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Abstract

Background: Although profiling of RNA in single cells has broadened our understanding of development, cancer
biology and mechanisms of disease dissemination, it requires the development of reliable and flexible methods.
Here we demonstrate that the EpiStem RNA-Amp™ methodology reproducibly generates microgram amounts of
cDNA suitable for RNA-Seq, RT-qPCR arrays and Microarray analysis.

Results: Initial experiments compared amplified cDNA generated by three commercial RNA-Amplification protocols
(Miltenyi μMACS™ SuperAmp™, NuGEN Ovation® One-Direct System and EpiStem RNA-Amp™) applied to single cell
equivalent levels of RNA (25–50 pg) using Affymetrix arrays. The EpiStem RNA-Amp™ kit exhibited the highest
sensitivity and was therefore chosen for further testing. A comparison of Affymetrix array data from RNA-Amp™
cDNA generated from single MCF7 and MCF10A cells to reference controls of unamplified cDNA revealed a high
degree of concordance. To assess the flexibility of the amplification system single cell RNA-Amp™ cDNA was also
analysed using RNA-Seq and high-density qPCR, and showed strong cross-platform correlations. To exemplify the
approach we used the system to analyse RNA profiles of small populations of rare cancer initiating cells (CICs)
derived from a NSCLC patient-derived xenograft. RNA-Seq analysis was able to identify transcriptional differences
in distinct subsets of CIC, with one group potentially enriched for metastasis formation. Pathway analysis revealed
that the distinct transcriptional signatures demonstrated in the CIC subpopulations were significantly correlated
with published stem-cell and epithelial-mesenchymal transition signatures.

Conclusions: The combined results confirm the sensitivity and flexibility of the RNA-Amp™ method and demonstrate
the suitability of the approach for identifying clinically relevant signatures in rare, biologically important cell populations.
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Background
Accurate mRNA profiling of single cells can provide a
powerful means of broadening our understanding of
fundamental biological processes such as cancer and
development. A number of recent studies have shown
that transcriptional profiling of single cells is possible
[1,2], with three amplification strategies often used:
in vitro transcription, PCR-based amplification and
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rolling circle amplification [3-6]. These approaches
have been shown to sensitively reflect the biological
status of the target cells [7] with for example, analysis
of single cells from mouse blastomeres identifying
expression of many more genes than previous studies
based on hundreds of blastomeres [1]. To take full
advantage of recent dramatic technological advances in
molecular methods it is essential that these single cell
profiling approaches are truly representative of the
initial cell amplified, and are also compatible with a broad
range of downstream analytical readouts. However, the
reproducibility and cross-platform performance of the
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material generated from these approaches has not gener-
ally been confirmed, often because of the limited amounts
of material generated. Early single cell studies utilized
cDNA microarrays [8] which enable quantification of tens
of thousands of known genes [9,10]. However, this technol-
ogy has limitations including a restricted fold-range of de-
tection and potential cross-hybridisation between similar
sequences [11], as well as being restricted to the probe sets
present on the array. The utilization of next generation se-
quencing (NGS) approaches has the capability of identify-
ing all expressed sequences, achieving massive dynamic
ranges, having resolution down to the single nucleotide
level [11-13], and has been adapted for single cell tran-
scription studies [1-3]. A third platform that has been
used to analyse transcriptional signatures of single cells
is high-density qPCR, which provides a more restricted
but targeted approach with a wide dynamic range and
can be readily transferred to a clinical setting [14]. Each
of these approaches has strengths and weaknesses, but
the potential to address different questions with regards
to single cell analysis.
The ability to transcriptionally profile single cells is

of particular value for studying rare, but clinically im-
portant cells such as circulating tumour cells (CTC),
which can be present at levels as low as ≥1 cell per
milliliter of peripheral blood (reviewed in [15]) and
cancer initiating cells (CIC), which can comprise less
than 1% of the total tumour [16,17]. Single cell RNA
profiling of CTCs and CICs has the potential to provide
a means to dissect tumor heterogeneity and identify
pathways and genes associated with “stemness” and
properties linked to metastasis development and treat-
ment resistance [18-20].
To enable us to accurately and sensitively profile these

