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Adjusting for Heritable Covariates Can Bias Effect
Estimates in Genome-Wide Association Studies

Hugues Aschard,1,2,* Bjarni J. Vilhjálmsson,1,2 Amit D. Joshi,1 Alkes L. Price,1 and Peter Kraft1

In recent years, a number of large-scale genome-wide association studies have been published for human traits adjusted for other corre-

lated traits with a genetic basis. Inmost studies, the motivation for such an adjustment is to discover genetic variants associated with the

primary outcome independently of the correlated trait. In this report, we contend that this objective is fulfilled when the tested variants

have no effect on the covariate or when the correlation between the covariate and the outcome is fully explained by a direct effect of the

covariate on the outcome. For all other scenarios, an unintended bias is introduced with respect to the primary outcome as a result of the

adjustment, and this bias might lead to false positives. Here, we illustrate this point by providing examples from published genome-wide

association studies, including large meta-analysis of waist-to-hip ratio and waist circumference adjusted for body mass index (BMI),

where genetic effects might be biased as a result of adjustment for body mass index. Using both theory and simulations, we explore

this phenomenon in detail and discuss the ramifications for future genome-wide association studies of correlated traits and diseases.
Adjustment for covariates or correlated secondary traits in

genome-wide association studies (GWASs) can have two

purposes: first, to account for potential confounding fac-

tors that can bias SNP effect estimates, and second, to

improve statistical power by reducing residual variance.

For example, researchers routinely adjust for principal

components of individual genotypes to account for popu-

lation structure,1 or principal components of gene expres-

sion to capture batch effects in gene-expression analysis.2

Besides confounding factors, human traits can also be

adjusted for correlated environmental or demographic fac-

tors such as gender and age to increase statistical power.3,4

The intuition here is that accounting for a true risk factor

decreases the residual variance of the outcome and there-

fore increases the ratio of the true effect size of a predictor

of interest over the total phenotypic variance, which leads

to increased statistical power.

Recently, researchers have conducted GWAS of human

traits and diseases while adjusting for other heritable cova-

riates with the motivation of identifying genetic variants

associated only with the primary outcome.5–9 An impor-

tant difference between environmental/demographic

factors and heritable human traits is that the latter have

genetic associations. Therefore, a genetic variant can in

theory be associated with both the primary outcome and

the covariate used for adjustment. When that happens,

the adjusted and unadjusted estimated effects of the ge-

netic variant on the outcome will differ. If the correlation

between the covariate and the outcome results from a

direct effect of the covariate on the outcome (Figure 1A),

the adjusted and unadjusted estimates correspond to the

direct (i.e., not mediated through the covariate) and total

(i.e., direct þ indirect) genetic effect of the variant on the

outcome, respectively. In all other situations where the

observed correlation is due to shared genetic and/or envi-
1Department of Epidemiology, Harvard School of Public Health, Boston, MA 0
2These authors contributed equally to this work

*Correspondence: haschard@hsph.harvard.edu

http://dx.doi.org/10.1016/j.ajhg.2014.12.021. �2015 by The American Societ

The Americ
ronmental risk factors, the adjusted estimate can be biased

relative to the true direct effect.

To understand when a bias is introduced, consider the

causal diagrams for a single genetic variant g, an outcome

of interest Y, and a covariate C (Figures 1B–1D). Besides

the genetic variant in question, the two variables, Y and

C, are influenced by either other genetic loci, which we

denote by G-g, or other environment factors and noise, de-

noted by E. For simplicity, assume that the genetic variant g

and other causal factors, G-g and E, are uncorrelated.

Furthermore, assume that the covariate C and the outcome

of interest, Y are correlated through (G-g,E). If we are inter-

ested in estimating the direct effect of g on Y (the black ar-

row in Figure 1), then in scenario from Figure 1B adjusting

for the covariate C does not bias the effect estimate and in-

creases the power as we implicitly adjust for some environ-

mental and other (uncorrelated) shared genetic effects.

However, in scenario from Figure 1C where g only influ-

ences the covariate and not the outcome, adjusting for

the covariate induces an association between the genetic

variant and Y. The strength of this association depends

on rCY, the correlation between the covariate and the

outcome due to shared risk factors, and the strength of

bC, the effect of the genetic variant on the covariate. For

normalized g, C, and Y with mean 0 and variance 1, the

bias of the genetic effect estimate, bbY , on the covariate

adjusted trait is approximately equal to �bCrCY when bC

is small and sample size is sufficiently large (see

Appendix A). Finally, consider scenario from Figure 1D,

where both the covariate and the outcome are influenced

by the genetic variant. Here, the association between the

genetic variant and the covariate will bias the estimated

genetic effect on the outcome by the same amount as

before, i.e., �bCrCY. This bias observed is illustrated in

Figure 2A, and as expected, it is well approximated by
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Figure 1. Underlying Causal Diagrams
Four causal diagrams describing the causal
relationship between the genotypes G,
environment E, a covariate C, and the
outcome of interest Y are shown. In (A),
the correlation between Y and C is due
to a direct effect of C on Y, whereas in
(B)–(D,) the correlation between Y and C
is explained by shared risk factors.
the product between the direct genetic effect estimate on

the covariate and the correlation between the outcome

and the covariate. As shown in Figure 2B, this bias leads

to increased false discovery rates under the null (no direct

effect of the genetic variant on the outcome). This phe-

nomenon also implies that when there truly is a direct

genetic effect on the outcome, the adjusted statistical test

can have increased power to detect the genetic variant, as

compared to the unadjusted test, if the genetic effect and

the phenotypic correlation are in opposite directions

(Figure S2, left panel). Conversely, if the genetic effect

and the correlation are in the same direction, the adjusted

statistical test has, in many cases, a decreased power to

detect the genetic variant (Figure S2, right panel).

The difficulty of estimating direct effects of genetic var-

iants on a covariate-adjusted outcome is well appreciated

in causal inference literature10 and by many epidemiolo-

gists,11–13 but has received little attention in the context

of GWASs.14 In Appendix B, we review 15 scenarios de-

picted as direct acyclic graphs in Figure S1 where adjust-

ing for a covariate is either recommended or not and vali-

dated the interpretation of each case through simulation

(see Table S3). In the absence of a clear underlying causal

model or diagram, one cannot guarantee that effect esti-

mates for covariate adjusted outcomes correspond to the

desired estimates (e.g., direct versus total genetic effect).

In GWASs, the potential presence of bias due to adjust-

ment is proportional to the product of bC and rCY. Hence,

adjusting for a covariate that does not have a genetic

component, such as an environmental exposure, will

not bias the estimate for the genotype effect on the

outcome of interest as bC ¼ 0. On the other hand, when

adjusting for a covariate that has a genetic component

(potentially bC s 0), then the adjusted association signals

can be difficult to interpret, because it does not necessarily

imply an association with the outcome of interest only

but can correspond also to a bivariate signal on Y and C,

or in some extreme case to an association with the covar-

iate only. Therefore, unless we can unequivocally deter-

mine which model in Figure 1 is the right one or rule

out an effect from the genetic variant on the covariate,

the reported adjusted associations should be considered

with caution.

For illustrative purpose, we considered the SNPs reported

to be associated at genome-wide significance levels with

waist hip ratio (WHR) or waist circumference (WC), after
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adjustment on BMI.6,8 The observed correlations between

BMI and WHR and between BMI and WC in the GIANT

data are 0.49 and 0.85, respectively (see Appendix C).

Table 1 displays the gender-specific significant SNPs from

these studies and the summary statistics that we extracted

from the GIANT consortium website. It shows that SNPs

harboring opposite marginal effects on the two traits are

significantly enriched (p ¼ 0.005). This agrees well with

theory and our simulations showing increased power

when the SNP has effect in opposite directions on the

outcome and the covariate (Figure S2A). In the absence

of a genetic effect on BMI, we expect the number of SNPs

with opposite directions of effect estimates to follow a

binomial distribution with probability of 0.5 (see Appen-

dix C and Figure S3). The observed enrichment of SNPs

with opposite directions indicates that a substantial frac-

tion of those SNPs are associated with BMI in the opposite

direction. Indeed, when removing the SNPs with the most

significant marginal associations with BMI, the fraction of

variants displaying an opposite effect becomes non-signif-

icant (Figure S4). None of the SNPs with opposite effects on

BMI and either WHR or WC show significant marginal as-

sociation with BMI after correction for multiple testing

(although 5 out of 23 are nominally significant). However,

as shown in Figure S2B, even non-significant genetic

effects on the covariate can influence power when corre-

lation between the outcome and the covariate is large

(e.g., R 0.5).

To assess whether the p values from the adjusted analysis

reflect direct genetic effects on the outcome or a mixture of

effects on the outcome and the covariate, we derived a

statistical test of whether the BMI-adjusted effect of a

SNP, bbYadj, was equal to its expectation when bC ¼ 0, which

is bbY . This test only uses GWAS summary information and

the correlation between the covariate and the phenotype

(see Appendix A). It is approximately equivalent to testing

for the marginal effect of the SNP on the covariate in the

exact same set of subjects used in the adjusted analysis.

To verify this, we conducted a GWAS of WHR, BMI, and

WHR adjusted for BMI for 15,949 individuals on more

than 6 million SNPs and found the correlation between

the two test statistics, the direct marginal and the proposed

one based on GWAS summary level information, to be

0.98 (see Appendix A). We then applied our test to the

WHR and WC GWAS summary statistics to test for a direct

genetic effect on BMI among the reported SNP associations
5, 2015



Figure 2. Effect Estimates and False Discovery
Rate
Results for simulations of correlated outcomes and
covariates and a genetic variant that influences the
covariate only are shown. In (A), the average
observed bias of the genetic effect estimate in the co-
variate adjusted analysis is plotted as a function of
the correlation between the outcome and the covar-
iate for different values of direct genetic effect on
the covariate. The dashed lines correspond to the
theoretical bias as derived in the method section.
In (B), the average false discovery rate (a ¼ 0.05) of
over 5,000 replicates is plotted as a function of rY,C
the correlation between the outcome and the covar-
iate for different values of direct genetic effect on
the covariate when simulating 2,000 individuals.
from the GIANT study (see Table 1) as we did not have ac-

cess to the marginal associations for BMI in the same sam-

ples. We observed that half of the reported associations

with WHR adjusted for BMI are likely influenced by a

(direct) genetic association with BMI. This does not mean

that those SNPs have no effect on WHR; in fact, their mar-

ginal (unadjusted) associations withWHR and BMI suggest

that most of these loci are truly associated with WHR.

Instead, this means that the reported effect estimates

and the p values in the covariate adjusted analysis should

be interpreted with caution, because they are not neces-

sarily representative of the direct genetic effect on WHR

and WC.

We extended our analysis to other GWAS of covariate

adjusted outcomes and found evidence that reported ge-

netic associations with the primary outcome were in part

explained by the effect of the SNP on the covariate. For

example, the SNP rs11977526 has been reported to be asso-

ciated with insulin-like growth factor-binding protein-3

(IGFBP3 [MIM 146732]) at very high significance level

3.3 3 10�101 while no association was observed for Insu-

lin-like growth factor-I (IGF1 [MIM 147440]) before any

adjustment.5 The IGF1 analysis adjusted for IGFBP3 dis-

plays a genetic association with rs11977526 (p ¼ 1.9 3

10�26) with estimate going in the opposite direction of

the rs11977526/IGFBP3 association while IGFBP3 and

IGF1 are positively correlated (>0.7).15,16 This indicates

that the observed rs11977526/IGF1adj.IGFBP-3 association

is likely driven by the rs11977526/IGFBP3 association. In

a secondary analysis, Thorleifsson et al.17 tested whether

SNPs found to be associated with BMI or weight were
The American Journal of H
also associated with type 2 diabetes (T2D)

with or without adjustment for BMI. Most p

values for association between those SNPs

and T2D were less significant after adjustment

for BMI, consistent with a direct effect of BMI

on T2D; i.e., BMI is a mediator of the genetic

effect (Figure 1A). However, a handful of

them had opposite effects, which increased

signal in the adjusted analysis (see Table S1).

Those signals might be partly explained
by the genetic association with BMI, indicating that Fig-

ures 1C and 1D might fit the data as well. However, this

analysis was conducted on case-control data, ascertained

to oversample T2D cases, raising additional complexities

in the interpretation of these results.4,18 Several other

large-scale heritable-trait-adjusted GWAS have been con-

ducted.9,19–21 Among those we explored, all displayed

enrichment for genetic variants showing nominal signifi-

cance association with the covariate considered, genetic

variants with opposite effect on the outcome and the

covariate, or both (see Table S2).

Finally, this concept of biased associations in covariate

adjusted analysis can be extended to other effect mea-

sures. In particular, the heritability of a phenotype

adjusted for a covariate, commonly reported,22–26 can

also be biased by the genetic component of the covariate

and therefore might not necessarily represent the genetic

component of the primary outcome. Similarly cross-trait

heritability or genetic correlations between covariate

adjusted phenotypes, as measured by Lee et al.,27 might

also be biased. Assuming an extended model from

Figure 1D, the genetic component of the adjusted trait

would correspond to a heterogeneous mixture of trait-spe-

cific genetic loci and shared loci with either effect in the

same direction or effect in opposite direction (Figure 3).

In theory, one can expect the heritability of an adjusted

trait to be larger than the heritability of the unadjusted

trait (Figure 3C). Cross-trait heritability estimates would

provide a more comprehensive answer to the genetic vari-

ance overlap between correlated traits, although it is un-

clear how genetic effects in opposite direction for
uman Genetics 96, 329–339, February 5, 2015 331



Table 1. Estimates and p Values of Genetic Effects from the GIANT Study for Genetic Variants Found Associated with Waist to Hip Ratio
and Waist Circumference after Adjusting for Body Mass Index

MarkerName A1 A2 Frequency Estimated Effects
Opposite
Effect Reference Pb.deviation

a

WHR adjusted for BMI in women BMI (pval) WHR (pval) WHRadjBMI (pval)

rs9491696 c g 0.4800 �0.0068 (2.7E-01) �0.0479 (1.0E-11) �0.0472 (1.6E-12) Heid et al. 0.81

rs6905288 a g 0.5620 �0.0083 (2.4E-01) 0.0484 (4.7E-10) 0.0523 (7.7E-13) X Heid et al. 0.22

rs984222 c g 0.6350 0.0108 (8.5E-02) -0.0284 (9.0E-05) -0.0359 (1.2E-07) X Heid et al. 0.012

rs1055144 t c 0.2100 -0.0126 (1.1E-01) 0.0314 (4.2E-04) 0.0398 (2.3E-06) X Heid et al. 0.021

rs10195252 t c 0.5990 -0.0184 (3.3E-03) 0.0447 (7.0E-10) 0.0529 (6.3E-15) X Heid et al. 0.0061

rs4846567 t g 0.7170 0.0098 (1.4E-01) -0.0543 (5.3E-12) -0.0641 (4.7E-18) X Heid et al. 0.0025

rs1011731 a g 0.4280 �0.0058 (3.5E-01) �0.0280 (7.0E-05) �0.0284 (2.1E-05) Heid et al. 0.89

rs718314 a g 0.2590 0.0077 (2.7E-01) �0.0444 (3.9E-08) �0.0467 (8.3E-10) X Heid et al. 0.49

rs1294421 t g 0.6130 �0.0007 (9.1E-01) �0.0357 (1.2E-06) �0.0380 (3.4E-08) Heid et al. 0.45

rs1443512 a c 0.2390 �0.0014 (8.5E-01) 0.0415 (7.6E-07) 0.0479 (1.4E-09) X Heid et al. 0.063

rs6795735 t c 0.5940 0.0114 (6.4E-02) -0.0264 (2.2E-04) -0.0330 (7.9E-07) X Heid et al. 0.023

rs4823006 a g 0.5690 0.0046 (4.6E-01) 0.0337 (3.4E-06) 0.0366 (6.9E-08) Heid et al. 0.33

rs6717858 t c 0.5417 -0.0185 (3.1E-03) 0.0439 (8.1E-10) 0.0536 (2.8E-15) X Randall et al. 0.00072

rs2820443 t c . -0.0099 (1.4E-01) 0.0544 (4.8E-12) 0.0643 (3.7E-18) X Randall et al. 0.0025

rs1358980 t c 0.4500 -0.0148 (3.8E-02) 0.0498 (7.1E-10) 0.0565 (1.1E-13) X Randall et al. 0.041

rs2371767 c g 0.2083 0.0199 (4.1E-03) -0.0302 (1.2E-04) -0.0418 (1.6E-08) X Randall et al. 0.00040

rs10478424 a t 0.7833 �0.0052 (5.1E-01) 0.0320 (3.3E-04) 0.0372 (1.0E-05) X Randall et al. 0.16

rs4684854 c g 0.4333 0.0025 (7.0E-01) 0.0401 (7.6E-08) 0.0396 (2.4E-08) Randall et al. 0.88

WC adjusted for BMI in women BMI (pval) WC (pval) WCadjBMI (pval)

rs11743303 a g 0.8 0.0078 (3.2E-01) �0.0186 (3.7E-02) �0.0276 (2.3E-06) X Randall et al. 0.12

WHR adjusted for BMI in men BMI (pval) WHR (pval) WHRadjBMI (pval)

rs9491696 c g 0.4800 0.0004 (9.5E-01) �0.0295 (1.1E-04) �0.0255 (1.7E-04) X Randall et al. 0.26

rs984222 c g 0.6350 0.0146 (2.4E-02) -0.0299 (1.3E-04) -0.0407 (3.3E-09) X Randall et al. 0.0030

rs1055144 t c 0.2100 �0.0007 (9.3E-01) 0.0273 (4.3E-03) 0.0289 (6.0E-04) X Randall et al. 0.72

rs1011731 a g 0.4280 0.0082 (2.0E-01) �0.0307 (5.4E-05) �0.0341 (4.9E-07) X Randall et al. 0.34

SNPs nominally significant for the test of bias (Pb.deviation < 0.05) are indicated in bold.
ap value from the test of bbYadj ¼ bbY .
positively correlated traits (or conversely) are handled by

these methods.

Overall, when the goal is to identify genetic variants

that are directly associated with a primary outcome, we

were unable to identify an alternative approach that ad-

justs for a covariate and leads to unbiased effect estimates

for a heritable covariate that is associated with the tested

variant (see Appendix D). Therefore, unless we know with

certainty that the tested variant does not influence the co-

variate, we recommend that the inclusion of such herita-

ble covariates in the model should be avoided. Given ev-

idence for a large number of pleiotropic genes across

complex traits,28–30 it seems unlikely that any heritable

covariates with a complex genetic architecture, e.g., BMI
332 The American Journal of Human Genetics 96, 329–339, February
or WHR, will fulfill that condition. Including such covari-

ates in the absence of a strong prior knowledge on the

pathophysiology is therefore likely to lead to biased effect

estimates.

In some instances, the aim of an adjusted analysis is

to increase statistical power rather than detect unbiased

direct effects. In these instances, we suggest using multi-

variate approaches31–33 that do not assume a causal dia-

gram. Such approaches are generally well powered to

detect pleiotropic loci affecting multiple traits, which

are exactly the type of loci where we might expect the

most power gain from adjusted analysis. However, if

adjusted analyses are performed, we recommend report-

ing genetic effect estimates on the covariate and the
5, 2015



Figure 3. Heritability of Adjusted Phenotypes
We compared the heritability of a given phenotype against the heritability estimated after adjustment for a correlated variable. We simu-
lated a trait Y adjusted for a correlated trait C. The genetic variance of each trait (upper panel) splits into trait-specific effects, shared ef-
fects, and shared loci with opposite effects. We vary heritability of Y and C from 0.8 (A), 0.5 (B), and 0.2 (C) and the proportion of shared
environmental variance (bottom panel) from 0 to 1.
outcome before and after the adjustment, their SD and

significance, as well as the correlation between the

outcome and the covariate. With this information in

hand, the magnitude of a potential bias can be esti-

mated and taken into account when interpreting the

results.
Appendix A

Model

For simplicity we assume a linear model instead of a lo-

gistic model, which is often used for GWAS of case-con-

trol disease traits. However, the least-square estimates

from a linear regression are a scaled first-order approxi-

mate of the log-odds obtained from a logistic regres-

sion.4 Therefore, given sufficient sample size, the issue

highlighted in this letter also holds for case-control data-

sets when analyzed with logistic regression. Following

the notation described in Figure 1, we can write the

true causal model for the covariate C and the outcome

Y as C ¼ bCg þ uC, and Y ¼ bYg þ uY, where uC and uY
denote the combined contribution due to other loci, as

well as the respective environmental (and noise) compo-

nents of the covariate and the outcome. Note that this

model does not rule out a direct contribution from C

on Y (or vice versa), which could be included in the uC
and uY terms, respectively. However, such an effect could

affect the interpretation of the direct effect estimates

mentioned here (see Appendix B). If we assume that

the covariate, the outcome, and the genotype have all

been normalized to have mean zero and variance one,

then we can write the marginal estimates for the genetic

effects as bbY ¼ g 0Y=n, and bbC ¼ g 0C=n, where n is the

sample size. Similarly, the correlation coefficient can be

written as brCY ¼ C0Y=n. Finally, we can write the adjusted

model as Y ¼ aC þ bYadjg þ e, where a denotes the effect

of C on Y, bYadj the genetic effect, and e the environment

(noise) term. Note that we do not believe that this is the
The Americ
generative model, rather the model that is being em-

ployed when performing GWAS on covariate adjusted

outcomes.
Bias of the Effect Estimates in the Covariate

Adjusted Model

From the adjusted model above we derived a joint least

square estimates for the effect of C and g on Y, i.e.,bb ¼
� babbYadj

�
, which can be written as bb ¼ ðX0XÞ�1X0y,

where X is a matrix composed of c and g, the realization

of C and g in a sample of n individuals, and y is a vector

of realization of Y in the same sample. When C, Y and

g are normally distributed with mean 0 and variance 1, bb
can be re-written as

bb ¼
�
½c;g�0 ½c;g�

��1

½c;g�0y

bb ¼
�
c0c c0g
g0c g0g

��1

½c;g�0y

bb ¼
�

n nbbC

nbbC n

��1

½c;g�0y

bb ¼ 1

n2 � n2bb2

C

�
n �nbbC

�nbbC n

�
½c;g�0y

bb ¼ 1

n� nbb2

C

h
c� bbCg;�bbCcþ g

i0
y

bb ¼

26664
1

n� nbb2

C

�
c� bbCg

�0
y

1

n� nbb2

C

�
�bbCcþ g

�0
y

37775
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bb ¼

26664
1

n� nbb2

C

�
c0y� bbCg

0y
�

1

n� nbb2

C

�
� bbCc

0yþ g 0y
�
37775

bb ¼

26664
1

n� nbb2

C

�
nbrCY � bbCnbbY

�
1

n� nbb2

C

�
� bbCnbrCYþ nbbY

�
37775

bb ¼

26664
1

1� bb2

C

�brCY � bbC
bbY

�
1

1� bb2

C

�
� bbCbrCY þ bbY

�
37775:

Assuming bb2

C � 1, which is expected for most human

phenotypes, including BMI, WHR, and WC the estimated

effect of g can be approximated by bbYadjz� bbCbrCY þ bbY.

And therefore for a sample size n the expected value ofbbYadj can be approximated by

E
�bbYadj

�
zE

�
� bbCbrCY þ bbY

�
zE

�
� bbCbrCY

�
þ E

�bbY

�
z� bC 3 rCY þ cov

�bbC; brCY

�
þ bY :

Since brCY ¼ corðC;YÞ ¼ corðbbCg þ εC; bbYg þ εYÞ ¼bbC
bbY þ gres, where gres is the correlation between C and Y

not explained by the SNP in the data, EðbbYadjÞ can be re-

written as

E
�bbYadj

�
z� bC 3 rCY þ cov

�bbC; bbC
bbY þ gres

�
þ bY

E
�bbYadj

�
z� bC 3 rCY þ cov

�bbC; bbC
bbY

�
þ bY

E
�bbYadj

�
z� bC 3 rCY þ s2bbC

3E
�bbY

�
þ bY

E
�bbYadj

�
z� bC 3 rCY þ bY

n
þ bY :

For large sample size (e.g., n> 1000), EðbbYadjÞ can thus be

approximated by bY �bC 3 rCY. It implies that EðbbYadjÞzbY
Var
�bbYadj j bC ¼ 0; bbY ¼ bbY ; brCY ¼ brCY

�
¼ Var

 
1

1� bb2

C

j bC

þ Var

 
1

1� bb2

C

j b

þ Var
�bbY � bbCbr

334 The American Journal of Human Genetics 96, 329–339, February
when bC ¼ 0, and is therefore unbiased; however, when

bC s 0, using C as a covariate when testing the effect of

G on Y introduce a bias approximately equal to �bC 3

rCY, which depends on the marginal effect of the genetic

variant on the covariate and the correlation coefficient be-

tween the covariate and the outcome.

Finally, one can note that brCY cannot be null when bothbbY and bbC are not null. Hence in the special case where brCY
is only explained by the shared genetic effect of g on Y and

C, brCY equals brCY ¼ corðC;YÞ ¼ corðbbCg þ εC; bbYg þ εYÞ,
where εC and εY are independent residual normally distrib-

uted with mean 0 and variance ð1� bb2

CÞ and ð1� bb2

YÞ;
respectively. It follows that

brCY ¼ bbC 3 bbY 3 corðg; gÞ þ bbC 3 corðg; εYÞ þ bbY 3 corðg; εCÞ
þ corðεY ; εCÞ ¼ bbC 3 bbY :

In such case the joint estimates becomes

bb ¼

264 0

1

1� bb2

C

ðbbY � bb2

C
bbYÞ

375 ¼
�

0bbY

�
and the estimated

effects of g on Y before and after adjusting for C are equal.
Testing for a Bias in the Covariate Adjusted Analysis

Given the joint least-square estimates above, we can

now write out their conditional distributions and make

use of them to test different hypothesis. The hypothesis

of interest is to test whether the observed association in

the covariate adjusted model is expected when there is

no direct genetic effect on C. In light of the equations

above, a simple test for the bias is a test for a marginal

association between the genetic variant and C, i.e., a test

for bC ¼ 0. However, if we are unable to perform the

marginal test, or if the reported values are calculated

using a different sample, we can approximate the

marginal test using only GWAS summary statisticsbbYadj, bbY , and the reported correlation brCY . In particular,

we are interested in the distribution of the joint

least square estimate for the genotype effect in the

covariate adjusted model under the null (bC ¼ 0).

We can treat bbY as an observed value, and get

EðbbYadj

��bC ¼ 0; bbY ¼ bbY ; brCY ¼ brCYÞ ¼ bbY and its vari-

ance, which equals
¼ 0; bbY ; brCY

!
3Var

�bbY � bbCbrCY j bC ¼ 0; bbY ; brCY

�

C ¼ 0; bbY ; brCY

!
3
�
E
�bbY � bbCbrCY j bC ¼ 0; bbY ; brCY

��2
CY j bC ¼ 0; bbY ; brCY

�
3

 
E

 
1

1� bb2

C

j bC ¼ 0; bbY ; brCY

!!2

:
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Because VarðbbY � bbCbrCY ��bC ¼ 0; bbY ; brCYÞ ¼ VarðbbCbrCY j
bC ¼ 0; brCYÞ ¼ br2CY=n and Varð1=1� bb2

CjbC¼0; bbY ; brCYÞ ¼
Varð1=1� bb2

CjbC ¼ 0Þz0 and Eð1=1� bb2

CjbC ¼ 0Þz1 when

sample size n is large, we have

Var
�bbYadj j bC ¼ 0; bbY ; brCY

�
¼ Var

 
1

1� bb2

C

j bC ¼ 0

!
3
br2
CY

n

þ Var

 
1

1� bb2

C

j bC ¼ 0

!

3 bb2

Y þ br2
CY

n

3

 
E

 
1

1� bb2

C

j bC ¼ 0

!!2

Var
�bbYadj j bC ¼ 0; bbY ; brCY

�
¼ z

br2
CY

n
:

Using simulations, we verified that this is a very good

approximation of the variance for realistic sample sizes,

i.e., n > 1,000 (see Figure 2). Now that we have the mean

and the variance conditional on bC ¼ 0, we can use a

Wald test to test for a bias, i.e., test whether bC s 0. The

Wald test statistic then becomes nðbbYadj � bbYÞ2=br2CY . This
test only requires the reported GWAS summary statistics,

i.e., bbYadj, bbY , the reported correlation brCY , but not themar-

ginal in-sample effect estimate bbC. Since in-sample correla-

tion estimates, br2CY , may not be available there is a risk that

the statistic is mis-calibrated by a constant factor where

small values of br2CY can lead to false positives.

One can also note that the non-centrality parameter

(ncp) of the above Wald test can be expressed as

ncp ¼
n

0@ð�bbC3brCY þ bbYÞ � bbY

1� bb2

C

1A2

br2CY ¼ nbb2

C

1� bb2

C

, which corre-

sponds to the ncp of the association test between G on C

in the same sample.

We also confirmed the validity of the proposed test by

analyzing a real data of 15,949 individuals from three co-

horts, the Nurse’s Health Study, the Health Professional

Study and the Physicians’ Health Study. We performed a

genome-wide meta-analysis of WHR, BMI, and WHR

adjusted for BMI across 6,106,189 SNPs either genotyped

or imputed using the 1,000 genome reference panel.34

All analyses were adjusted for relevant covariates

including age, gender and the top 5 principal component

of the genotypes. This analysis confirmed first that the

difference in the genetic effect estimates from the BMI-

adjusted and non-adjusted analysis of WHR directly

depends on the genetic effect estimate on BMI and the

correlation between WHR and BMI. Indeed, after account-

ing for BMI and WHR variances, we observed that

ðbbYadj � bbYÞ � ðbbC3brCYÞ. We further compared the chi-

square statistics from the proposed test:

ðbbYadj � bbYÞ=ðsbbY

3brCYÞ2 with the chi-square of the test
The Americ
of SNPs on BMI ðbbC=sbbC

Þ2. We observed a correlation of

0.98 between the two chi-squares, thus confirming the

validity of the proposed test.

Proportion of Genetic Component

We derived the proportion of variance of an adjusted trait

by each genetic component of the primary outcome and

the covariate used for adjustment. Assume two normally

distributed traits Y and C with mean 0 and variance 1,

that have common and specific environmental compo-

nent Es, E1 and E2 respectively, a shared genetic compo-

nent with effect in the same direction Gs and in opposite

direction Go respectively, and trait-specific genetic compo-

nents G1 and G2 for Y and C respectively, so that

Y ¼ ffiffiffi
c

p
3Es þ

ffiffi
e

p
3E1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c � e

p
3
� ffiffiffiffi

gs
p

3Gs þ ffiffiffiffi
go

p
3Go

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gs � go

p
3G1

�

C ¼ ffiffiffi
c

p
3Es þ

ffiffi
e

p
3E2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c � e

p
3
� ffiffiffiffi

gs
p

3Gs � ffiffiffiffi
go

p
3Go

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gs � go

p
3G2

�
The adjustment of Y for C is defined as YadjC ¼ Y � aC

where a, the correlation between the two traits equals

cþ (1� c� e) * (gs � go). The proportion of variance of YadjC
explained by each of the four genetic component is then

vGs ¼ ð1� c � eÞ3 gs 3
ð1� aÞ2
1� a2

vGo ¼ ð1� c � eÞ3 go 3
ð1þ aÞ2
1� a2

vG1
¼ ð1� c � eÞ3 ð1� gs � goÞ3 1

1� a2

vG2
¼ ð1� c � eÞ3 ð1� gs � goÞ3 a2

1� a2
Appendix B

Direct Acyclic Graphs and Interpretation of Adjusted

Analysis

The use of causal diagrams or directed acyclic graphs

(DAGs) in epidemiological research has been discussed

in detail by many authors previously.11–13,35 In this

note, we summarize parts of their work that are relevant

in the context of genetic epidemiology. The characteriza-

tion of inter-relationships between the SNP (g), correlated

trait (C), primary outcome (Y) and other relevant

measured/unmeasured (U) variables with the help of

causal diagrams or directed acyclic graphs (DAGs) can

help understand whether an adjustment might be

necessary (to avoid or reduce bias), unnecessary (increase

variance of effect estimates), or harmful (lead to bias).

We detail further 15 different DAGs (Figure S1)
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corresponding to four different scenarios where adjusting

for a covariate is either recommended or should be

avoided. We confirmed the validity of each through simu-

lation (Table S3).

In general, when the exposure (in this case ‘‘g’’) and the

outcome share a common cause, adjustment for that

variable (C, Figure S1A) or a surrogate of that variable (C is

a surrogate for U, Figures S1B–S1D) is necessary.13 This

adjustment can remove the confounding effect due to the

common cause, although when the covariate is only a sur-

rogate, it will not completely solve the confounding issue

(Figure S1B and Table S3). Such a scenario is unlikely in ge-

netic epidemiological studies, since very few factors precede

the occurrence/acquisition of germline genetic variants.

Themain example of an upstream factor that influences ge-

notype distribution is population stratification; adjustment

for principal components can reduce the effects of popula-

tion stratificationbias. Therefore, it canbe argued that inor-

der to reduce confounding of the genetic effect on the pri-

mary outcome in genetic epidemiological studies, it is

rarely necessary to adjust for anything more than principal

components (adjustment for additional covariates in

certain situations can increase power, however4).

Next, we consider a scenario where the effect of the G on

Y is hypothesized to be completely or partially mediated

through C, or equivalently when C is a surrogate for a

mediator. Such a mediation is represented in causal dia-

grams by an indirect, unblocked path that goes through

C, or through factors tagged by C (Figures S1E–S1H).

Here, classical epidemiologists advise against adjustment

for C, since C is in the causal pathway and hence not a

confounder.12,13 In contrast, instances can be found where

genetic epidemiologists seek the controlled direct causal ef-

fect of G on Y by noting their intent to identify variants

associated with the outcome without covariate mediation,

and are thereby justified in adjusting for C, in the absence

of an unmeasured confounder36 described in the next

paragraph. In Figures S1E–S1H, there are two paths from

G to Y—a direct path and an indirect path that goes

through C. Statistical models that condition for C block

the path through C and reveal only the direct effect of G

on Y. We also note that when the covariate is only a surro-

gate for the mediator, the interpretation can be difficult as

the proportion of the ‘‘true’’ indirect path removed is un-

known (Figure S1h and Table S3)

However, if an unmeasured variable U, not considered in

the study, influences both C and Y, adjusting for C will

result in the formation of a backdoor path fromG to Y (Fig-

ures S1I and S1J). This path does not follow the direction of

the arrows and is blocked at C. Whenever a path is blocked

at a variable, that variable is termed a collider. Statistical

models that condition for colliders (or their descendants)

on a path from G to Y unblock that path, and can result

in biased effect estimate of G on Y.11,13 In a scenario where

C and Y both influence a collider U (Figure S1K), because C

is not a descendant of U, adjusting for C will not lead to

bias, but is at the same time unnecessary.
336 The American Journal of Human Genetics 96, 329–339, February
Lastly, let us consider scenarios where, due to incom-

plete understanding of complex traits and unbeknownst

to investigators, C is a descendant of Y (Figures S1L–

S1O). In such a scenario, the indirect path from G to Y

will be blocked, and adjustment for C could result in

spurious associations due to opening of that backdoor

path. One possible example of a study where the adjust-

ment covariate might be the descendant of the primary

outcome is the GWAS of pro-insulin levels adjusted for in-

sulin—in biological pathways, insulin is produced from

pro-insulin by removal of the C-peptide,37 and hence insu-

lin levels might be influenced by pro-insulin levels.

Therefore, adjustment of insulin levels would not lead to

identification of SNPs associated with pro-insulin alone,

but some of the identified SNPs may be related to the

downstream process of conversion from pro-insulin to

insulin.

In summary, if an indirect path from G to Y is not

blocked, adjustment for C on the path could be utilized

to get an estimate of direct association between G and Y.

On the other hand, if the indirect path between G and Y

is blocked, adjustment for colliders (or their descendants)

in the path could result in biased estimates. More complex

scenarios might arise and might be resolved by applying

principles described in previous literature.11,13
Appendix C

Analysis of the GIANT Data

We considered for illustrative purpose the 23 SNPs reported

to be associated at genome-wide significance levels in

gender specific samples with waist hip ratio (WHR) and

waist circumference (WC) after adjustment on body mass

index (BMI) by Heid et al.6 and Randal et al.8 We extracted

from the GIANT summary statistics database the estimated

effects of those SNPs on WHR, or WC when relevant,

before and after adjustment for BMI, and the marginal ef-

fect of those SNPs on BMI. All estimates were selected

from the sex stratified anthropometrics analysis.8 The sam-

ple sizes (averaged over all SNPs) used for each of the 6 an-

alyses were as follows: for BMI, there were 52,239 and

60,575 subjects in the male and female analysis respec-

tively; for WHR, there were 30,713 and 38,016; for WHR

adjusted for BMI, there were 30,715 and 38,028; for WC,

there were 33,989 and 42,060; and for WC adjusted for

BMI, there were 34,059 and 42,226. We derived the corre-

lation between BMI and WHR and WC in males and

females from Table S8 of Heid et al.6 using a sample size

weighted average. We obtained the following correlation:

cor(BMI,WHR)female ¼ 0.42, cor(BMI,WHR)male ¼ 0.56,

cor(BMI,WC)female ¼ 0.84, cor(BMI,WC)male ¼ 0.86.

We noted that themajority of the SNPs (78%) had effects

in opposite direction for BMI and WHR/WC. We

confirmed through simulation that the expected propor-

tion of SNPs having effect in opposite direction in a model

where the genetic variant is associated with the outcome,
5, 2015



but not the covariate, is smaller or equal to 50%.When two

traits are positively correlated and neither is associated

with the SNPs tested, the two sets of estimates (on BMI

and WHR/WC in this case) are also expected to be posi-

tively correlated (Figure S3A), and therefore most SNPs

should display effects in the same direction, i.e., the frac-

tion of SNPs with effects in the same direction will be

>0.5. In the presence of a true association between the

SNP and the outcome, this fraction decreases toward 0.5

(Figure S3B). Using this lower, conservative expected frac-

tion of 0.5, the probability that the fraction SNPs with

opposite effects is equal to or greater than the observed

fraction of 78% is p ¼ 5 3 10�3. These simulations also

show that the potential presence of an opposite effect

due to chance (i.e., bC ¼ 0 but bbCs0) would not impact

power in adjusted analysis. The intuition is that positive

correlation between the outcome and the covariate implies

that the estimates bbC and bbY follow the same pattern, i.e.,

when bbC is smaller than zero, bbY tend to be smaller than bY

and conversely. Therefore, the adjusted estimate bbYadj

which approximately equals bbY � bbCbrCY tends to change

toward the true estimate. Hence the p-value for bbYadj is

not influenced by bbC when bC ¼ 0 (Figure S3, lower panel).
Appendix D

Evaluation of Alternatives Approaches

This study and previous works (see Appendix B) showed

that variables that shared causal factors with the outcome

should not be used for adjustment purposes. We explored

two potential solutions in a GWAS context to address situ-

ation where bC s 0. One first solution consists in using

Cadj.g, the residual of C adjusted for the effect of g. Because

the genetic effect is removed from the C, adjusting the pri-

mary outcome Y for Cadj.g would a priori not induce bias.

However, the problem of deriving this residual is that it de-

pends on the accuracy of bbC, the estimate of the effect of G

on C, which will be accurate for infinite sample size but

noisy for small sample size. Hence, while adjusting C for

the true effect of g removes the bias, a ‘‘residual bias’’ re-

mains when using the estimated Cadj.g (Figure S5). When

applied on a GWAS scale, it can actually introduce more

bias that the standard adjustment. As the vast majority of

the SNPs are expected to be under the null, using Cadj.g

as a covariate can potentially introduce bias in all tests. Sec-

ond, we considered a stratified approach, where the ge-

netic effect on the primary outcome is evaluated in strata

defined by the covariate. Using the same simulation

scheme, we tested the marginal association between g

and Y independently in subjects with high versus low

values for C. As in the previous analysis, such a strategy

does not solve the bias issue (Figure S5). The intuition

here is that individuals with large values of C also

display large values for Y and g when both are positively

correlated with C (and conversely). Hence removing those

subjects induces a negative correlation between Y and g
The Americ
(Figure S6). Overall we did not identify any general solu-

tion to this issue in the literature. However, for the very

specific case where the latent variables that explain the cor-

relation between the C and Y have been measured, some

proposed a two-steps adjustment procedure that might

correct for the bias.14 Although this approach might be

relevant for that specific scenario, whenever the latent

variables are unmeasured—as assumed in this study—the

proposed two-step approach does not solve the issue

(Figure S5).
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