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Abstract. The ‘curse of dimensionality’ imposes fundamental limits on the analysis of
the large, information rich datasets that are produced bymass spectrometry imaging.
Additionally, such datasets are often too large to be analyzed as a whole and so
dimensionality reduction is required before further analysis can be performed. We
investigate the use of simple random projections for the dimensionality reduction of
mass spectrometry imaging data and examine how they enable efficient and fast
segmentation using k-means clustering. The method is computationally efficient and
can be implemented such that only one spectrum is needed in memory at any time.
We use this technique to reveal histologically significant regions within MALDI
images of diseased human liver. Segmentation results achieved following a reduction

in the dimensionality of the data by more than 99% (without peak picking) showed that histologic changes due to
disease can be automatically visualized from molecular images.
Keywords: Random projection, Mass spectrometry imaging, Informatics, Segmentation, Digital histology, Di-
mensionality reduction, Data processing
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Introduction

The determination of molecular profiles from individual
tissue types is central to the understanding of their biolog-

ical function, and direct chemical analysis of tissue using mass
spectrometry imaging (MSI) is an established tool for deter-
mining profiles encompassing a broad range of molecules
within a single imaging experiment [7, 29]. One route to
producing molecular profiles is to group similar tissue regions
according to the similarity of their mass spectra, and to extract an
average spectrum for each group. Manually identifying distinct
tissue types is difficult and requires a histologic expert [2, 8], so
several groups have examined automated segmentation methods
for group identification to provide an unsupervised and repro-
ducible scheme for the analysis of data [9, 7, 29, 24].

These clustering methods were shown to be useful in MSI
for extracting distinct histologic regions [2], separating tumor
from normal tissue [9], and for three-dimensional visualization
of tissue structures [29]. Other sophisticated approaches have
been developed for viewing data heterogeneity [14] and pro-
vide powerful tools for the visualization of trends within mass
spectrometry images. A specific advantage of segmentation is
that all tissue regions within clusters have similar spectra by
construction, and so molecular profiles for the corresponding
tissue types can be computed. These profiles can be used to
identify discriminatory, characteristic, or spatially co-varying
molecules. This work addresses two issues that restrict the
application of automated processing of mass spectra; first, the
number of peaks that can be processed, and second, the ability
to perform data-processing in real time whilst data is still being
collected.

Automated segmentation identifies clusters of similar spec-
tra using a ‘distance’ metric to quantify spectral similarity. A
significant issue when calculating distance metrics for mass
spectra is the dimensionality of the data which, in the case of
mass spectra, is equal to the number of m/z values being
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considered. In a time-of-flight spectrum, this could be more
than 100,000 mass bins, and could be millions for high-
resolution instruments. High dimensionality negatively affects
accuracy of distance metrics as the relative differences between
distances tends to zero (so all spectra are measured as being
equally different to each other). Two factors compound this
problem even further in MSI: the number of samples (pixels) is
nearly always much lower than the dimensionality, and the
covariance of samples introduces redundancy into the data
and effectively reduces the sampling rate further. Dimension-
ality reduction methods are frequently used to allow accurate
distance calculations [28] by removing this redundancy be-
tween spectral channels. This allows the accuracy and speed
of cluster formation to be improved [10], either by choosing a
small number of ‘important’measurements or by a transforma-
tion of the data. A common approach involves a linear trans-
formation of the data by projection onto a low dimensional
basis which, if constructed correctly, will preserve key rela-
tionships between samples and allow analyses such as segmen-
tation to be performed on the projected data [19, 24]. Unfortu-
nately dimensionality reduction often carries a high computa-
tional cost or requires multiple passes through the data in order
to extract a meaningful set of measurements. Commonly used
methods such as principal component analysis and non-
negative matrix factorization have been shown to be effective
on mass spectrometry images [16] but have the distinct disad-
vantage of requiring the basis to be calculated from the data.
This usually means the whole dataset needs to be collected and
loaded into memory to compute the basis, which prevents real-
time analysis and may be impossible for very large datasets, in
which case a preliminary stage of data reduction is required
[21, 26]. The issue of copingwith the size ofmass spectrometry
imaging data has been noted for almost as long as the field has
existed [9, 1]. Most workflows described in the literature go
through a multi-stage process of peak identification and feature
selection that can require extensive processing and completely
removes some peaks from the subsequent analysis [21, 1, 14].