rare cells we initially compared three commercially
available RNA-Amplification protocols to determine the
most sensitive and reproducible approach when amplify-
ing single cell equivalent amounts of RNA (25-50 pg).
These experiments showed the EpiStem RNA-Amp™ kit to
be the most robust. We then further tested this protocol
by comparing data generated from MCF7 and MCF10A
single cell amplified products on Affymetrix arrays, high
density qPCR and NGS (RNA-Seq) to unamplified controls
to evaluate its utility across a range of relevant technology
platforms. Reproducible transcriptional profiling was seen
across all platforms. Having demonstrated the accuracy
and reproducibility of the approach we further demon-
strated its potential clinical utility through the analysis
of highly enriched CICs, sorted from a NSCLC patient-
derived xenograft (NSCLC-PDX), according to different
surface markers to dissect heterogeneity within the CIC
pool (and possibly identify properties of metastatic CICs).
RNA-Seq analysis of NSCLC-PDX CICs at the level of 10
cell input revealed clear CIC specific expression patterns
with a strong link to previously documented stem cell
and epithelial to mesenchymal transition (EMT) pro-
files [21,22], confirming the clinical usefulness of the
methodology.

Results
Comparison of three RNA-Amplification protocols at the
single cell level
As the aim of our study was to identify a flexible, sensitive
and reproducible protocol that could be used to transcrip-
tionally profile at the single cell level initial experiments
aimed to directly compare cDNA generated using three
kits that were commercially available and had been
described for use at the single cell level (Miltenyi μMACS™
SuperAmp™, NuGEN Ovation® One-Direct System and
EpiStem RNA-Amp™). To this end, single cell equiva-
lent amounts (25-50 pg) of pooled RNA isolated from
the human epithelial cell lines MCF7 were amplified in
duplicate and 5 μg of cDNA from each sample run on an
Affymetrix array. Bioinformatic analysis of Miltenyi Super-
Amp™ material identified 865 expressed genes present in
the duplicate samples with a correlation of 0.8 between
the samples (Figure 1A), NuGEN Ovation® One-Direct
identified 1554 expressed genes with a correlation of
0.723 (Figure 1B) and EpiStem RNA-Amp™ identified 2667
expressed genes with a correlation of 0.866 (Figure 1C).
Comparison of the genes identified by each protocol
showed 74.6% (645 of 865) of the expressed genes seen in
the Miltenyi SuperAmp™ samples and 69.9% (1085 of
1554) found in the NuGEN Ovation® One-Direct samples
were also identified in the EpiStem RNA-Amp™ samples,
with a total of 67.6% (1365 of 2018 genes) of all genes iden-
tified by either SuperAmp™ and/or Ovation® One-Direct
being picked up in the RNA-Amp™ material (Figure 1D).
Since these data indicated the EpiStem RNA-Amp™ system
gave the most sensitive and reproducible results it was
chosen for further evaluation.

Generation of high yields of reproducible cDNA from
single cells
To further determine the sensitivity of the RNA-Amp™ kit
we tested the protocol on single cells from two human
epithelial cell lines MCF7 and MCF10A (5 single cells for
each cell line). All samples were subjected to RNA-Amp™
and the resulting cDNA analysed by real-time PCR for the
expression of 6 house keeper genes (Figure 2A, Additional
file 1: Table S1). This showed consistent amplification of
all amplicons, down to single cell input for all replicates,
indicating reliable cDNA products were obtained that
were suitable for further analysis.

Generation of single cell Affymetrix array data
RNA-Amp™ resulted in average yields of 4.1 μg of cDNA
from single cell inputs (range 3.0-5.1 μg). The large



