequenced with the ABI PRISM BigDye Terminator Cycle
Sequencing v.2.0 Ready Reaction Kit and analyzed with the ABI
PRISM 3730 DNA analyzer (Applied Biosystems).

In Vivo Functional Modeling of CLPB Mutations in
Zebrafish

Zebrafish embryos and adults were maintained and mated as
described and all experiments were carried out with the approval
of the Institutional Animal Care and Use Committee (IACUC).”
For the in vivo complementation experiments, a translational-
blocking morpholino (MO) against the sole zebrafish clpb ortholog
was designed (Figure S1) and obtained from Gene Tools. We in-
jected 1 nl of diluted MO (2.5 ng) and/or RNA (200 pg for WT or
mutant clpb) into wild-type zebrafish embryos at the 1- to 4-cell
stage. For acetylated tubulin staining marking the neuronal axon
processes, injected embryos were treated as described.® For
RNA rescue and overexpression experiments, the human wild-
type mRNA of the canonical isoform (RefSeq NM_030813.4)
of CLPB was cloned into the pCS2+ vector and transcribed
in vitro with the SP6 Message Machine kit (Ambion). The
four variants tested—p.Arg408Gly, p.Met411lle, p.Tyr617Cys,
and p.Gly646Val—were introduced with Phusion high-fidelity
DNA polymerase (New England Biolabs) and custom-designed
primers. Image acquisition and analysis was performed with
Nikon NIS-Elements Advanced Research software. All experiments
were repeated in triplicate and significance of the morphant
phenotype was judged by Student’s % test.

Purification and Biochemical Characterization of
Human CLPB
The CLPBAN92 construct (deletion of predicted signal peptide)
was PCR generated with a pENTR223-hCLPB plasmid as a tem-
plate. The amplified DNA fragment was cloned into the pET15b
vector (Novagen) at the Ndel/BamHI sites, resulting in a construct
pET15b-CLPBAN92 with an introduced N-terminal His-tag. The
construct was verified by DNA sequencing. The p.Arg408Gly
change of CLPBAN92 was introduced into pET15b-CLPBAN92
by site-directed mutagenesis and confirmed by DNA sequencing.
The CLPBAN92 and its p.Arg408Gly variant were expressed in
E. coli BL21(DE3). Pelleted cells were diluted 1/1 (v/v) with buffer
(NaCl 300 mM, imidazole 20 mM, glycerol 20%, 2-mercaptoetha-
nol 5 mM, HEPES 20 mM [pH 7.4]), French press lysed, and centri-
fuged at 75,000 x g for 1 hr. The lysate was incubated with 2 ml
Ni-NTA resin in batch mode. After washing with buffer (NaCl
150 mM, imidazole 20 mM, glycerol 20%, 2-mercaptoethanol
5 mM, HEPES 40 mM [pH 7.4]) and then with the same buffer sup-
plemented with 48 mM imidazole, proteins were eluted with
300 mM pure imidazole and applied on a PD10 desalting column
equilibrated with buffer without imidazole (the other components
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of washing buffers, elution buffers, and desalting buffers remained
the same). Protein identity was confirmed by immunoblot, via an
anti-CLPB antibody (Abcam, ab87253) (Figure S2A). Figure S2B
shows purified CLPB_WT and the purified CLPB_p.Arg408Gly on
SDS-PAGE. Protein concentrations were estimated by Coomassie-
stained SDS-PAGE gel densitometry with BSA as a standard. The
ATPase activity of purified human wild-type CLPB (CLPB_WT)
and its p.Arg408Gly mutant (CLPB_p.Arg408Gly) was analyzed
with the coupled pyruvate kinase/lactate dehydrogenase assay,
as previously described.” 2 uM hCLPB was incubated with
20 mM ATP at 36°C and the absorbance change was recorded at
1 s intervals. The rate was calculated from the linear part of the
curve (steady-state rate). For WT hCLPB, the measurement was
additionally performed in the presence of casein (0.2 mg/ml).

Results

The Phenotypic Spectrum of Individuals with
Mutations in CLPB

The clinical presentation and course of the 14 affected in-
dividuals (eight females, six males) varied substantially
from a mild phenotype (individuals #1 and #2) associated
with cataracts and neutropenia but no neurological
involvement or infections to the most severe phenotype
(individuals #9-#14) associated with neonatal or even pre-
natal onset of neurological symptoms (progressive brain
atrophy, absence of development, movement disorder, sei-
zures), severe neutropenia with progression into leukemia,
and death in the first months of life. The detailed clinical
histories of the cohort can be found in the Supplemental
Data and are summarized in Table 1 and Figures 1 and 2.
Common features include ID/DD (12/14 individuals inves-
tigated), congenital neutropenia (10/14), brain atrophy
(7/9), microcephaly (7/12), movement disorder (7/13),
cataracts (5/10), and 3-MGA-uria (12/12 individuals). The
oldest affected participant alive is 18 years old and the
youngest is 2 years old. Six individuals passed away be-
tween the ages of 24 days and 46 months.

Neurological Phenotype

Two individuals (#1 and #2), currently aged 8 and 10 years,
showed no neurological involvement at all as determined
by a normal neurological examination, normal IQ test,
and, in one person, normal brain imaging. However, indi-
vidual #1 had ADHD, dyslexia, and dysgraphia and indi-
vidual #2 had a tendency to impulsivity. All other persons
(#3-#14) showed DD/ID; the most severe cases (#10-#14)
did not develop at all, did not make any eye or other con-
tact, and suffered from (episodic to permanent) uncon-
sciousness from birth until their early death. Most
of them (individuals #3-#14) showed pyramidal tract
involvement, progressing from severe hypotonia during
the first months of life to severe bilateral spasticity there-
after. In the most severe cases (individuals #12-#14), these
degenerative processes probably started during fetal life,
because all were born as “stiff babies” with generalized
increased muscle tension including contractures and jaw
lock. Additionally, 11 individuals suffered swallowing diffi-

culties, potentially of both muscular and central nervous
origin, necessitating tube feeding. In four individuals, epi-
lepsy was reported. Furthermore, there is a spectrum of
MRI abnormalities ranging from isolated cerebellar atro-
phy (#6, Figure 1]) in less severely affected individuals to
atrophy of both cerebral hemispheres, the basal ganglia,
and the cerebellum in the most severely affected persons
(Figures 1E-1H). Additionally, white matter involvement
was seen in individuals #7-#9 and 11. The brain atrophy
corresponds with the clinical finding of microcephaly in
7 of 12 investigated persons. In the individuals with basal
ganglia involvement (#7-#9), clinically established dysto-
nia was observed.

Hematological/lmmunological Phenotype

Neutropenia was noted in 10 of the 14 individuals, as se-
vere (<0.5 g/1) in six (#1, #9-#11, #13, #14) and moderate
(0.5-1.0 g/1) in three (#2, #6, #12). One person (#3) was
found to be neutropenic only subsequent to infections,
the severity of which appear concomitant with the severity
of the neurological phenotype. Whereas individuals
without neurological symptoms (#1, #2) did not suffer
from recurrent infections, individuals #3-#8 suffered
from more frequent infections than peers but without
serious complications. The remaining individuals from
the study cohort (#9-#14) suffered regularly from serious,
often life-threatening infections and were treated with
G-CSF (#9 and #12, during infections also #3), continuous
antibiotics, and antimycotics (see Figure 2A for details on
neutropenia of #9). The bone marrow examination of indi-
vidual #9 showed a maturation arrest at the stage of
the promyelocyte (Figures 2B and 2C). In addition, we
observed an absence of mature neutrophils in the bone
marrow of individuals #10 and #11. Of note, two siblings,
who were not treated with G-CSF, progressed to (1) an
acute myeloid leukemia (M5, acute monocytic, with the
typical finding of a somatic monosomy of chromosome 7;
individual #10) or a (2) myelodysplastic syndrome/
preleukemia of myelomonocytic type (individual #11),
respectively. Chemotherapeutic treatment was initiated
in individual #10, who died shortly after. No treatment
was initiated in individual #11, who also died shortly after
the diagnosis. Bone marrow aspiration in the third avail-
able individual (#13) showed a vacuolar degeneration of
the phagocytic mononuclear system without typical signs
of neutropenia.

Other Signs and Symptoms

For ten of the study participants, information about
ophthalmological findings was available. Five of these
individuals had bilateral cataracts, and one (#7) was diag-
nosed with a suspected pigmentary retinopathy. Two indi-
viduals showed cardiac involvement, namely mild septal
hypertrophy (#7) and mild dilated cardiomyopathy
(#14). Two study participants had endocrine abnormalities
(#6 and #7). At least three individuals (#9-#11) showed
similar facial dysmorphisms (e.g., low nasal bridge, hyper-
telorism, tented mouth; Figures 1B and 1C). From a
biochemical standpoint, no consistently elevated serum
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Table 1. Clinical, Biochemical, and Neuroradiological Findings in Individuals with Mutations in CLPB

Generalized
Individual, Brain Movement 3-MGA- Current
Gender Family ID Change (aa) Neutropenia Atrophy Disorder Muscle Tone Cataracts Uria Age Other
#1, m 1 no p-Met411lle and p.Tyr617Cys CS ND - normal - + 10 years
#2, f 1 no p-Met411lle and p.Tyr617Cys CM - - normal + + 8 years
#3, m 2 moderate p.Arg408Gly and p.Arg417* IS ND ataxia floppy infant, mild — + S years neonatal hypoglycaemia,
truncal hypotonia 9 months microcephaly
#4, m 2 moderate p.Arg408Gly and p.Arg417* - ND - floppy infant, mild + + 2 years neonatal hypoglycaemia,
truncal hypotonia 2 months  microcephaly
#5, f 2 moderate p.Arg408Gly and p.Arg417* - ND - floppy infant, mild — + 2 years neonatal hypoglycaemia,
truncal hypotonia 2 months  microcephaly
#6, f 4 mild p-Glu435_Gly436delinsAspPro CM +* ataxia, mild tetraspasticity + + 18 years microcephaly, hypothyreoidea,
and p.Gly646Val dysarthria, hypergonadotropic
tremor hypogonadism
#7, £ 5 severe p-Cys486Arg homozygous — + dystonia floppy infant, + + 17 years microcephaly IUGR, epilepsy,
progressive hypothyreoidea, mild cardiac
tetraspasticity septal hypertrophy,
nystagmus
#8, f 5 severe p-Cys486Arg homozygous - + dystonia, floppy infant, - + 9 years microcephaly, epilepsy,
athetosis progressive nystagmus
tetraspasticity
#9, f 6 severe p-Ala591Val homozygous CS + hyperkinesia, floppy infant, + + 3 years microcephaly, IUGR, neonatal
dystonia progressive 10 months” hypoglycaemia, life-
tetraspasticity threatening
drooling
#10, m 7 severe p-Tyr272Cys and p.Tyr567Cys CS + - floppy infant, ND ND 3 months”  hepatosplenomegaly,
progressive leukemia, facial
tetraspasticity dysmorphism
#11, f 7 severe p-Tyr272Cys and p.Tyr567Cys CS + - floppy infant, ND + 3 months”  hepatosplenomegaly,
generalized myelodysplastic and
hypotonia preleukemic syndrome,
facial dysmorphism
#12, f 8 severe p-Cys647Leufs*26 and p.lle682Asn CM + ataxia, stiff baby - + 5 months”  microcephaly, [UGR,
tremor epilepsy
#13, m 9 severe p.Arg250*, p.Arg417*, and CS ND jittery stiff baby ND + 24 days” epilepsy
p-Glu501Lys
#14, m 9 severe p-Arg250*, p.Arg417*, and CS ND ND stiff baby ND ND 54 days” TUGR, mild dilated
p-Glu501Lys cardiomyopathy

Allindividuals are of European descent. Abbreviations are as follows: CM, chronic moderate; CS, chronic severe; ID, intellectual disability; IS, intermittent severe; IUGR, intrauterine growth retardation; ND, no data; 3-MGA-
uria, 3-methylglutaconic aciduria.
“Isolated cerebellar atrophy.
bAge d d
ge deceased.




Figure 1. Individual Photographs and MRI Findings
(A) Individual #10 was born with increased muscle tone.

(B and C) Study participants #11 (B) and #9 (C) with tented mouth, hypertelorism, and truncal hypotonia.

(D) Individual #6 displayed no facial dysmorphisms and is able to stand freely.

(E-H) Consecutive T2-weighted MR images of individual #8, axial view, at the age of 2.5 months (E), 16 months (F), 3.5 years (G), and
7 years (H), demonstrating progressive brain atrophy with both cortical and white matter volume decrease over time. Progressive,
symmetrical basal ganglia atrophy was supported by abnormally increased T2 signal intensity in the caudate nucleus and putamen start-

ing at the age of 16 months.

(I) Isolated cerebellar atrophy was observed in study participant #6 as determined T1-weighted sagittal MRI.

lactate or alanine levels were observed in any of the inves-
tigated individuals, nor did they have an elevated urinary
excretion of Krebs cycle intermediates. All individuals
had consistent and significant excretion of 3-MGA in their
urine, amounting to 2-15 times over the limit of the refer-
ence range, pointing to a possible mitochondrial dysfunc-
tion. It was observed that the concentration of this
biomarker could fluctuate in an individual (#2, 29-109
[reference < 12 pmol/mmol creatinine]; #6, 34-160; and
#12, 52-93 [reference < 20]), seemingly without having a
direct relation to the clinical condition.

Identification of Mutations in CLPB and Mutational
Spectrum

For each individual, ES resulted in a list of four to six candi-
date genes. For individual #6, these were OBSCN (MIM
608616), SCN4A (MIM 603967), CEACAMZ20, and CLPB;
and for individual #9, CLVS2, PDZD7 (MIM 612971),
TMEM63C, COG7 (MIM 606978), BAHCC1, and CLPB.
Besides being the only overlapping gene, CLPB was consid-
ered a candidate gene because of the mitochondrial target-
ing sequence predicting a mitochondrial localization
and the previous association of 3-MGA-uria with mito-
chondrial dysfunction.'” We detected two heterozygous
variants, c¢.1305_1307inv (p.Glu435_Gly436delinsAspPro)
and c.1937G>T (p.Gly646Val) in the coding region of
CLPB (RefSeq NM_030813.3) for individual #6 while
both parents were heterozygous for one of the two
variant alleles. In individual #9, a homozygous variant,

c.1772C>T (p.Ala591Val), was identified and confirmed
to be heterozygous in each of the parents. Given these
findings, we performed Sanger sequencing of the entire
coding region of CLPB in 16 additional subjects that shared
phenotypes with our discovery cohort; we identified likely
pathogenic CLPB mutations in 12 of them, all of which
segregated (wherever testing was possible) with the disor-
der under an autosomal-recessive paradigm.

In total, we identified 14 different CLPB mutations
(2 nonsense, 1 frameshift, 11 missense; Table 2, Figure 3,
Figure S3) in 14 affected individuals from nine indepen-
dent families of primarily northern European descent
(Canada, Australia, Germany, Turkey, Italy, Poland,
Estonia). Consistent with a disease-causal role, all variants
are either absent or were rare (<0.1% MAF) in the in-house
database of 5,036 exomes (Department of Human Ge-
netics, Helmholtz Zentrum, Munich, Germany) and in
public databases. The most frequent change, c.1222A>G
(p.-Arg408Gly), had a MAF of 0.011% in the ExXAC
browser (detected in 22/122,848 alleles, seen only in het-
erozygosity and never in homozygosity). The nonsense
and frameshift mutations are predicted to result in
nonsense-mediated mRNA decay (NMD). Of note, each
of the most severely affected individuals (#13 and #14) is
compound heterozygous for a nonsense and a missense
mutation. Because the parents are unavailable for further
research, we could not determine whether these nonsense
mutations map on the same haplotype. However, it
is tempting to speculate that compound heterozygous
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nonsense mutations result in a more severe phenotype
than missense variants. All missense mutations affect
amino acids that are evolutionarily conserved across verte-
brates and mostly in bacteria (Figure S4). Moreover, all
missense mutations are predicted to have a deleterious
impact on protein function by different prediction pro-

grams (SIFT, PolyPhen, MutationTaster)''"* and map to

functional domains and the C-tail of CLPB. There was no
clear correlation between the severity of the disease and
the position and nature of the specific missense mutations.
Pathogenic mutations in CLPB from this study have been
uploaded to the Leiden Open Variation Database (LOVD-
CLPB page).

CLPB was shown to be expressed in a broad range of hu-
man fetal and adult tissues with a significantly higher
expression in adult brain tissues (Figure S5). Of note, the
expression in fetal brain is approximately five times lower
than in adult brain; we also observed low expression in
granulocytes.

Evaluation of Mitochondrial Function in Fibroblasts
from Affected Individuals

The first 92 amino acid residues of human CLPB are pre-
dicted to encode a mitochondrial targeting sequence
(MITOPROT)."* The predicted mitochondrial localization
for human CLPB was confirmed by immunofluorescence
of CLPB in U20S cells (Figure S6). Given that other IEMs
with 3-MGA-uria as a discriminative feature exhibit mito-
chondrial dysfunction (e.g., Barth, Sengers, and MEGDEL

(C and D) Crista biopsy of individual #9
at 20 months of age shown in two dis-
tinct magnifications. The bone marrow
contains many promyelocytes (*), but
no mature neutrophils (maturation arrest
at promyelocyte stage), many macro-
phages, hemophagocytosis, and atypical
lymphocytes.

syndromes), we wondered whether
mutations in CLPB could affect oxida-
tive phosphorylation.”'? We did
not detect histological abnormalities,
with the exception of a modest domi-
nance of type I fibers, in muscle of individuals #6 and #9.
Evaluation of the oxidative phosphorylation in the same
individuals in fresh muscle and cultured fibroblasts did
not show any abnormalities (Table S3). Finally, autophagy
and mitophagy were assessed in cell lines from four indi-
viduals, yielding results that were indistinguishable from
controls cells (Figure S7). Taken together, these data sug-
gest that CLPB mutations are unlikely to affect mitochon-
drial function in general, or respiratory chain oxidative
phosphorylation defects or other dysfunction in particular.

Evaluation of Phospholipid Metabolism

Several of the IEMs with 3-MGA-uria as discriminative
feature have been associated with defective phospholipid
metabolism. For instance, typical abnormalities in the
quantity and acyl-chain composition of cardiolipin (CL),
phosphatidylglycerol (PG), and bis(monoacylglycerol)
phosphate (BMP) species are characteristic biomarkers in
fibroblasts from individuals with Barth and MEGDEL syn-
dromes.?* As such, we investigated the different phospho-
lipid species in fibroblasts from our cohort. Phospholipid
analysis of fibroblasts of individuals #1, #3, #6, and #9
showed normal quantity and acyl-chain composition of
PG and BMP compared to seven control cell lines
(Figure S8). The total amount of CL was lower in affected
individuals than in controls (Figure S8). However, the sig-
nificance level (p = 0.037) as well as the difference in total
CL amounts was marginal, which might reflect the limited
number of data points. No abnormalities were observed in
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Table 2.

Mutations in CLPB and Their Predicted Effects at the Protein Level

Mutation Domains Occurence in the ExXAC
Individual Mutation (nt) Change (aa) Exon Type Affected (Predicted) Effect Browser
#13, #14 c.748C>T p-Arg250* 6 nonsense  all truncated protein, NMD not detected
#10, #11 c.815A>G p-Tyr272Cys 6 missense  ANK - 2 het / 122918 alleles
#3, #4, #5 <. 1222A>G p-Arg408Gly 11 missense  AAA+ probably affects ATP binding 22 het / 122848 alleles
#1, #2 c.1233G>A p-Met411lle 11 missense  AAA+ probably affects ATP binding not detected
#3, #4, #5, ¢.1249C>T p.Arg417* 11 nonsense  AAA+, D2 truncated protein, NMD 4 het / 122824 alleles
#13, #14
#6 ¢.1305_1307inv  p.Glu435_ 12 missense  AAA+ likely to affect substrate not detected
Gly436delinsAspPro interaction””
#7, #8 c.1456T>C p.Cys486Arg 13 missense  AAA+ - not detected
#13, #14 c.1501G>A p-GluS01Lys 13 missense AAA+ - 1 het / 121514 alleles
#10, #11 c.1700A>G p-Tyr567Cys 15 missense D2 boundary - 5 het /122590 alleles
#9 c.1772C>T p-Ala591Val 16 missense D2 probably affects stabilization not detected
of D2 domain
#1, #2 c.1850A>G p-Tyr617Cys 16 missense D2 probably affects oligomer not detected
stabilization
#6 c.1937G>T p.Gly646Val 17 missense D2 - 1 het / 122598 alleles
#12 ¢.1937dupG p.Cys647Leufs*26 17 frameshift D2 truncated protein, NMD not detected
#12 C.2045T>A p.lle682Asn 17 missense  C-tail - not detected

Overview of all mutations found in CLPB in the different individuals. Abbreviations are as follows: aa, amino acid; het, heterozygous; NMD, nonsense-mediated

mRNA decay; nt, nucleotide.

other phospholipid species in the fibroblasts from the four
individuals tested (phosphatidic acids, phosphatidylcho-
lines, phosphatidylethanolamines, phosphatidylserines,
phosphatidylinositols, cardiolipins, sphingomyelines,
and their lyso-analogs; data not shown). Taken together,
we found no unambiguous evidence for a general role of
CLPB in phospholipid metabolism.

Functional Analysis of Nonsynonymous Variants in
CLPB by In Vivo Complementation in Zebrafish
Embryos

To investigate the pathogenic potential of the nonsynony-
mous missense CLPB alleles identified in our study cohort,
we turned to the developing zebrafish as a surrogate model.
We first evaluated the effect of the MO-induced knock-
down on the cerebellar integrity and the ability of human
CLPB mRNA to rescue that phenotype in the developing
embryos. Among the observed pathologies in individuals
with CLPB mutations, CNS defects are the most penetrant
structural phenotypes (>90% of individuals; Table 1). As
such, given that previous studies have demonstrated that
cerebellar defects can be modeled in the developing
D. rerio,*"> we focus on this phenotype. We first identified
the sole ortholog of CLPB in the zebrafish genome by recip-
rocal BLAST. Because all six exons of the gene were divisible
by three, hampering our ability to generate bona fide loss-
of-function alleles by inhibiting splicing, we designed a
translational blocking morpholino (tbMO). Injection of
2.5 ng of the clpb MO resulted in approximately 50% of

the injected embryos developing cerebellar defects that
ranged in severity from depletion of the axonal connec-
tions across the midline of the cerebellum to complete
atrophy (Figures 4 and S9). The phenotype was dosage sen-
sitive: progressive increases led to concomitant increase of
the penetrance of the cerebellar phenotype to 100% of em-
bryos at 6 ng (Figure S9). The MO-induced phenotype was
rescued significantly and reproducibly (p < 0.0001; per-
formed in triplicate, scored blind to injection cocktail) by
coinjection with 200 pg of human capped CLPB mRNA
(Figures 4 and S9). By contrast, coinjection of the clpb
MO with human mRNA encoding each of the four
candidate pathogenic variants tested (p.Arg408Gly,
p-Met411lle, p.Tyr617Cys, and p.Gly646Val) were indis-
tinguishable to MO alone (p.Arg408Gly [p = 0.79],
p-Met411lle [p = 0.54], p.Tyr617Cys [p = 0.47], and
p-Gly646Val [p = 0.92]), suggesting that these variants
have little or no residual activity (Figure 4). Overexpression
of CLPB WT mRNA, or mRNA harboring each of the
four variants, had no effect on the cerebellar integrity
(Figure S10).

Evaluation of ATPase Function of Human CLPB

We were able to express human CLPB in E. coli after
removing the mitochondrial targeting sequence and
confirm that human CLPB retains ATPase activity
(Figure S11). Unlike the bacterial ClpB chaperone, the
ATPase activity was not found to be stimulated by the pres-
ence of casein, a natively unfolded soluble substrate. We
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p.Glu435_Gly436delinsAspPro  p.Tyr617Cys Figure 3. Schematic Representation of
p.Argd17* p.Ala591Val CLBP in Human, Fungi, and Bacteria
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also expressed the mutant CLPB_p.Arg408Gly (found in
individuals #3-#5) in E. coli. This change in the AAA+
domain of CLPB is at the interface between the CLPB olig-
omers and in the vicinity of the ATP binding site and
hence is predicted to influence the ATPase activity through
impaired ATP binding. Consistent with this prediction, the
ATPase activity level of the mutant protein is 26% of that
of wild-type human CLPB in E. coli (Figure S11).

Protein Interaction Network for CLPB and HAX1

A database search resulted in 17 proteins with an estab-
lished physical interaction with CLPB. The live-cell screen
of CLPB against a library of 100 proteins by means of biolu-
minescence resonance energy transfer (BRET) identified 19
additional direct interactions (Tables S4 and S5). For HAX1,
a total of 38 protein interactions was listed in the BioGRID
database. Within the networks of first-order protein
interactions for both proteins, a link between CLPB and
HAX1 is established by mutual interaction with the sarco-
plasmic/endoplasmic reticulum Ca®"-ATPase (ATP2A2
[MIM 108740]).

Discussion

Here we present our clinical and molecular genetic ana-
lyses of a cohort of individuals, the phenotype(s) of
which cannot be reconciled with any known clinical
entity. The phenotypic spectrum encompasses ID/DD,
congenital neutropenia, progressive brain atrophy, move-
ment disorder, and bilateral cataracts. Though all individ-
uals share 3-MGA-uria as a characteristic biomarker, the

AAA

CLPB (human)

HSP104 (fungi)

ClpB (bacteria)

v residue repeat implicated in a wide range
of protein-protein interactions and the
-C ATPase domain (AAA+).3132
(B) Evolutionary changes in domain
composition of CLPB proteins in human,
fungi (mitochondrial HSP78 and cytosolic
HSP104), and bacteria. All CLPB-family
homologs possess at least a single AAA+
domain and the specific CLPB-D2 domain.
In contrast to human CLPB, fungi and bac-
teria possess an “M domain,” a ClpB N
domain, and an additional AAA+ domain.
Ankyrin repeats are present only in the hu-
man homolog and are probably species
specific.

HSP78 (fungi)

severity of the other signs and symp-
toms described shows interindividual
variability. On aggregate, however, we
propose that our cohort represents a
distinct clinical entity that leads to
an encephalopathy predominantly involving gray matter,
which can start as early as in fetal life, as well as chronic
moderate to severe neutropenia due to a maturation arrest
at the promyelocyte stage. We do not know whether these
pathologies are related. However, we note that individuals
with the more attenuated neurological phenotypes also
had the more severe hematologic disease, which proceeded
to leukemia in two siblings. The broad phenotypic spec-
trum cannot be reconciled readily by the underlying geno-
type. However, we note that the individuals with the most
severe phenotypes (#12-#14) also carry disease-causing
variants predicted to lead to the complete absence of
functional protein. Given the observed clinical variability,
we speculate that other genetic as well as environmental
factors (e.g., infections) could exacerbate the clinical
presentation.

Under the hypothesis that the consistently observed
metabolic signature underpins a discrete molecular genetic
disorder, we performed ES in two unrelated individuals,
followed by subsequent candidate gene testing in an addi-
tional 16 affected individuals. Through these studies we
identified 14 independent mutations in CLPB in 14 indi-
viduals from 9 unrelated families. Taken together, our
data suggest that CLPB is the major locus for this pheno-
type, although additional genes are likely to exist. We
further supported these claims by developing a zebrafish
model of the disorder, in which we recapitulated key as-
pects of the neuroanatomical phenotypes of the affected
individuals. Specifically, embryos bereft of endogenous
clpb show microcephaly, reduction of the size of the optic
tectum (OT; a structure equivalent to the superior culicul-
lus in humans), and degeneration of the axons forming
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the cerebellum, reminiscent of the clinical features in the
individuals with CLPB mutations. Additionally, coinjec-
tion of the clpb MO with human mRNA bearing each of
the four detected in our cohort alleles tested were indistin-
guishable to MO alone, suggesting that these alleles have
little or no residual activity and that the observed syn-
dromic phenotypes in humans are driven by null or near
null mutations in all cases studied. It will be important
to generate genetic clpb mutants to study the progression
and molecular pathology of these phenotypes, as well as
the possible manifestation of other phenotypes, such as
cataracts, that are found in some but not all individuals
with CLPB mutations. Likewise, it will be critical to accu-
mulate additional individuals with CLPB mutations and
ascertain whether mutations that retain partial protein
function correlate with an attenuated phenotype, or
indeed any phenotype at all.

Figure 4. The CLPB Zebrafish Model

In vivo complementation of four CLPB
variants (p-Arg408Gly, p-Met411lle,
p-Tyr617Cys, and p.Gly646Val) identified
in evaluated study participants, in zebra-
fish.

(A-G) Dorsal view of the developing zebra-
fish brain stained with acetylated tubulin
at 3 days postfertilization (dpf). The cere-
bellum (CB) is highlighted by a white
dashed rectangle in (A) showing a control
embryo.

(A-C) Control (A), morpholino injection
(B), and rescue (C) by human WT mRNA.
(D-G) Illustration of the effects of the
tested alleles.

(H) Graphic representation of the scoring
for CB defects in control and injected em-
bryos. Coinjection of MO with WT human
CLPB mRNA results is a statistically signifi-
cant reduction in the number of embryos
with cerebellar defects (p < 0.0001). By
contrast, coinjection of MO with each of
the human CLPB mRNAs carrying the
four mutations tested score as pathogenic
being indistinguishable from the MO-
injected embryos.

clpb MO+p.Y617C

CLPB belongs to the large AAA+
(ATP-ases associated with diverse
cellular activities) superfamily. AAA+
proteins usually form ring-shaped
homo-hexamers.'® Members of this
superfamily typically have one or
two highly conserved ATPase do-
mains and are involved in various pro-
cesses, such as DNA replication and
repair and protein disaggregation
and refolding, and operate as part of
dynein motors, as chelatases or prote-
ases.'” The unifying characteristic of
this family of proteins consists in the
hydrolysis of ATP through the AAA+
domain to produce energy required to exert mechanic
force onto their substrates. The human CLPB protein is
characterized further by the presence of a specific C-termi-
nal D2 domain (PFAM identifier PF10431), which is typical
for AAA+ proteins involved in polypeptide chain thread-
ing through the hexamer central channel. Proteins with
this domain form the subfamily of Caseinolytic peptidase
(Clp) proteins, also called HSP100 (Heat shock proteins
100 kDa).'® The human CLPB protein was named after
its high homology to the C-terminal part of bacterial
ClpB protein which, in cooperation with Hsp70, is
involved in the process of disaggregation of protein aggre-
gates and hence is called a disaggregase. Bacterial ClpB pro-
teins dissolve protein aggregates and rescue aggregated
proteins by assisting them to fold back into a native, bio-
logically active form.'” What distinguishes the human
CLPB protein from its microbial and plant paralogs is

& Abnormal
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primarily the domain composition. These microbial ortho-
logs contain an additional AAA+ domain and a small
N-terminal domain (Figure 3) and have an “M domain,”
necessary for disaggregation. Another feature characteristic
of the human CLPB is the presence of ankyrin repeats
instead of the first of two ATPase domains found in bacte-
ria and fungi, which are used commonly as protein-protein
interaction platforms (Figure 3).?*?' The species-specific
presence of the ankyrin repeats in the N-terminal part of
the human protein might have evolved to ensure a more
elaborate or more refined substrate recognition, to mediate
the interaction with as yet unknown protein partners, or
even to support a putative chaperone function. Despite
the fact that only one of the two ATPase domains is re-
tained in the human CLPB, its presence is postulated to
be sufficient to mediate the use of ATP hydrolysis energy
for threading unfolded polypeptide through the central
channel of the hexamer ring.?*

Consistent with this hypothesis, we were able to confirm
in vitro the ATPase activity of human CLPB. Furthermore,
we were able to show that upon the presence of the
p-Arg408Gly variant (detected in individuals #3—#5) that
is predicted to affect the ATP binding capability of human
CLPB, the ATPase activity measured was diminished.
Despite the convergence of human and bacterial CLPB pro-
teins on several aspects of molecular function, unlike the
bacterial counterpart, the human CLPB cannot be stimu-
lated by casein.

Comparison of the clinical and genetic pathology of
individuals with CLPB mutations is likewise informative.
Mutations in CLPB lead to a congenital neutropenia
syndrome comparable to Kostmann disease, driven by
mutations in HAX1, which encodes HCLS1-associated pro-
tein X-1 (HAX1).*’ Both disorders can show neurological
involvement, which seems, however, to be more severe
in individuals with CLPB mutations. In individuals with
HAX1 mutations, neurological involvement (epilepsy, ID)
can be appreciated only when both HAXI isoforms A
and B are affected.”* Despite the variability of neurological
symptoms in the two syndromes, remarkable mimicry ex-
ists from a hematological standpoint, with individuals
affected by either one of the two disorders displaying
maturation arrest of the neutrophils at the promyelocyte
stage upon bone marrow examination.”® Furthermore, in-
dividuals with either CLPB or HAX1 mutations also exhibit
disease progression from neutropenia into leukemic pic-
tures in the absence of GCSE.*°

Biochemical analyses have established a role of HAX1 in
stabilizing the mitochondrial membrane potential and
preventing apoptosis via interaction with the mito-
chondrial proteases presenilin-associated rhomboid-like
(PARL), HtrA serine peptidase 2 (HTRA2), and BCL2-associ-
ated X protein (Bax).”**“?’ Further evidence for an antia-
poptotic role of HAX1 stems from the observation that it
interacts with and downregulates the protein level of the
sarco/endoplasmic reticulum Ca®"-ATPase (SR Ca(2+)-
ATPase 2 encoded by ATP2A2), which regulates the endo-

plasmic reticulum Ca®" concentration.”® Evaluation of
the protein interaction networks of CLPB predict a
biochemical interaction between CLPB and SR Ca(2+)-
ATPase 2 (Figure 5; for method, see Table S5), which allows
us to speculate that the effect of CLPB mutations on hem-
atopoesis could be driven by excessive apoptosis, as is the
case in Kostmann syndrome.

To enrich our understanding of the CLPB-mutation-
mediated disease pathomechanisms, we reasoned that
CLPB defects might have an effect on lipid biosyn-
thesis and metabolism, similar to what is observed in
Barth syndrome, one of the IEMs with 3-MGA-uria as a
discriminative feature, characterized by neutropenia as
well as (cardiojmyopathy and delayed motor mile-
stones.”” Despite extensive analysis of the levels of various
phospholipids, we detected no involvement of lipid
biosynthesis, turnaround, and metabolism in the patho-
genesis mediated by mutations in CLPB. We also were
unable to detect overt abnormalities in mitophagy or
autophagy in cells from individuals with CLPB muta-
tions. In aggregate, our data argue that despite the
clinical mimicry between CLPB disease and Barth syn-
drome or other IEMs with 3-MGA-uria as a discriminative
feature, the mechanisms underlying each condition are
diverse.

In conclusion, we describe an as yet unknown inborn
error of metabolism with 3-MGA-uria as discriminative
feature (CLPB defect). Underlying mutations were
found in CLPB and lead to a broad phenotypic spectrum
encompassing ID/DD, congenital neutropenia, progres-
sive brain atrophy, movement disorder, and bilateral cata-
racts. The function of human CLPB is currently poorly
described but our data show that it might be related to
apoptosis.

Accession Numbers

The databank accession number for the data reported in this paper
is http://www.lovd.nl/clpb.

Supplemental Data

Supplemental Data include full case reports on the individuals in
this paper and describe the mild, moderate, and the severe pheno-
types of the disease, additional method descriptions, 11 figures,
and 5 tables and can be found with this article online at http://
dx.doi.org/10.1016/j.ajhg.2014.12.013.
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