The quality of segmentation is then dependent on the quality
of the peak picking, which can require extensive tuning for
specific mass spectrometers, sample preparation techniques,
and datasets [11].

An alternative approach uses a pseudo-basis composed of
randomly drawn vectors onto which the data is projected[30,
6]. The central idea is that projections onto a collection of such
random vectors can be shown to extract almost mutually inde-
pendent information and so a set of these vectors will capture
the essential features of the data[6]. The random basis itself is
formed independently of the data and so removes a major
computational hurdle. Random projections have been shown
to preserve patterns within the data, including distances and
angles between data points[19], making them useful for di-
mensionality reduction in areas including image processing
and text mining [6]. Previously, applications in the processing
of mass spectrometry data were to compare individual spectra
against a database[31] and to form orthonormal approximate
bases for mass spectrometry imaging compression[24]. The

importance of using memory-efficient data processing is well-
known[26] and the random projection algorithm can be imple-
mented in a memory-efficient manner to avoid loading the
whole dataset at once.

In this paper, we investigate the use of random projections
to enable efficient image segmentation for the identification of
spatial features in mass spectrometry images without requiring
peak picking or other data reduction stages.

Experimental
MALDI MSI of Human Liver

The mass spectrometry dataset used in this work consists of a
MALDI mass spectrometry image acquired from a section of
diseased human liver suffering from non-alcoholic
steatohepatitis (NASH). This dataset has previously been used
to demonstrate novel mass spectrometry image visualization
methods[14], and a full description of the imaging methodol-
ogy can be found in the supporting information of that paper. A
brief summary is presented here.

Tissue Handling Samples were collected from patients un-
dergoing liver transplantation or tumor resection surgery at The
Queen Elizabeth Hospital in Birmingham, with local research
ethics committee approval (NHS Walsall LREC) and written
informed patient consent during transplantation surgery. All
samples were rapidly processed and snap-frozen in liquid ni-
trogen prior to storage at –80°C.

Sectioning Serial tissue sections were obtained at 5 μm using
a cryostat (model OFTF; Bright Instruments, Cambridge, UK)
either onto steel MALDI target plates (ABSciex, Warrington,
UK) for mass spectrometry or glass slides destined for H&E
staining.

H&E Staining Tissue architecture was visualized by routine
hematoxylin and eosin (H&E) staining and optical microscopy.

MALDI Imag i n g F i f t e en mg mL – 1α - c y ano - 4 -
hydroxycinnamic acid (CHCA) in 80% CH3OH, 0.1%
trifluoroacetic acid (TFA) was applied to the sample and
MALDI plate using an artist airbrush (Draper, Hampshire,
UK) with Badger Airbrush propellant (Badger, IL, USA), ap-
proximately 10 mL of matrix solution was dispensed in total.
MALDI TOF MS analysis was carried out on a hybrid quadru-
pole time of flight mass spectrometer (QStar XL, Analyst QS
1.1, and oMALDI 5.1, ABSciex, Warrington UK) equipped
with a Nd:YVO4 (355 nm, 5 kHZ, Elforlight: SPOT-10-100-
355; Elforlight, Daventry, UK) fiber delivered (100 μm core
diameter) diode pumped solid state laser, providing a mass
resolving power of 96000 at m/z 643. Spectra were acquired in
positive ion mode in the mass range m/z 600–950 with a spatial
resolution of 100 μm in both x and y directions.
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Data Processing Mass spectrometry images were extracted
from the proprietary instrument format (.wiff) to the imzML
format [converting to mzML using AB SCIEX MS Converter
(ver. beta 1.1; ABSciex, Warrington UK), then to imzML using
imzMLConverter (ver. 1.0, www.imzMLConverter.co.uk[25])].
The imzML parser included with imzMLconverter was used to
load individual spectra into MATLAB (Mathworks, Nantucket,
MA, USA).