Figure 1 Transcriptional profiling of RNA-Amplified MCF7 RNA using three different protocols. Replicate samples of 25-50 pg MCF7 RNA
were RNA-Amplified using three commercial kits and 5 μg of the resulting cDNA was analysed on Affymetrix arrays. (A) Miltenyi SuperAmp™ replicates
showed 865 genes present across both samples with a correlation of 0.800, (B) NuGEN Ovation One-Direct™ identified 1554 with a correlation of 0.723
and (C) EpiStem RNA-Amp™ identified 2667 present with a correlation of 0.866. (D) Venn diagram showing overlap of genes present in both replicates
of Miltenyi, NuGEN and EpiStem samples (all analysis based on p≤ 0.05).
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amount of material generated enabled the use of Affy-
metrix arrays to determine the reproducibility of the
RNA-Amp™ method. Bioinformatic analysis of Affymetrix
expression data from 5 single MCF7 and 5 single MCF10A
cells identified 92 genes differentially expressed between
the two cell lines (LIMMA, FC > 2, FDR < 0.01), 50 show-
ing higher expression in MCF7 and 42 showing higher ex-
pression in MCF10A (Figure 2B), with PCA analysis of the
entire data set clearly separating all samples according to
cell line (Figure 2C), highlighting good reproducibility
across all 5 single cell inputs from each cell line.

Comparison of single cell results to reference data
Having demonstrated the practical utility of RNA-Amp™
using single cell inputs we next set out to further deter-
mine its characteristics by comparing the transcriptional
profiles generated from RNA-Amp™ single cell samples
to RNA-Amp™ cDNA from purified RNA equivalent to
approximately 100 cells equivalent and unamplified ref-
erence RNA. For the unamplified reference samples we
utilised a previously published data set generated from
Affymetrix arrays of 10 μg of unamplified RNA from
each cell line [23]. For the 100 cell equivalent input we
performed RNA-Amp™ on 1 ng of purified RNA from
each cell line (5 replicates for each cell line), which was
then analysed on Affymetrix arrays as described above.
From these Affymetrix array data sets we first selected all

of the significantly differentially expressed genes identified
in the 10 μg reference data (2202 genes, LIMMA FC> 2,
FDR <0.01) and aligned these with the corresponding Affy-
metrix array data for the single cell and 1 ng amplified
MCF7 and MCF10A samples and performed PCA analysis.
This analysis showed strong grouping of the two cell lines
irrespective of input material (Figure 3A). We next
identified the 200 highest differentially expressed genes
(LIMMA, FC > 2, FDR < 0.01) in the reference data set
(100 MCF7 >MCF10A, 100 MCF10A >MCF7) and
compared the expression profiles of these transcripts to
our single cell and 1 ng data sets (Figure 3B). Hierarch-
ical clustering based on the top 200 differentially
expressed genes from the 10 μg reference data again
showed clear separation of the two cell lines for all
template inputs, with strong correlation seen between
the 10 μg reference differentially expressed data and



Figure 2 Transcriptional profiling of RNA-Amplified MCF7 and MCF10A single cells. (A) Real-time PCR of RNA-Amp™ samples showing
sensitive and consistent detection of 6 “housekeeping genes” in all single cell samples. (B) A heat map presentation of differentially expressed
genes (LIMMA FC > 2, FDR < 0.01) detected in the Affymetrix array data from the group of 10 single cell MCF7 and MCF10A samples with blue
indicating the lowest detected, red indicating the highest detected and white the midpoint. (C) PCA plot generated from the entire single cell
Affymetrix array data set showing separation of all MCF7 and MCF10A samples.

Rothwell et al. BMC Genomics 2014, 15:1129 Page 4 of 14
http://www.biomedcentral.com/1471-2164/15/1129
the 1 ng data (Pearson correlation 0.89), and between
the 10 μg reference and the single cell data (Pearson
correlation 0.78).

Generation of RNA-Seq data from single cells
To determine the suitability of RNA-Amp™ material for
NGS, and to compare NGS data to microarray data from
the same samples we subjected cDNA from the 5 MCF7
single cells and 5 MCF10A single cells used for Affyme-
trix array analysis to SOLiD RNA-Seq NGS. All samples
produced high quality NGS data with an average cover-
age of 20 × 106 uniquely mapped reads per sample
(range 17-22 × 106, Additional file 1: Table S2). Bioinfor-
matic analysis of the data identified 650 genes showing
elevated expression in MCF7 single cells and 794 show-
ing elevated expression in MCF10A single cells (EdgeR,
FC > 2, FDR < 0.05, Additional file 1: Table S3).
To assess cross-platform performance of the amplified
material we then compared the expression data generated
from the single cell RNA-Amp™ cDNA samples from both
the RNA-Seq and the Affymetrix array data (all data ana-
lysed FC > 2, FDR < 0.05). This analysis identified 157
genes showing significant differential expression in both
data sets (Additional file 1: Table S4). Comparison of these
157 genes showed consistent patterns of differential
expression across both platforms, with an overall Pearson
correlation between the RNA-Seq and Array data of 0.92
(Figure 4A). From this analysis more differentially
expressed genes were identified from the RNA-Seq data
set than the Affymetrix array data, with the majority of
genes identified in the array data set also identified in the
RNA-Seq data (Figure 4B).
To determine whether the additional differentially

expressed genes identified by RNA-Seq were true



Figure 3 Comparison of differential expression between amplified and unamplified samples. (A) PCA analysis of DE genes (LIMMA FC > 2,
FDR <0.01) identified from Affymetrix array analysis of 10 μg MCF7 and MCF10A RNA samples aligned with the corresponding Affymetrix array
data for the single cell and 1 ng amplified MCF7 and MCF10A samples showing clear clustering according to cell type. (B) Heat map of hierarchical
clustering of the top 200 differentially expressed genes identified from Affymetrix array analysis of 10 μg MCF7 and MCF10A RNA samples aligned with
the corresponding Affymetrix array data for the single cell and 1 ng amplified MCF7 and MCF10A samples. Heat map colour scheme as described
in Figure 2B.
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transcriptional differences and not technical error, we
compared the RNA-Seq data from the single cells to the
10 μg reference microarray data set. All significant
differentially expressed genes were identified in both
data sets using LIMMA (Array) and EdgeR (RNA-Seq)
with a FC > 2 and a FDR < 0.05. A combined total of 597
differentially expressed genes were identified, with an
overall Pearson correlation for differential expression
(average MCF7 divided by the average of MCF10A sam-
ples) between the data sets of 0.89. To directly compare
patterns of expression we identified the 30 most differen-
tially expressed genes in the single cell RNA-Seq data, and
then compared their expression in the 10 μg reference
data. We then performed the complementary analysis by
identifying the 30 most differentially expressed genes in
the 10 μg reference data and compared their expression in
the in the single cell RNA-Seq data (Figure 4C). A highly
significant correlation (Pearson 0.90) was identified be-
tween all 60 genes, with similar expression patterns seen
in the single cell RNA-Seq and the 10 μg reference data
(Figure 4C).

High density qPCR of single cell RNA-Amp™ samples
Having shown that RNA-Amp™ material was amenable
to both array and NGS approaches, and produced sensi-
tive, reproducible and accurate results, we finally wanted
to investigate its utility for focussed high density qPCR
approaches. To this end, we identified a panel of 173
qPCR amplicons (Additional file 1: Table S5) based on
the single cell microarray data set and examined expres-
sion using the WaferGen SMARTChip high density
qPCR platform. In addition to the single cell RNA-
Amp™ samples we also included three unamplified 2 μg
reference samples and three 1 ng RNA-Amp™ samples.
LIMMA analysis of the WaferGen qPCR data identified

66 genes upregulated in the MCF7 population, and 81 up-
regulated in the MCF10A population (FC > 2, FDR < 0.01).
When we looked at the overlap between the different tem-
plate types we found that 38 (58%) of the MCF7 >
MCF10A genes were determined to be significantly upreg-
ulated for all sample types and 35 (43%) of the MCF10A >
MCF7 gene set were also seen to be significantly changed
in all sample types (Figure 5A). Hierarchical clustering of
the combined data set clearly separated the two cell lines
for all template inputs, including single cells and reference
RNA samples (Figure 5B).

Profiling of highly enriched lung cancer stem cells
Having established the sensitivity and accuracy of the
RNA-Amplification approach on cell lines, we sought to
test its utility with clinically relevant samples. For this we
set out to identify genes associated with biologically dis-
tinct cell subpopulations obtained from patient-derived
non-small cell lung cancer (NSCLC) xenografts (NSCLC-
PDX). We have recently demonstrated that within CD133
+ CICs from NSCLC-PDXs, we can define a fraction of



Figure 4 Comparison of RNA-Seq and Microarray data from single cells. (A) A comparison of RNA-Seq and Affymetrix array data generated
from the same amplified single cell samples. The overall correlation (Pearson) of the MCF7/MCF10A ratio between RNA-Seq and Affymetrix array
data sets for the 157 genes examined was 0.95. (B) Venn diagrams showing overlaps of differentially expressed genes identified by RNA-Seq and
Affymetrix array analysis (FC > 2, FDR < 0.05 for both data sets) highlighting the larger number of DE genes identified in the RNA-Seq data set.
(C) A comparison of single cell RNA-Seq data and10 μg RNA Affymetrix array data showing the expression profiles of the top 30 differentially
expressed genes identified by RNA-Seq or 10 μg RNA Affymetrix array data (all data FC > 2, FDR threshold 0.05). Heat map colour scheme for
(A) and (C) as described in Figure 2B.
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CD133+/EpCAM+ cells that represent the resident cancer
initiating cells or RCIC subpopulation [19], as well as a
population of metastatic-associated cancer initiating cells
(MCIC) with surface markers CD133+/CXCR4+/EpCAM-
which show increased potential for metastasis formation
([20] and data in progress). To increase our understanding
of the molecular make-up of these populations we dissoci-
ated a NSCLC-PDX tumour and subjected it to flow cyto-
metric fractionation to obtain unfractionated total tumour
(TT), as well as RCIC and MCIC enriched fractions
(1% and 0.02% of total tumour cells respectively). All cell
samples were sorted directly into Complete Lysis solution
(CLS – Materials and Methods) and stored at −80°C. Fol-
lowing thawing, lysate volumes equivalent to 10 cells were
subjected to RNA-Amp™ and RNA-Seq analysis of the
resulting cDNA was carried out. From the RNA-Seq data
PCA analysis and hierarchical clustering (Figure 6A
and 6B) of the protein coding genes showed clear



Figure 5 High-density real-time PCR analysis of differentially expressed gene signatures. (A) Venn diagrams showing the overlap of
differentially expressed MCF7/MCF10A genes detected by high density qPCR of: unamplified cDNA from 1 μg RNA; RNA-Amp™ cDNA from 1 ng
RNA; and RNA-Amp™ cDNA generated from single cells. Numbers in boxes represent the number of genes upregulated in that template type.
(B) Bioinformatic analysis of the real-time PCR data identified 73 genes differentially expressed between MCF7 and MCF10A across all template types
(LIMMA FC> 2, FDR < 0.01) and hierarchical clustering clearly separated the two cell lines. Heat map colour scheme for (B) as described in Figure 2B.
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separation of all samples, with 1,126 genes identified
which showed statistically significant differences in
expression (EdgeR, FC > 2, FDR < 0.05) between the
TT, RCIC and MCIC samples (Additional file 1: Table
S6). From Figure 6B it can be seen that there are clear
differences between each group and that the most con-
spicuous differences are seen between the total tumour
and the MCIC samples.
To determine the biological relevance of these differen-

tially expressed gene sets we next asked whether genes
showing increased (MCIC UP) or reduced (MCIC DOWN)
expression in the MCIC population, compared to the TT
samples, are enriched for specific pathways, or overlap with
published RNA profiles by submitting the top 100 differen-
tially expressed genes for DAVID [24] and GeneSigDB [25]
analysis. DAVID pathway analysis showed that MCIC UP
genes were linked to cytoskeleton, ribosomal processing,
glutathione transferase and, to a lesser extent, RNA splicing
and tubulin (Additional file 1: Table S7). This data includes
two genes of interest, GSTP1 and BRCA1, that were highly
expressed in MCIC cells (mean RPKM 997 and 0.84
respectively) compared to the TT cells (mean RPKM= 8.1
and 0.08 respectively. Whereas MCIC DOWN genes only
showed a weak link to mitochondria (Additional file 1:
Table S8). From the GeneSigDB analysis both MCIC UP
and MCIC DOWN genes showed highly significant
matches to stem cell and EMT profiles (Additional file 1:
Tables S9 and S10). The EMT signatures included a signa-
ture seen in CD44(hi)/CD24(lo/-) enriched breast cancer
stem cells [16] and an EMT core signature produced by
overexpression of Twist, Snail, Gsc and TGF-β1 [26]. The
overlap between the differentially expressed genes identified
in the RNA-Seq data set and other published studies is
shown in Figure 6C. This figure summarises genes showing
a statistical change in the MCIC samples which also corres-
pond to published EMT signature genes [21,22,27].

Discussion
Single cell whole transcriptome profiling approaches have
been in place for over two decades [5,28,29] and have led
to the identification of novel genes and greater insight into
cellular processes ([30,31], reviewed [32]). More recently,
single cell transcriptome and genomic approaches have
been combined [4] and single cell RNA-Seq approaches
have been developed [1-3]. Despite the demonstrable suc-
cess of single cell analysis the technical requirements
needed for representative amplification of single cells and
the downstream analysis remain a considerable barrier for
widespread implementation in the research community.
Here we have compared three commercially available
RNA-amplification kits and identified a simple and flex-
ible single cell mRNA profiling kit (EpiStem RNA-Amp™),
which provides microgram amounts of amplified cDNA
suitable for analysis using a wide range of downstream
platforms, including high density qPCR arrays, Affymetrix
arrays and RNA-Seq. We have used this approach to suc-
cessfully generate representative cDNA from single cells
and single cell equivalents (25-50 pg), 1 ng purified RNA
(equivalent to ~100 cells) as well as from 10 cell pools of
directly fractionated tumour cells with comparable tran-
scriptional profiles seen across all platforms and all tem-
plate inputs.
Initial experiments compared gene expression profiles

generated from single cell equivalent amounts of pooled



Figure 6 (See legend on next page.)

Rothwell et al. BMC Genomics 2014, 15:1129 Page 8 of 14
http://www.biomedcentral.com/1471-2164/15/1129



(See figure on previous page.)
Figure 6 Transcriptional profiling of fractionated NSCLC-PDX subpopulations. (A) PCA analysis of total RNA-Seq data from NSCLC-PDX
fractionated samples showed clear separation of the metastasis associated cancer initiating cells (MCIC) and resident cancer initiating cells (RCIC)
from unfractionated total tumour (TT). (B) Heat map of hierarchical clustering of top differentially expressed genes (50 TT v RCIC, TT v MCIC, RCIC
v MCIC, EdgeR FC > 2, FDR < 0.05) illustrates clear separation of the three populations and a set of genes with the most striking change seen
between TT and MCIC samples. Heat map colour scheme for (B) as described in Figure 2B. (C) Summary of EMT signature genes found to be
differentially expressed (FC > 2, p < 0.05) in NSCLC-PDX fractionated samples with correlation between differentially expressed genes identified in
MCIC and three published EMT signatures highlighted (boxed green). Column headings are: MCIC - metastasis associated cancer initiating cells;
RCIC- resident cancer initiating cells; TT - unfractionated total tumour (TT); Taube et al. - EMT genes identified by Taube and colleagues [27];
Loboda et al. – EMT genes identified by Loboda and colleagues [21]; Blick et al. - EMT genes identified by Blick and colleagues [22].
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MCF7 RNA using three commercially available kits. The
use of pooled RNA reduced the level of biological vari-
ation that could be typically expected at the single cell
level, meaning differences between the duplicate samples
could be mainly attributed to technical variation. Direct
comparison of the three kits found that the EpiStem
RNA-Amp™ kit was most sensitive, identifying 2667
expressed genes compared to 1554 and 865 with the
NuGEN and Miltenyi generated cDNA respectively. It was
also the most reproducible with the correlation between
duplicate samples being 0.866, compared to 0.723 and 0.8
for the NuGEN and Miltenyi samples. The data from
these initial experiments lead us to focus on the EpiStem
RNA-Amp™ kit for further, detailed evaluation.
Having found the EpiStem RNA-Amp kit to be sensitive

and reproducible we then went on to determine how
representative the amplified material was of the initial
transcriptome of the cell. From Affymetrix array analysis
we established that genes identified using conventional
profiling starting with 10 μg of purified RNA (equivalent
to ~106 cells [23]) showed a similar pattern in amplified
products from either single cells or 1 ng RNA (Figure 3),
confirming that the protocol is ‘fit for purpose’ and will
identify RNA changes reflecting the biological status of
the starting sample. This was an important result as it
confirmed that the data generated from the amplified
material was biologically representative. The next question
addressed was whether the amplified material could be
analysed across a range of different platforms and whether
the different platforms gave comparable transcriptional
profiles. A comparison of genes identified by Affymetrix
arrays or RNA-Seq analysis of the same single cell ampli-
fied cDNA revealed similar patterns of expression
(Figure 4A) demonstrating platform independence. Inter-
estingly, substantially more differentially expressed genes
were identified by RNA-Seq analysis than with the
Affymetrix microarrays (Figure 4B). The reason for the
increased numbers of genes detected by RNA-Seq is not
completely clear, but likely reflects the increased sensitiv-
ity and lower background of the method as well as the
lack of 3’ bias and matches as seen in previously published
studies [1]. The additional differentially expressed genes
identified in the RNA-Seq analysis were shown to be true
biological variation between the cell lines by comparing
the single cell RNA-Seq data to the 10 μg reference data
(Figure 4C), with differentially expressed genes identified
within these data sets showing significant correlation
(Pearson correlation 0.89). If the additional genes identi-
fied by RNA-Seq were due to ‘technical noise’ we would
not have expected to have seen enrichment of these tran-
scripts in the reference data set.
Finally we tested the cDNA on a high density qPCR

platform, using the WaferGen SMARTChip system that
enables analysis of over 5000 wells per run, based on
100 nl reactions. The appeal of qPCR over other platforms
is that it has already been established in various clinical
settings, including the monitoring of CTCs [33,34]. In this
study we utilised transcriptional profiles identified within
our microarray data to design a panel of 173 qPCR ampli-
cons predicted to be differentially expressed between the
two target cell lines. We tested the expression signatures
in cDNA amplified from single cells, 1 ng of RNA and
unamplified RNA and found good concordance across
template inputs (Figure 5). These results demonstrate a
potential pipeline by which rare, clinically important cells
can be transcriptionally profiled using microarrays and/or
RNA-Seq analysis of RNA-Amplified material, and tar-
geted expression profiles generated from these data then
monitored in multiplexed, high density qPCR assays for
clinical utility.
Having proven the robustness and accuracy of the

RNA-Amp™ approach we then validated its potential clin-
ical/research utility through analysis of highly fractionated
cancer initiating cells from NSCLC-PDX samples. Within
primary tumors, CICs are functionally defined as the cel-
lular subset responsible for generation and maintenance
of tumours [16], and in most solid tumors represent only
a fraction of the total cellular population. Recently it has
been proposed that the activation of the epithelial to mes-
enchymal transition provides tumor cells with stem-like
features and dissemination ability, traits needed to carry
out the metastatic process [35,36]. These findings are
supported by clinical evidence in breast cancer patients
showing that CTCs and bone marrow disseminated tumor
cells exhibit EMTand stemness features [37,38]. Additional
analysis of CTCs from breast cancer patients provided
evidence for the existence of a definite subset of MCICs,
showing stemness and mesenchymal traits that possess the
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potential to initiate metastases [39,40]. Previously we have
shown that lung cancer contains a population of CD133+

cancer initiating cells, within which is a subpopulation of
CD133+CXCR4+ EpCAM− cells that show an increased
metastasis formation capability and could represent these
clinically important lung MCICs (manuscript in prepar-
ation). Therefore, it would be of great interest to determine
the transcriptional profile of these rare cells and compare
to other subpopulations within the tumour. However,
following flow cytometric fractionation typically fewer than
100 MCIC cells are isolated from each tumour, therefore
we utilized the Epistem RNA-Amp protocol to generate
enough material from these rare cells for transcriptional
profiling.
For this we amplified RNA from equivalent to 10 cells

input, and following RNA-Seq analysis, which in our val-
idation experiments was found to generate the most
data, we were able to clearly distinguish RNA profiles
from CICs with an increased potential for metastasis for-
mation (MCIC) from resident CICs and total tumour pro-
files (Figure 6). Pathway analysis of MCIC differentially
expressed genes revealed a clear enrichment for a number
of pathways (Additional file 1: Tables S7 and S8), including
a strong link to glutathione metabolism. This has poten-
tially important clinical implications since glutathione S-
transferase pi 1 (GSTP1) is known to regulate sensitivity
to cytotoxic agents (reviewed [41]) and is a significant risk
factor for clinical chemotherapy resistance in NSCLC [42].
Since GSTP1 is low in the TT samples and over 100×
higher in the MCIC samples (Additional file 1: Tables S6)
this may imply selective resistance of MICICs. A compari-
son of MCIC differentially expressed genes to published
RNA expression signatures [35] showed a strong link to
known EMT and stem cell profiles (Additional file 1:
Tables S9 and S10). MCIC differentially expressed genes
overlapped with a range of EMT signatures, including a
signature derived from human lung cancer cell lines and
shown to be linked with a prognostic signature in colorec-
tal cancer [21], a core signature that is produced by over-
expression of Twist, Snail, Gsc and TGF-β1 [36] as well as
an EMT signature detected in CD44(hi)/CD24(lo/-) breast
cancer stem cells [22] (Figure 6C).
In addition to confirming the reported convergence of

EMT signatures and stem cell enrichment in the MCIC
population, we also detect stem cell related changes
which are not obviously linked to EMT, including in-
creased expression of BRCA1 in both RCIC and MCIC
samples (Additional file 1: Table S6). As well as its role
in DNA repair and breast cancer susceptibility, BRCA1
has also been implicated in mammary stem-cell self-
renewal (reviewed [43,44]), with deletion of BRCA1 dur-
ing epidermal development showing that it is required
for the development of adult hair follicle stem cells [45].
Thus, these findings support the existence of different
subsets of lung CICs that can be distinguished from total
tumor cells by a common stemness signature, whereas
the co-expression of the mesenchymal signature was
able to define those tumor stem cells endowed with the
greatest dissemination and metastatic potential. These
data strongly suggest that by utilizing the RNA-Amp™
protocol to amplify RNA from these rare cells has
enabled us to accurately determine their transcriptional
signatures and further reveal the genes and pathways
involved in tumourigenesis.
Conclusions
We have shown through detailed transcriptional profiling
of single cells from two control cell lines, across multiple
platforms, the value and robustness of the profiling ap-
proach we describe. These results confirm that RNA amp-
lification from single cells is readily achieved, the material
generated accurately reflects the transcriptional status of
the initial cell, can be used for RNA-Seq and microarray
analysis and that these data sets can be used to generate
targeted expression panels that are amenable to real-time
PCR analysis. This process mirrors the pipeline we envis-
age could be used to optimally transfer clinically import-
ant findings into a therapeutic setting.
In addition, we have validated the approach through

the characterization of potential metastatic cancer initi-
ating cells isolated from a NSCLC-PDX model, with
this analysis identifying a panel of EMT and stem-cell
associated genes with potential roles in metastatic
spread. This highlights the utility of the protocol in bet-
ter understanding the biology of clinically important,
rare cellular populations.
Methods
Cell culture and FCM sorting of single MCF7 and MCF10A
cells
The human epithelial cell lines MCF7 and MCF10A
were grown in DMEM (Gibco, Paisley, Scotland) supple-
mented with 10% heat-inactivated FCS (5% Horse serum
for MCF10A cells), 2.5% HEPES buffer (pH 7.2), 0.1%
β-mercaptoethanol and 2 mM L-glutamine (all from
Sigma, UK). For MCF10A cells, Insulin (10 μg/ml), EGF
(20 ng/ml), Cholera Toxin (100 ng/ml) and Hydrocorti-
sone (500 ng/ml) were also added (all from Sigma, UK).
Both cell lines were maintained in a 5% CO2 humidified
incubator at 37°C and were routinely tested for the pres-
ence of mycoplasma. For single cell experiments each
cell line was FACS sorted on a BD Influx Sorter (BD,
California, USA) machine directly into 96-well plates
containing 5 μl of Complete Lysis Solution (CLS)
(10 mM Tris, 1 mM EDTA, 5% Igepal-CA (v/v), