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CLPB Mutations Cause 3-Methylglutaconic Aciduria,
Progressive Brain Atrophy, Intellectual Disability,
Congenital Neutropenia, Cataracts, Movement Disorder
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We studied a group of individuals with elevated urinary excretion of 3-methylglutaconic acid, neutropenia that can develop into leuke-

mia, a neurological phenotype ranging from nonprogressive intellectual disability to a prenatal encephalopathy with progressive brain

atrophy, movement disorder, cataracts, and early death. Exome sequencing of two unrelated individuals and subsequent Sanger

sequencing of 16 individuals with an overlapping phenotype identified a total of 14 rare, predicted deleterious alleles in CLPB in 14 in-

dividuals from 9 unrelated families. CLPB encodes caseinolytic peptidase B homolog ClpB, a member of the AAAþ protein family. To

evaluate the relevance of CLPB in the pathogenesis of this syndrome, we developed a zebrafish model and an in vitro assay to measure

ATPase activity. Suppression of clpb in zebrafish embryos induced a central nervous system phenotype that was consistent with cerebellar

and cerebral atrophy that could be rescued by wild-type, but not mutant, human CLPB mRNA. Consistent with these data, the loss-of-

function effect of one of the identified variants (c.1222A>G [p.Arg408Gly]) was supported further by in vitro evidence with the mutant

peptides abolishing ATPase function. Additionally, we show that CLPB interacts biochemically with ATP2A2, known to be involved in

apoptotic processes in severe congenital neutropenia (SCN) 3 (Kostmann disease [caused by HAX1 mutations]). Taken together, muta-

tions in CLPB define a syndromewith intellectual disability, congenital neutropenia, progressive brain atrophy, movement disorder, cat-

aracts, and 3-methylglutaconic aciduria.
Introduction

The implementation of exome sequencing (ES) and

genome sequencing has expanded our knowledge of genes

that cause pediatric syndromic phenotypes.1 For a subset

of these individuals, the diagnostic approach can be assis-

ted by findings frommetabolic markers in blood and urine

that might point toward hitherto unappreciated inborn

errors of metabolism (IEMs).2
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3-methylglutaconic acid (3-MGA) detected in urine sam-

ples is such a marker, showing consistently and signifi-

cantly elevated levels in a rapidly growing group of IEMs

with a syndromic phenotype.3 This group encompasses

several disorders in which phospholipid remodeling and

other mitochondrial membrane-related processes are

defective. Clinical features are heterogeneous but distinc-

tive. For example, Barth syndrome (MIM 302060), caused

by mutations in TAZ (MIM 300394), is associated with
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(cardio)myopathy, neutropenia, and delayed motor mile-

stones; Sengers syndrome (MIM 212350), driven by muta-

tions in AGK (MIM 610345), manifests cardiomyopathy

and cataracts; and MEGDEL syndrome (MIM 614739),

caused by mutations in SERAC1 (MIM 614725), is associ-

ated with deafness and dystonia.4 In addition, congenital

neutropenia and central nervous system involvement

have also been reported in disorders without 3-MGA-uria,

such as Kostmann syndrome (MIM 610738; HAX1 [MIM

605998]), Shwachman-Bodian-Diamond disease (MIM

260400; SBDS [MIM 607444]), and Cohen syndrome

(MIM 216550; VPS13B [MIM 607817]).5

Here we present a constellation of pathologies that

cannot be reconciled with any known clinical entity.

This phenotypic spectrum encompasses intellectual

disability (ID)/developmental delay (DD), congenital neu-

tropenia, progressive brain atrophy, movement disorder,

and bilateral cataracts. Though all individuals share

3-MGA-uria as a characteristic biomarker, the severity of

the other signs and symptoms shows interindividual vari-

ability. Nonetheless, under the hypothesis that the consis-

tently observed metabolic signature underpins a discrete

molecular genetic disorder, we performed ES in two unre-

lated individuals, followed by subsequent candidate gene

testing in a further 16 affected individuals. Through these

studies, the implementation of an in vivo model that reca-

pitulated key neuroanatomical aspects of the disorder, and

biochemical in vitro testing, we report the identification of

loss-of-function mutations in CLPB (RefSeq accession

number NM_030813.4).
Subjects and Methods

Clinical Cohort
Individuals #6 and #9manifested an overlapping phenotype of ID,

neutropenia, cataracts, and 3-MGA-uria and were independently

evaluated by ES at two different centers (RadboudUMC, Nijmegen,

the Netherlands; Helmholtz Zentrum Munich, Germany). After

identification of the genetic defect in these cases, we selected 16

additional individuals with an overlapping clinical presentation

from the internal database at RadboudUMC. This study adhered

to the Declaration of Helsinki and written informed consent was

obtained from each individual.
Exome Sequencing and Variant Identification
ES for individual 6 was performed as previously described.6 In

brief, we used a SureSelect Human All Exon 50 Mb Kit (Agilent)

for enrichment and a HiSeq2500 (Illumina). Reads were aligned

to the UCSC human reference assembly (hg19) with BWA

v.0.5.8. More than 90% of the exome was covered at least 203.

Single-nucleotide variants (SNVs) and small insertions and dele-

tions were detected with SAMtools v.0.1.7. Variant prioritization

was performed based on an autosomal-recessive pattern of inheri-

tance. ES for individual 9 was performed as previously described

with minor adjustments.2 In brief, we used the SureSelectXT Hu-

man All Exon 50Mb Kit (Agilent) for enrichment and a SOLiD

5500XL (Life Technologies). We excluded all nongenic, intronic

(other than canonical splice sites), and synonymous variants
246 The American Journal of Human Genetics 96, 245–257, February
and all known variants with a frequency >1% in dbSNP v.132

and our in-house variant database consisting of 672 exomes.

Next, because a recessive disease model was expected and given

the assumption of a common ancestral allele (based on parental

consanguinity), we prioritized variants according the percentage

of variant reads. For this, we used the threshold of >75% variant

reads as an indicator for homozygous variants.

Mutation Analysis by Sanger Sequencing
Primer sequences for amplification of all protein coding exons of

CLPB (RefSeq NM_030813.4) are shown in Table S1 available

online. PCR conditions are available upon request. PCR products

were sequenced with the ABI PRISM BigDye Terminator Cycle

Sequencing v.2.0 Ready Reaction Kit and analyzed with the ABI

PRISM 3730 DNA analyzer (Applied Biosystems).

In Vivo Functional Modeling of CLPB Mutations in

Zebrafish
Zebrafish embryos and adults were maintained and mated as

described and all experiments were carried out with the approval

of the Institutional Animal Care and Use Committee (IACUC).7

For the in vivo complementation experiments, a translational-

blockingmorpholino (MO) against the sole zebrafish clpb ortholog

was designed (Figure S1) and obtained from Gene Tools. We in-

jected 1 nl of diluted MO (2.5 ng) and/or RNA (200 pg for WT or

mutant clpb) into wild-type zebrafish embryos at the 1- to 4-cell

stage. For acetylated tubulin staining marking the neuronal axon

processes, injected embryos were treated as described.8 For

RNA rescue and overexpression experiments, the human wild-

type mRNA of the canonical isoform (RefSeq NM_030813.4)

of CLPB was cloned into the pCS2þ vector and transcribed

in vitro with the SP6 Message Machine kit (Ambion). The

four variants tested—p.Arg408Gly, p.Met411Ile, p.Tyr617Cys,

and p.Gly646Val—were introduced with Phusion high-fidelity

DNA polymerase (New England Biolabs) and custom-designed

primers. Image acquisition and analysis was performed with

Nikon NIS-Elements Advanced Research software. All experiments

were repeated in triplicate and significance of the morphant

phenotype was judged by Student’s c2 test.

Purification and Biochemical Characterization of

Human CLPB
The CLPBDN92 construct (deletion of predicted signal peptide)

was PCR generated with a pENTR223-hCLPB plasmid as a tem-

plate. The amplified DNA fragment was cloned into the pET15b

vector (Novagen) at the NdeI/BamHI sites, resulting in a construct

pET15b-CLPBDN92 with an introduced N-terminal His-tag. The

construct was verified by DNA sequencing. The p.Arg408Gly

change of CLPBDN92 was introduced into pET15b-CLPBDN92

by site-directed mutagenesis and confirmed by DNA sequencing.

The CLPBDN92 and its p.Arg408Gly variant were expressed in

E. coli BL21(DE3). Pelleted cells were diluted 1/1 (v/v) with buffer

(NaCl 300 mM, imidazole 20 mM, glycerol 20%, 2-mercaptoetha-

nol 5 mM, HEPES 20 mM [pH 7.4]), French press lysed, and centri-

fuged at 75,000 3 g for 1 hr. The lysate was incubated with 2 ml

Ni-NTA resin in batch mode. After washing with buffer (NaCl

150 mM, imidazole 20 mM, glycerol 20%, 2-mercaptoethanol

5 mM, HEPES 40mM [pH 7.4]) and then with the same buffer sup-

plemented with 48 mM imidazole, proteins were eluted with

300 mM pure imidazole and applied on a PD10 desalting column

equilibrated with buffer without imidazole (the other components
5, 2015



of washing buffers, elution buffers, and desalting buffers remained

the same). Protein identity was confirmed by immunoblot, via an

anti-CLPB antibody (Abcam, ab87253) (Figure S2A). Figure S2B

shows purified CLPB_WT and the purified CLPB_p.Arg408Gly on

SDS-PAGE. Protein concentrations were estimated by Coomassie-

stained SDS-PAGE gel densitometry with BSA as a standard. The

ATPase activity of purified human wild-type CLPB (CLPB_WT)

and its p.Arg408Gly mutant (CLPB_p.Arg408Gly) was analyzed

with the coupled pyruvate kinase/lactate dehydrogenase assay,

as previously described.9 2 mM hCLPB was incubated with

20 mM ATP at 36�C and the absorbance change was recorded at

1 s intervals. The rate was calculated from the linear part of the

curve (steady-state rate). For WT hCLPB, the measurement was

additionally performed in the presence of casein (0.2 mg/ml).
Results

The Phenotypic Spectrum of Individuals with

Mutations in CLPB

The clinical presentation and course of the 14 affected in-

dividuals (eight females, six males) varied substantially

from a mild phenotype (individuals #1 and #2) associated

with cataracts and neutropenia but no neurological

involvement or infections to the most severe phenotype

(individuals #9–#14) associated with neonatal or even pre-

natal onset of neurological symptoms (progressive brain

atrophy, absence of development, movement disorder, sei-

zures), severe neutropenia with progression into leukemia,

and death in the first months of life. The detailed clinical

histories of the cohort can be found in the Supplemental

Data and are summarized in Table 1 and Figures 1 and 2.

Common features include ID/DD (12/14 individuals inves-

tigated), congenital neutropenia (10/14), brain atrophy

(7/9), microcephaly (7/12), movement disorder (7/13),

cataracts (5/10), and 3-MGA-uria (12/12 individuals). The

oldest affected participant alive is 18 years old and the

youngest is 2 years old. Six individuals passed away be-

tween the ages of 24 days and 46 months.

Neurological Phenotype

Two individuals (#1 and #2), currently aged 8 and 10 years,

showed no neurological involvement at all as determined

by a normal neurological examination, normal IQ test,

and, in one person, normal brain imaging. However, indi-

vidual #1 had ADHD, dyslexia, and dysgraphia and indi-

vidual #2 had a tendency to impulsivity. All other persons

(#3–#14) showed DD/ID; the most severe cases (#10–#14)

did not develop at all, did not make any eye or other con-

tact, and suffered from (episodic to permanent) uncon-

sciousness from birth until their early death. Most

of them (individuals #3–#14) showed pyramidal tract

involvement, progressing from severe hypotonia during

the first months of life to severe bilateral spasticity there-

after. In the most severe cases (individuals #12–#14), these

degenerative processes probably started during fetal life,

because all were born as ‘‘stiff babies’’ with generalized

increased muscle tension including contractures and jaw

lock. Additionally, 11 individuals suffered swallowing diffi-
The Americ
culties, potentially of both muscular and central nervous

origin, necessitating tube feeding. In four individuals, epi-

lepsy was reported. Furthermore, there is a spectrum of

MRI abnormalities ranging from isolated cerebellar atro-

phy (#6, Figure 1J) in less severely affected individuals to

atrophy of both cerebral hemispheres, the basal ganglia,

and the cerebellum in the most severely affected persons

(Figures 1E–1H). Additionally, white matter involvement

was seen in individuals #7–#9 and 11. The brain atrophy

corresponds with the clinical finding of microcephaly in

7 of 12 investigated persons. In the individuals with basal

ganglia involvement (#7–#9), clinically established dysto-

nia was observed.

Hematological/Immunological Phenotype

Neutropenia was noted in 10 of the 14 individuals, as se-

vere (<0.5 g/l) in six (#1, #9–#11, #13, #14) and moderate

(0.5–1.0 g/l) in three (#2, #6, #12). One person (#3) was

found to be neutropenic only subsequent to infections,

the severity of which appear concomitant with the severity

of the neurological phenotype. Whereas individuals

without neurological symptoms (#1, #2) did not suffer

from recurrent infections, individuals #3–#8 suffered

from more frequent infections than peers but without

serious complications. The remaining individuals from

the study cohort (#9–#14) suffered regularly from serious,

often life-threatening infections and were treated with

G-CSF (#9 and #12, during infections also #3), continuous

antibiotics, and antimycotics (see Figure 2A for details on

neutropenia of #9). The bonemarrow examination of indi-

vidual #9 showed a maturation arrest at the stage of

the promyelocyte (Figures 2B and 2C). In addition, we

observed an absence of mature neutrophils in the bone

marrow of individuals #10 and #11. Of note, two siblings,

who were not treated with G-CSF, progressed to (1) an

acute myeloid leukemia (M5, acute monocytic, with the

typical finding of a somatic monosomy of chromosome 7;

individual #10) or a (2) myelodysplastic syndrome/

preleukemia of myelomonocytic type (individual #11),

respectively. Chemotherapeutic treatment was initiated

in individual #10, who died shortly after. No treatment

was initiated in individual #11, who also died shortly after

the diagnosis. Bone marrow aspiration in the third avail-

able individual (#13) showed a vacuolar degeneration of

the phagocytic mononuclear system without typical signs

of neutropenia.

Other Signs and Symptoms

For ten of the study participants, information about

ophthalmological findings was available. Five of these

individuals had bilateral cataracts, and one (#7) was diag-

nosed with a suspected pigmentary retinopathy. Two indi-

viduals showed cardiac involvement, namely mild septal

hypertrophy (#7) and mild dilated cardiomyopathy

(#14). Two study participants had endocrine abnormalities

(#6 and #7). At least three individuals (#9–#11) showed

similar facial dysmorphisms (e.g., low nasal bridge, hyper-

telorism, tented mouth; Figures 1B and 1C). From a

biochemical standpoint, no consistently elevated serum
an Journal of Human Genetics 96, 245–257, February 5, 2015 247



Table 1. Clinical, Biochemical, and Neuroradiological Findings in Individuals with Mutations in CLPB

Individual,
Gender Family ID Change (aa) Neutropenia

Generalized
Brain
Atrophy

Movement
Disorder Muscle Tone Cataracts

3-MGA-
Uria

Current
Age Other

#1, m 1 no p.Met411Ile and p.Tyr617Cys CS ND � normal - þ 10 years

#2, f 1 no p.Met411Ile and p.Tyr617Cys CM � � normal þ þ 8 years

#3, m 2 moderate p.Arg408Gly and p.Arg417* IS ND ataxia floppy infant, mild
truncal hypotonia

� þ 5 years
9 months

neonatal hypoglycaemia,
microcephaly

#4, m 2 moderate p.Arg408Gly and p.Arg417* � ND � floppy infant, mild
truncal hypotonia

þ þ 2 years
2 months

neonatal hypoglycaemia,
microcephaly

#5, f 2 moderate p.Arg408Gly and p.Arg417* � ND � floppy infant, mild
truncal hypotonia

� þ 2 years
2 months

neonatal hypoglycaemia,
microcephaly

#6, f 4 mild p.Glu435_Gly436delinsAspPro
and p.Gly646Val

CM þa ataxia,
dysarthria,
tremor

mild tetraspasticity þ þ 18 years microcephaly, hypothyreoidea,
hypergonadotropic
hypogonadism

#7, f 5 severe p.Cys486Arg homozygous � þ dystonia floppy infant,
progressive
tetraspasticity

þ þ 17 years microcephaly IUGR, epilepsy,
hypothyreoidea, mild cardiac
septal hypertrophy,
nystagmus

#8, f 5 severe p.Cys486Arg homozygous � þ dystonia,
athetosis

floppy infant,
progressive
tetraspasticity

� þ 9 years microcephaly, epilepsy,
nystagmus

#9, f 6 severe p.Ala591Val homozygous CS þ hyperkinesia,
dystonia

floppy infant,
progressive
tetraspasticity

þ þ 3 years
10 monthsb

microcephaly, IUGR, neonatal
hypoglycaemia, life-
threatening
drooling

#10, m 7 severe p.Tyr272Cys and p.Tyr567Cys CS þ � floppy infant,
progressive
tetraspasticity

ND ND 3 monthsb hepatosplenomegaly,
leukemia, facial
dysmorphism

#11, f 7 severe p.Tyr272Cys and p.Tyr567Cys CS þ � floppy infant,
generalized
hypotonia

ND þ 3 monthsb hepatosplenomegaly,
myelodysplastic and
preleukemic syndrome,
facial dysmorphism

#12, f 8 severe p.Cys647Leufs*26 and p.Ile682Asn CM þ ataxia,
tremor

stiff baby � þ 5 monthsb microcephaly, IUGR,
epilepsy

#13, m 9 severe p.Arg250*, p.Arg417*, and
p.Glu501Lys

CS ND jittery stiff baby ND þ 24 daysb epilepsy

#14, m 9 severe p.Arg250*, p.Arg417*, and
p.Glu501Lys

CS ND ND stiff baby ND ND 54 daysb IUGR, mild dilated
cardiomyopathy

All individuals are of European descent. Abbreviations are as follows: CM, chronic moderate; CS, chronic severe; ID, intellectual disability; IS, intermittent severe; IUGR, intrauterine growth retardation; ND, no data; 3-MGA-
uria, 3-methylglutaconic aciduria.
aIsolated cerebellar atrophy.
bAge deceased.
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Figure 1. Individual Photographs and MRI Findings
(A) Individual #10 was born with increased muscle tone.
(B and C) Study participants #11 (B) and #9 (C) with tented mouth, hypertelorism, and truncal hypotonia.
(D) Individual #6 displayed no facial dysmorphisms and is able to stand freely.
(E–H) Consecutive T2-weighted MR images of individual #8, axial view, at the age of 2.5 months (E), 16 months (F), 3.5 years (G), and
7 years (H), demonstrating progressive brain atrophy with both cortical and white matter volume decrease over time. Progressive,
symmetrical basal ganglia atrophy was supported by abnormally increased T2 signal intensity in the caudate nucleus and putamen start-
ing at the age of 16 months.
(I) Isolated cerebellar atrophy was observed in study participant #6 as determined T1-weighted sagittal MRI.
lactate or alanine levels were observed in any of the inves-

tigated individuals, nor did they have an elevated urinary

excretion of Krebs cycle intermediates. All individuals

had consistent and significant excretion of 3-MGA in their

urine, amounting to 2–15 times over the limit of the refer-

ence range, pointing to a possible mitochondrial dysfunc-

tion. It was observed that the concentration of this

biomarker could fluctuate in an individual (#2, 29–109

[reference < 12 mmol/mmol creatinine]; #6, 34–160; and

#12, 52–93 [reference < 20]), seemingly without having a

direct relation to the clinical condition.

Identification of Mutations in CLPB and Mutational

Spectrum

For each individual, ES resulted in a list of four to six candi-

date genes. For individual #6, these were OBSCN (MIM

608616), SCN4A (MIM 603967), CEACAM20, and CLPB;

and for individual #9, CLVS2, PDZD7 (MIM 612971),

TMEM63C, COG7 (MIM 606978), BAHCC1, and CLPB.

Besides being the only overlapping gene, CLPBwas consid-

ered a candidate gene because of the mitochondrial target-

ing sequence predicting a mitochondrial localization

and the previous association of 3-MGA-uria with mito-

chondrial dysfunction.10 We detected two heterozygous

variants, c.1305_1307inv (p.Glu435_Gly436delinsAspPro)

and c.1937G>T (p.Gly646Val) in the coding region of

CLPB (RefSeq NM_030813.3) for individual #6 while

both parents were heterozygous for one of the two

variant alleles. In individual #9, a homozygous variant,
The Americ
c.1772C>T (p.Ala591Val), was identified and confirmed

to be heterozygous in each of the parents. Given these

findings, we performed Sanger sequencing of the entire

coding region of CLPB in 16 additional subjects that shared

phenotypes with our discovery cohort; we identified likely

pathogenic CLPB mutations in 12 of them, all of which

segregated (wherever testing was possible) with the disor-

der under an autosomal-recessive paradigm.

In total, we identified 14 different CLPB mutations

(2 nonsense, 1 frameshift, 11 missense; Table 2, Figure 3,

Figure S3) in 14 affected individuals from nine indepen-

dent families of primarily northern European descent

(Canada, Australia, Germany, Turkey, Italy, Poland,

Estonia). Consistent with a disease-causal role, all variants

are either absent or were rare (<0.1%MAF) in the in-house

database of 5,036 exomes (Department of Human Ge-

netics, Helmholtz Zentrum, Munich, Germany) and in

public databases. The most frequent change, c.1222A>G

(p.Arg408Gly), had a MAF of 0.011% in the ExAC

browser (detected in 22/122,848 alleles, seen only in het-

erozygosity and never in homozygosity). The nonsense

and frameshift mutations are predicted to result in

nonsense-mediated mRNA decay (NMD). Of note, each

of the most severely affected individuals (#13 and #14) is

compound heterozygous for a nonsense and a missense

mutation. Because the parents are unavailable for further

research, we could not determine whether these nonsense

mutations map on the same haplotype. However, it

is tempting to speculate that compound heterozygous
an Journal of Human Genetics 96, 245–257, February 5, 2015 249



Figure 2. Leucocyte Counts, Images, and
Maturation Arrest
(A) Leucocyte (reference range 4.5–10 g/l)
and absolute neutrophil count (reference
range at birth, 12–15 g/l; 2–12 months,
>2 g/l; >12 months, >1.5 g/l) of individ-
ual #9 before and during successful treat-
ment with G-CSF.
(B) The total bone marrow composition at
20 months of life of the same individual:
blasts 4%, promyelocytes 13%,myelocytes
1%, metamyelocytes 1%, bands and
segmented cells 1%, neutrophils 2%, baso-
phils 0%, eosinophils 8%, lymphocytes
32%, monocytes 18%, plasma-cells 0%,
normoblasts 20% in comparison with a
normal bone marrow.
(C and D) Crista biopsy of individual #9
at 20 months of age shown in two dis-
tinct magnifications. The bone marrow
contains many promyelocytes (*), but
no mature neutrophils (maturation arrest
at promyelocyte stage), many macro-
phages, hemophagocytosis, and atypical
lymphocytes.
nonsense mutations result in a more severe phenotype

than missense variants. All missense mutations affect

amino acids that are evolutionarily conserved across verte-

brates and mostly in bacteria (Figure S4). Moreover, all

missense mutations are predicted to have a deleterious

impact on protein function by different prediction pro-

grams (SIFT, PolyPhen, MutationTaster)11–13 and map to

functional domains and the C-tail of CLPB. There was no

clear correlation between the severity of the disease and

the position and nature of the specific missense mutations.

Pathogenic mutations in CLPB from this study have been

uploaded to the Leiden Open Variation Database (LOVD-

CLPB page).

CLPB was shown to be expressed in a broad range of hu-

man fetal and adult tissues with a significantly higher

expression in adult brain tissues (Figure S5). Of note, the

expression in fetal brain is approximately five times lower

than in adult brain; we also observed low expression in

granulocytes.

Evaluation of Mitochondrial Function in Fibroblasts

from Affected Individuals

The first 92 amino acid residues of human CLPB are pre-

dicted to encode a mitochondrial targeting sequence

(MITOPROT).14 The predicted mitochondrial localization

for human CLPB was confirmed by immunofluorescence

of CLPB in U2OS cells (Figure S6). Given that other IEMs

with 3-MGA-uria as a discriminative feature exhibit mito-

chondrial dysfunction (e.g., Barth, Sengers, and MEGDEL
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syndromes), we wondered whether

mutations in CLPB could affect oxida-

tive phosphorylation.3,10 We did

not detect histological abnormalities,

with the exception of a modest domi-
nance of type I fibers, in muscle of individuals #6 and #9.

Evaluation of the oxidative phosphorylation in the same

individuals in fresh muscle and cultured fibroblasts did

not show any abnormalities (Table S3). Finally, autophagy

and mitophagy were assessed in cell lines from four indi-

viduals, yielding results that were indistinguishable from

controls cells (Figure S7). Taken together, these data sug-

gest that CLPB mutations are unlikely to affect mitochon-

drial function in general, or respiratory chain oxidative

phosphorylation defects or other dysfunction in particular.

Evaluation of Phospholipid Metabolism

Several of the IEMs with 3-MGA-uria as discriminative

feature have been associated with defective phospholipid

metabolism. For instance, typical abnormalities in the

quantity and acyl-chain composition of cardiolipin (CL),

phosphatidylglycerol (PG), and bis(monoacylglycerol)

phosphate (BMP) species are characteristic biomarkers in

fibroblasts from individuals with Barth and MEGDEL syn-

dromes.2,4 As such, we investigated the different phospho-

lipid species in fibroblasts from our cohort. Phospholipid

analysis of fibroblasts of individuals #1, #3, #6, and #9

showed normal quantity and acyl-chain composition of

PG and BMP compared to seven control cell lines

(Figure S8). The total amount of CL was lower in affected

individuals than in controls (Figure S8). However, the sig-

nificance level (p ¼ 0.037) as well as the difference in total

CL amounts was marginal, which might reflect the limited

number of data points. No abnormalities were observed in



Table 2. Mutations in CLPB and Their Predicted Effects at the Protein Level

Individual Mutation (nt) Change (aa) Exon
Mutation
Type

Domains
Affected (Predicted) Effect

Occurence in the ExAC
Browser

#13, #14 c.748C>T p.Arg250* 6 nonsense all truncated protein, NMD not detected

#10, #11 c.815A>G p.Tyr272Cys 6 missense ANK – 2 het / 122918 alleles

#3, #4, #5 c.1222A>G p.Arg408Gly 11 missense AAAþ probably affects ATP binding 22 het / 122848 alleles

#1, #2 c.1233G>A p.Met411Ile 11 missense AAAþ probably affects ATP binding not detected

#3, #4, #5,
#13, #14

c.1249C>T p.Arg417* 11 nonsense AAAþ, D2 truncated protein, NMD 4 het / 122824 alleles

#6 c.1305_1307inv p.Glu435_
Gly436delinsAspPro

12 missense AAAþ likely to affect substrate
interaction30

not detected

#7, #8 c.1456T>C p.Cys486Arg 13 missense AAAþ – not detected

#13, #14 c.1501G>A p.Glu501Lys 13 missense AAAþ – 1 het / 121514 alleles

#10, #11 c.1700A>G p.Tyr567Cys 15 missense D2 boundary – 5 het /122590 alleles

#9 c.1772C>T p.Ala591Val 16 missense D2 probably affects stabilization
of D2 domain

not detected

#1, #2 c.1850A>G p.Tyr617Cys 16 missense D2 probably affects oligomer
stabilization

not detected

#6 c.1937G>T p.Gly646Val 17 missense D2 – 1 het / 122598 alleles

#12 c.1937dupG p.Cys647Leufs*26 17 frameshift D2 truncated protein, NMD not detected

#12 c.2045T>A p.Ile682Asn 17 missense C-tail – not detected

Overview of all mutations found in CLPB in the different individuals. Abbreviations are as follows: aa, amino acid; het, heterozygous; NMD, nonsense-mediated
mRNA decay; nt, nucleotide.
other phospholipid species in the fibroblasts from the four

individuals tested (phosphatidic acids, phosphatidylcho-

lines, phosphatidylethanolamines, phosphatidylserines,

phosphatidylinositols, cardiolipins, sphingomyelines,

and their lyso-analogs; data not shown). Taken together,

we found no unambiguous evidence for a general role of

CLPB in phospholipid metabolism.

Functional Analysis of Nonsynonymous Variants in

CLPB by In Vivo Complementation in Zebrafish

Embryos

To investigate the pathogenic potential of the nonsynony-

mous missense CLPB alleles identified in our study cohort,

we turned to the developing zebrafish as a surrogatemodel.

We first evaluated the effect of the MO-induced knock-

down on the cerebellar integrity and the ability of human

CLPB mRNA to rescue that phenotype in the developing

embryos. Among the observed pathologies in individuals

with CLPB mutations, CNS defects are the most penetrant

structural phenotypes (>90% of individuals; Table 1). As

such, given that previous studies have demonstrated that

cerebellar defects can be modeled in the developing

D. rerio,8,15 we focus on this phenotype. We first identified

the sole ortholog of CLPB in the zebrafish genome by recip-

rocal BLAST. Because all six exons of the gene were divisible

by three, hampering our ability to generate bona fide loss-

of-function alleles by inhibiting splicing, we designed a

translational blocking morpholino (tbMO). Injection of

2.5 ng of the clpb MO resulted in approximately 50% of
The Americ
the injected embryos developing cerebellar defects that

ranged in severity from depletion of the axonal connec-

tions across the midline of the cerebellum to complete

atrophy (Figures 4 and S9). The phenotype was dosage sen-

sitive: progressive increases led to concomitant increase of

the penetrance of the cerebellar phenotype to 100% of em-

bryos at 6 ng (Figure S9). The MO-induced phenotype was

rescued significantly and reproducibly (p < 0.0001; per-

formed in triplicate, scored blind to injection cocktail) by

coinjection with 200 pg of human capped CLPB mRNA

(Figures 4 and S9). By contrast, coinjection of the clpb

MO with human mRNA encoding each of the four

candidate pathogenic variants tested (p.Arg408Gly,

p.Met411Ile, p.Tyr617Cys, and p.Gly646Val) were indis-

tinguishable to MO alone (p.Arg408Gly [p ¼ 0.79],

p.Met411Ile [p ¼ 0.54], p.Tyr617Cys [p ¼ 0.47], and

p.Gly646Val [p ¼ 0.92]), suggesting that these variants

have little or no residual activity (Figure 4). Overexpression

of CLPB WT mRNA, or mRNA harboring each of the

four variants, had no effect on the cerebellar integrity

(Figure S10).

Evaluation of ATPase Function of Human CLPB

We were able to express human CLPB in E. coli after

removing the mitochondrial targeting sequence and

confirm that human CLPB retains ATPase activity

(Figure S11). Unlike the bacterial ClpB chaperone, the

ATPase activity was not found to be stimulated by the pres-

ence of casein, a natively unfolded soluble substrate. We
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Figure 3. Schematic Representation of
CLBP in Human, Fungi, and Bacteria
(A) The positions of all mutations identi-
fied in human. Black boxes represent the
twomain functional domains: the ankyrin
domain (ANK) consisting of a short 34
residue repeat implicated in a wide range
of protein-protein interactions and the
ATPase domain (AAAþ).31,32

(B) Evolutionary changes in domain
composition of CLPB proteins in human,
fungi (mitochondrial HSP78 and cytosolic
HSP104), and bacteria. All CLPB-family
homologs possess at least a single AAAþ
domain and the specific CLPB-D2 domain.
In contrast to human CLPB, fungi and bac-
teria possess an ‘‘M domain,’’ a ClpB N
domain, and an additional AAAþ domain.
Ankyrin repeats are present only in the hu-
man homolog and are probably species
specific.
also expressed the mutant CLPB_p.Arg408Gly (found in

individuals #3–#5) in E. coli. This change in the AAAþ
domain of CLPB is at the interface between the CLPB olig-

omers and in the vicinity of the ATP binding site and

hence is predicted to influence the ATPase activity through

impaired ATP binding. Consistent with this prediction, the

ATPase activity level of the mutant protein is 26% of that

of wild-type human CLPB in E. coli (Figure S11).
Protein Interaction Network for CLPB and HAX1

A database search resulted in 17 proteins with an estab-

lished physical interaction with CLPB. The live-cell screen

of CLPB against a library of 100 proteins bymeans of biolu-

minescence resonance energy transfer (BRET) identified 19

additional direct interactions (Tables S4 and S5). For HAX1,

a total of 38 protein interactions was listed in the BioGRID

database. Within the networks of first-order protein

interactions for both proteins, a link between CLPB and

HAX1 is established by mutual interaction with the sarco-

plasmic/endoplasmic reticulum Ca2þ-ATPase (ATP2A2

[MIM 108740]).
Discussion

Here we present our clinical and molecular genetic ana-

lyses of a cohort of individuals, the phenotype(s) of

which cannot be reconciled with any known clinical

entity. The phenotypic spectrum encompasses ID/DD,

congenital neutropenia, progressive brain atrophy, move-

ment disorder, and bilateral cataracts. Though all individ-

uals share 3-MGA-uria as a characteristic biomarker, the
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severity of the other signs and symp-

toms described shows interindividual

variability. On aggregate, however, we

propose that our cohort represents a

distinct clinical entity that leads to
an encephalopathy predominantly involving gray matter,

which can start as early as in fetal life, as well as chronic

moderate to severe neutropenia due to a maturation arrest

at the promyelocyte stage. We do not know whether these

pathologies are related. However, we note that individuals

with the more attenuated neurological phenotypes also

had themore severe hematologic disease, which proceeded

to leukemia in two siblings. The broad phenotypic spec-

trum cannot be reconciled readily by the underlying geno-

type. However, we note that the individuals with the most

severe phenotypes (#12–#14) also carry disease-causing

variants predicted to lead to the complete absence of

functional protein. Given the observed clinical variability,

we speculate that other genetic as well as environmental

factors (e.g., infections) could exacerbate the clinical

presentation.

Under the hypothesis that the consistently observed

metabolic signature underpins a discrete molecular genetic

disorder, we performed ES in two unrelated individuals,

followed by subsequent candidate gene testing in an addi-

tional 16 affected individuals. Through these studies we

identified 14 independent mutations in CLPB in 14 indi-

viduals from 9 unrelated families. Taken together, our

data suggest that CLPB is the major locus for this pheno-

type, although additional genes are likely to exist. We

further supported these claims by developing a zebrafish

model of the disorder, in which we recapitulated key as-

pects of the neuroanatomical phenotypes of the affected

individuals. Specifically, embryos bereft of endogenous

clpb show microcephaly, reduction of the size of the optic

tectum (OT; a structure equivalent to the superior culicul-

lus in humans), and degeneration of the axons forming
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Figure 4. The CLPB Zebrafish Model
In vivo complementation of four CLPB
variants (p.Arg408Gly, p.Met411Ile,
p.Tyr617Cys, and p.Gly646Val) identified
in evaluated study participants, in zebra-
fish.
(A–G) Dorsal view of the developing zebra-
fish brain stained with acetylated tubulin
at 3 days postfertilization (dpf). The cere-
bellum (CB) is highlighted by a white
dashed rectangle in (A) showing a control
embryo.
(A–C) Control (A), morpholino injection
(B), and rescue (C) by human WT mRNA.
(D–G) Illustration of the effects of the
tested alleles.
(H) Graphic representation of the scoring
for CB defects in control and injected em-
bryos. Coinjection of MO with WT human
CLPB mRNA results is a statistically signifi-
cant reduction in the number of embryos
with cerebellar defects (p < 0.0001). By
contrast, coinjection of MO with each of
the human CLPB mRNAs carrying the
four mutations tested score as pathogenic
being indistinguishable from the MO-
injected embryos.
the cerebellum, reminiscent of the clinical features in the

individuals with CLPB mutations. Additionally, coinjec-

tion of the clpb MO with human mRNA bearing each of

the four detected in our cohort alleles tested were indistin-

guishable to MO alone, suggesting that these alleles have

little or no residual activity and that the observed syn-

dromic phenotypes in humans are driven by null or near

null mutations in all cases studied. It will be important

to generate genetic clpb mutants to study the progression

and molecular pathology of these phenotypes, as well as

the possible manifestation of other phenotypes, such as

cataracts, that are found in some but not all individuals

with CLPB mutations. Likewise, it will be critical to accu-

mulate additional individuals with CLPB mutations and

ascertain whether mutations that retain partial protein

function correlate with an attenuated phenotype, or

indeed any phenotype at all.
The American Journal of Human G
CLPB belongs to the large AAAþ
(ATP-ases associated with diverse

cellular activities) superfamily. AAAþ
proteins usually form ring-shaped

homo-hexamers.16 Members of this

superfamily typically have one or

two highly conserved ATPase do-

mains and are involved in various pro-

cesses, such as DNA replication and

repair and protein disaggregation

and refolding, and operate as part of

dynein motors, as chelatases or prote-

ases.17 The unifying characteristic of

this family of proteins consists in the

hydrolysis of ATP through the AAAþ

domain to produce energy required to exert mechanic

force onto their substrates. The human CLPB protein is

characterized further by the presence of a specific C-termi-

nal D2 domain (PFAM identifier PF10431), which is typical

for AAAþ proteins involved in polypeptide chain thread-

ing through the hexamer central channel. Proteins with

this domain form the subfamily of Caseinolytic peptidase

(Clp) proteins, also called HSP100 (Heat shock proteins

100 kDa).18 The human CLPB protein was named after

its high homology to the C-terminal part of bacterial

ClpB protein which, in cooperation with Hsp70, is

involved in the process of disaggregation of protein aggre-

gates and hence is called a disaggregase. Bacterial ClpB pro-

teins dissolve protein aggregates and rescue aggregated

proteins by assisting them to fold back into a native, bio-

logically active form.19 What distinguishes the human

CLPB protein from its microbial and plant paralogs is
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primarily the domain composition. These microbial ortho-

logs contain an additional AAAþ domain and a small

N-terminal domain (Figure 3) and have an ‘‘M domain,’’

necessary for disaggregation. Another feature characteristic

of the human CLPB is the presence of ankyrin repeats

instead of the first of two ATPase domains found in bacte-

ria and fungi, which are used commonly as protein-protein

interaction platforms (Figure 3).20,21 The species-specific

presence of the ankyrin repeats in the N-terminal part of

the human protein might have evolved to ensure a more

elaborate or more refined substrate recognition, to mediate

the interaction with as yet unknown protein partners, or

even to support a putative chaperone function. Despite

the fact that only one of the two ATPase domains is re-

tained in the human CLPB, its presence is postulated to

be sufficient to mediate the use of ATP hydrolysis energy

for threading unfolded polypeptide through the central

channel of the hexamer ring.22

Consistent with this hypothesis, we were able to confirm

in vitro the ATPase activity of human CLPB. Furthermore,

we were able to show that upon the presence of the

p.Arg408Gly variant (detected in individuals #3–#5) that

is predicted to affect the ATP binding capability of human

CLPB, the ATPase activity measured was diminished.

Despite the convergence of human and bacterial CLPB pro-

teins on several aspects of molecular function, unlike the

bacterial counterpart, the human CLPB cannot be stimu-

lated by casein.

Comparison of the clinical and genetic pathology of

individuals with CLPB mutations is likewise informative.

Mutations in CLPB lead to a congenital neutropenia

syndrome comparable to Kostmann disease, driven by

mutations in HAX1, which encodes HCLS1-associated pro-

tein X-1 (HAX1).23 Both disorders can show neurological

involvement, which seems, however, to be more severe

in individuals with CLPB mutations. In individuals with

HAX1 mutations, neurological involvement (epilepsy, ID)

can be appreciated only when both HAX1 isoforms A

and B are affected.24 Despite the variability of neurological

symptoms in the two syndromes, remarkable mimicry ex-

ists from a hematological standpoint, with individuals

affected by either one of the two disorders displaying

maturation arrest of the neutrophils at the promyelocyte

stage upon bone marrow examination.25 Furthermore, in-

dividuals with either CLPB or HAX1mutations also exhibit

disease progression from neutropenia into leukemic pic-

tures in the absence of GCSF.26

Biochemical analyses have established a role of HAX1 in

stabilizing the mitochondrial membrane potential and

preventing apoptosis via interaction with the mito-

chondrial proteases presenilin-associated rhomboid-like

(PARL), HtrA serine peptidase 2 (HTRA2), and BCL2-associ-

ated X protein (Bax).23,26,27 Further evidence for an antia-

poptotic role of HAX1 stems from the observation that it

interacts with and downregulates the protein level of the

sarco/endoplasmic reticulum Ca2þ-ATPase (SR Ca(2þ)-

ATPase 2 encoded by ATP2A2), which regulates the endo-
254 The American Journal of Human Genetics 96, 245–257, February
plasmic reticulum Ca2þ concentration.28 Evaluation of

the protein interaction networks of CLPB predict a

biochemical interaction between CLPB and SR Ca(2þ)-

ATPase 2 (Figure 5; for method, see Table S5), which allows

us to speculate that the effect of CLPB mutations on hem-

atopoesis could be driven by excessive apoptosis, as is the

case in Kostmann syndrome.

To enrich our understanding of the CLPB-mutation-

mediated disease pathomechanisms, we reasoned that

CLPB defects might have an effect on lipid biosyn-

thesis and metabolism, similar to what is observed in

Barth syndrome, one of the IEMs with 3-MGA-uria as a

discriminative feature, characterized by neutropenia as

well as (cardio)myopathy and delayed motor mile-

stones.29 Despite extensive analysis of the levels of various

phospholipids, we detected no involvement of lipid

biosynthesis, turnaround, and metabolism in the patho-

genesis mediated by mutations in CLPB. We also were

unable to detect overt abnormalities in mitophagy or

autophagy in cells from individuals with CLPB muta-

tions. In aggregate, our data argue that despite the

clinical mimicry between CLPB disease and Barth syn-

drome or other IEMs with 3-MGA-uria as a discriminative

feature, the mechanisms underlying each condition are

diverse.

In conclusion, we describe an as yet unknown inborn

error of metabolism with 3-MGA-uria as discriminative

feature (CLPB defect). Underlying mutations were

found in CLPB and lead to a broad phenotypic spectrum

encompassing ID/DD, congenital neutropenia, progres-

sive brain atrophy, movement disorder, and bilateral cata-

racts. The function of human CLPB is currently poorly

described but our data show that it might be related to

apoptosis.

Accession Numbers

The databank accession number for the data reported in this paper

is http://www.lovd.nl/clpb.

Supplemental Data

Supplemental Data include full case reports on the individuals in

this paper and describe the mild, moderate, and the severe pheno-

types of the disease, additional method descriptions, 11 figures,

and 5 tables and can be found with this article online at http://

dx.doi.org/10.1016/j.ajhg.2014.12.013.
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A database search resulted in 17 proteins with an established physical interaction with CLPB. The live-cell screen of CLPB against a
library of 100 proteins bymeans of bioluminescence resonance energy transfer (BRET) identified 19 additional direct interactions (Tables
S4 and S5). For HAX1, a total of 38 protein interactions were listed in the BioGRID database. Within the networks of first-order protein
interactions for both proteins, a link between CLPB and HAX1 is established by mutual interaction with the sarcoplasmic/endoplasmic
reticulum Ca2þ-ATPase (SR Ca2þ-ATPase 2 encoded by ATP2A2).
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Burrows-Wheeler Aligner, http://bio-bwa.sourceforge.net/

dbSNP, http://www.ncbi.nlm.nih.gov/projects/SNP/

ExAC Browser, http://exac.broadinstitute.org/
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URL1055173331

LOVD, http://databases.lovd.nl/shared/genes/CLPB

MINT, http://databib.org/repository/602

MitoProt, http://ihg.gsf.de/ihg/mitoprot.html

MutationTaster, http://www.mutationtaster.org/

NHLBI Exome Sequencing Project (ESP) Exome Variant Server,

http://evs.gs.washington.edu/EVS/

Online Mendelian Inheritance in Man (OMIM), http://www.

omim.org/

PolyPhen-2, www.genetics.bwh.harvard.edu/pph2/

RefSeq, http://www.ncbi.nlm.nih.gov/RefSeq

SAMtools, http://samtools.sourceforge.net/

SIFT, http://sift.bii.a-star.edu.sg/

STRING 9.0, http://www.string-db.org/

UCSC Genome Browser, http://genome.ucsc.edu
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