Random Projection

A mass spectrometry image is represented as a 2D data matrix
Xm×n where m is the number of spectral channels and n is the
number of pixels, typically m≫ n. The random projections are
implemented by constructing a matrix Qk×m, where k is an
integer controlling the number of projections. Each element of
Q is drawn from a zero-mean normal distribution with unit
standard deviation (N(0,1))[15] and each row ofQ corresponds
to a random direction in spectral space onto which the data is
projected by calculating A=QX, giving a projection score ma-
trix Ak×n. By setting kGm the dimensionality is reduced follow-
ing projection.

We note that this can be implemented in a memory-efficient
manner as the spectra are projected independently so that the
full data matrix X does not need to be loaded into memory in its
entirety.

Segmentation

k-Means Clustering Segmentation was performed using
the k-means algorithm implemented as the function
kmeans in the MATLAB Statistics Toolbox (MATLAB
R2009a). The algorithm is initialized by specifying a
number of clusters, then arbitrarily allocating each data
point to one of the clusters. The algorithm then proceeds
iteratively by calculating the geometric center of each
cluster and then allocating each data point to the cluster
whose centroid is closest according to the Euclidean
distance in the spectral space. The algorithm ends when
membership of the clusters stabilizes. For visualization,
every member of each cluster is assigned the same color
(allowing spatially disconnected regions to have the same
color), and a segmentation map is formed showing the
class of each pixel.

Code Implementation

The random projection algorithm was implemented in
MATLAB and demonstration code is provided in the
Supporting Information.

Results
We have evaluated the use of random projections for dimen-
sionality reduction in MSI on a benchmark dataset whose

histologic features have previously been identified using sev-
eral approaches to MSI visualization[14]. A second demon-
stration on a publicly available mouse brain dataset that was
included in the supplementary information of Race
et al.(2013)[26] is contained in the Supporting Information
(see Supplementary Figure S2).

Mass Spectrometry Imaging of Human Liver

The benchmark dataset consists of a MALDI mass spec-
trometry image acquired from a section of diseased hu-
man liver suffering from non-alcoholic steatohepatitis
(NASH). The dataset contains 12,325 pixels each with
an associated spectrum in 33,725m/z channels, resulting
in a raw data size≈3 GB.

NASH disease is characterized by the accumulation of fat
within liver hepatocytes (steatosis) and in a proportion of
patients this is followed by the development of necro-
inflammatory activity that leads to cirrhosis[17, 13]. The de-
velopment of liver cell ballooning and inflammation
(steatohepatitis) determines whether a patient progresses to
irreversible liver damage and fibrosis[18] and can currently
only be identified by histologic examination[4].

The major histologic features that are commonly seen
within NASH diseased tissue are visible in this dataset
(Figure 1). The normal appearance of the liver has been
severely deformed by the ballooning hepatocytes which
are separated by regions of fibrotic connective tissue.
Hepatocytes would not normally be individually visible
on this scale but enlargement attributable to NASH makes
them clearly identifiable. Histologic examination and oth-
er visualization approaches[14] suggest that some of the
hepatocytes in large clusters in the upper right of the
image may be regenerating. A comparative image taken
from a section of normal liver is shown in Supplementary
Figure S1 and has the expected smooth appearance on
this scale.

Spectra were averaged from the tissue and a substantial
number of peaks were visible within the m/z range 700–
900, which is known to correspond to the masses of
multiple lipids (Figure 1). Manual inspection of the data
revealed several peaks that produced ion images that
reflected the tissue histology; an arbitrary example from
a peak of low intensity in the mean spectrum is shown in
Figure 1. To obtain a rough estimate of the spectral
complexity of the dataset, peak picking was applied to
the mean spectrum (maximum-window peak detec-
tion[20]), which returned 9900 peak centroids, the major-
ity of which do not correspond to m/z values associated
with CHCA matrix[27]. This gives an indication of the
degree to which the data can potentially be reduced but
applying peak detection to all spectra within an image,
and aligning the results is computationally intensive[1].
As the random projections are data-independent, they can
be generated without the dataset in memory and applied
piece-wise to one pixel at a time.
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Random Projection of MSI

The random projection of the data onto the k random vectors
that make up Q creates k vectors, each of which randomly
samples over the whole m/z range. Each projection therefore
captures a randomly weighted linear combination of all m/z
channels and, thus, samples the full range of chemical infor-
mation present. As the sampling is random, there is no a priori
way of knowing what chemical information will be captured by
a particular projection, and direct analysis of single projections
is unlikely to be informative, but by taking many projections,
all of the information can be captured with very high
probability.

It is also important to note that the projection vectors
are chosen from a zero-mean Gaussian so they contain
values of both signs. Accordingly, the scores also have
both positive and negative values, which present some
difficulties in relating the projection intensities to their
physical origin.

In this work, projections are applied to the data sequentially,
loading each column of X in turn and forming the k projections
for each pixel in turn. The time it takes to project a spectrum
(150 random projections of a single spectrum takes ≈0.1 s) is
lower than the data acquisition time (≈0.5 s), which makes this
potentially usable for real-time analysis of data during the
acquisition process.

Segmentation from Random Projections

Random projections are useful for the segmentation of
mass spectrometry images because they preserve several
distance metrics (e.g., Euclidean distance)[6], which al-
low certain types of segmentation algorithm to be ap-
plied to the low-dimensional projected data. Following
projection, the pixels were clustered using the popular k-
means algorithm that has been shown to be useful in
MSI[16, 29, 1]. The segmentation results achieved using
four clusters are shown in Figure 2, following projection
in the spectral domain using 150 random projections,
reduced from 33725m/z channels. The segmentation time
for k-means is linear in the number of dimensions, so
this directly translates to a proportional reduction in the
computational cost.

Spatial Patterns Detected by Segmentation The image seg-
mentation following random projection is shown in Figure 2,
and shows clear delineation of the tissue section that has been
determined to be consistent with histopathology. Hepatocytes
are extracted from the surrounding tissue (orange), which con-
sists mostly of fibrotic connective tissue, with the majority of
hepatocytes being assigned to the same cluster (green). Inter-
estingly, this segmentation technique identified the subpopula-
tion of hepatocytes (blue), which were thought to be
regenerating nodules, and identified the center of these nodules
as being a distinct cluster. All of these assignments are in
agreement with the visualization techniques of Fonville

et al.[14]. Further analysis is necessary to determine the nature
of the spectral differences between the clusters.

Spectral Properties of ROIs Derived from Segmentation After
clustering was performed on the randomly projected data,
the mean spectrum for each cluster was computed from
the original data. These are shown underneath the seg-
mentation map in Figure 2. These molecular profiles show
a variety of spectral differences between the regions.
There is a clear difference in the relative abundances of
species present, and different ions show patterns corre-
sponding to hepatocytes (green and blue), portal areas
(red), and regions of fibrotic matrix (orange). The Euclid-
ean distance between the centroids provides an idea of
how different the clusters are to each other, and this is
shown in the grid in Figure 2. As this distance is based
on the projection of the spectra, it is a measure of the
spectral similarity between clusters, and these results in-
dicate that the most difference is between the regenerating
hepatocyte centers and the surrounding (normal) tissue,
with less difference compared with the other enlarged
hepatocytes.

Interpreting the spatial maps still requires input from an
appropriate expert but segmentation provides a way of present-
ing the results frommass spectrometry imaging in a format that
can be readily understood by non-mass spectrometry experts.

Choosing the Number of Projections

We now consider how many projections are necessary to
ensure that the original data is accurately represented. The
search for formal upper bounds on the number of random
projections is still an active field[6, 19, 12] and so we treat this
as an experimental variable.

To obtain an automatic measure of howmany projections to
use, we inspect the change in the singular value decomposition
of the projected data. The singular value decomposition (SVD)
is a frequently used mathematical tool that produces a set of
unique combinations of measurement variables, which can be
useful for identifying patterns within data. The first singular
value points along the direction of greatest data variance and,
so, as more random projections are used and more of the data
variance is captured, we would expect this value to stabilize,
and since the random projection process dramatically reduces
the dimensionality of the data, the SVD can be performed with
little computational effort (there is no need to calculate the
SVD of the raw dataset). Figure 3 shows the first singular value
plotted against the number of random projections. The magni-
tude of the singular value has been normalized to the number of
projections so what is seen is the variance captured per projec-
tion, which can be seen to decay as the number of projections
increases. This trend was measured to be exponential and so an
equation describing this curve can be automatically fitted to
this trend. To obtain an automatic estimate of the number of
random projections needed, first the ‘elbow’ of the curve was
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Figure 1. (a) Schematic of the liver image showing characteristic histology of NASH disease including fibrotic tissue (pale) and
enlarged hepatocytes (dark), (b) H&E macroscopy image that also shows the presence of enlarged hepatocytes. (c) Mean mass
spectrum from the tissue showing multiple peaks within the lipid region. The example ion image (m/z 796.5 ± 0.25) shows greater
intensity in parenchymal areas of hepatocytes separated by bands of fibrotic tissue with much lower signals (scale bar 1 mm)

Figure 2. Segmentation results using random projection for dimensionality reduction followed by k-means clustering. Top row (left
to right): schematic of the image; the segmentation map with each cluster shown in a unique color; the cluster centroid distances
illustrating relative cluster similarity (black - identical, white - greatest dissimilarity). Lower rows: the average spectrum from each
segmented pixel region provides a molecular profile for the cluster
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determined as the point of maximum curvature. This was
calculated analytically from the equation describing the decay.
It was then estimated that once the curvature had decreased to
two-thirds of the maximum, the ‘elbow’ had been passed. The
point of maximum curvature is marked with a red cross on
Figure 3, at approximately 30 projections, and the estimated
number of projections with a green plus at approximately 120.

An important feature of this approach is that the number of
projected values can be estimated as soon as a good fit to the
first singular value curve can be made, which can be made
before the elbow has been reached. This can be done efficiently
by taking an initial set of projections fromwhich subsets can be
drawn to generate the curve. If the total number of projections
is insufficient and the elbow in the curve is not reached, further
projections can be added until the elbow is seen.

Effect of the Number of Projections
on the Segmentation

We varied the number of projections between 5 and 200
and performed k-means segmentation performed for each
case. The segmentation results are shown in Figure 4. As
the projections statistically sample the data, we ask two
related questions: how many projections are required to
capture the chemical differences within the data, and
how reliably can this be achieved?

Figure 3. The normalized first singular value decays smoothly
with increasing number of projections as less additional vari-
ance is recovered from the data. By automatically fitting a curve
the point of maximum curvature can be determined

Figure 4. Top-to-bottom: increasing the number of projections up to around 100 increases the segmentation reproducibility; after
this point, the segmentation result completely stabilizes and the same tissue patterns are produced. Left-to-right: each column is the
result of a different set of random vectors. At low numbers of projections, the exact choice of projection vectors affects the results of
the segmentation, whereas for higher numbers of projections, the segmentation is stable and reproducible against a different choice
of projection vectors
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We first observe that clustering on a very small number of
projections can produce a segmentation that has some resem-
blance to the known tissue histology (row 1 in Figure 4) but is
typically very noisy and poorly connected, and an insufficient
number of random projections yields rather unstable and
unreproducible clustering results.

However, experiments using a low number of projec-
tions serve to illustrate the idea that each projection sam-
ples across the whole spectrum and, therefore, a few
projections capture a statistical selection of the chemical
information. A small number of projections is, therefore,
sufficient to identify broad trends in the data, but not the
important fine details.

As the number of projections is increased, the segmentation
map rapidly stabilizes. The pairwise correlation between maps
produced with an equal number of random projections was
calculated (see Supplementary Figure S3) and was less than 0.2
for five projections but approximately 0.9 when 200 were used.
Using more than ≈100 projections yields little additional ben-
efit, which agrees with the singular value decay shown in
Figure 3 and with other results in the literature on random
projections: a stable solution is reached after sufficient projec-
tions are included and the results do not significantly improve
when additional projections are included[6, 19, 12]. This
makes random projection a very robust dimensionality reduc-
tion technique as it is not too sensitive to the number of
projections. For MALDI-MSI data, we have found that 100
to 200 are sufficient on all datasets that we have considered,
which is in line with other recommendations for the number of
variables to consider with classification algorithms[1]. It is
useful to note the computational cost of increasing the number
of projections is low as the majority of computational time is
spent loading the data from disk as opposed to performing the
calculations.

For a comparison with the performance of a more conven-
tional dimensionality reduction technique, we also performed
principal component analysis (PCA), which is frequently used
in MSI for this purpose[3], and subsequently performed seg-
mentation, as shown in Supplementary Figure S4. Visually, the
segmentation results obtained are near-identical in both cases
(with 100 RPs) with the same tissue regions identified. We also
computed the correlation between segmentations following
random projection and PCA, and found P 90.9 from 100
projections, rising slowly thereafter. This illustrates that the
information required for segmentation (in particular, Euclidean
distance) is preserved to the same degree by both techniques,
but random projection is much more computationally efficient
(Supplementary Table S1).

Conclusions
Random projection has been shown to be a fast, repeat-
able, and effective dimensionality reduction tool for MSI
data that can be used to enable fast and accurate segmen-
tation. We have shown that segmentation following

random projection produces results that are consistent
with the known histology. As random projection permits
segmentation on data that has not undergone any process-
ing, it potentially offers a useful baseline against which
the effects of further data processing can be compared. In
this work, random projections were applied directly to the
data without any other processing but could equally well
be applied after de-noising and feature selection. Further
investigation would be required into the effect this has on
subsequent segmentation.

We have demonstrated the use of random projections
to allow rapid segmentation using k-means clustering but,
in principle, any segmentation or visualization method
that uses the Euclidean distance metric could benefit
[14, 16]. The main disadvantage of this method is that
the projection matrix is, in general, not invertible. The
projections are, therefore, “one-way” and the results can-
not be directly interpreted in terms of the original m/z
values. In cases where recovery of the original data is
required from the projections, an orthogonalized random
basis approach has previously been developed[24], which
yields similar benefits for segmentation but requires ad-
ditional computation.

This work has demonstrated the potential of simple random
projections on MSI datasets but other spectroscopic techniques
could also benefit. Related work has shown the application of
random projections to Raman microscopy [23] and
hyperspectral optical imaging[24], and it is therefore reason-
able to expect that the results found here can be generalized to
other spectral techniques. We expect there will be particular
benefits in high mass-resolution mass spectrometry methods
and new developments such as Rapid Evaporative Ionization
Mass Spectrometry[5] or miniaturized portable spectrome-
ters[22] that produce high-throughput data requiring real-time
analysis in environments where significant computing power is
not available and data transfer bandwidth may be limited. It is
memory-efficient as each spectrum is processed sequentially,
and is computationally inexpensive as the basis simply requires
the generation of k random vectors. The use of computationally
efficient algorithms such as random projection may be a pow-
erful tool for the rapid classification of samples or for deter-
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mining which samples require further investigation.
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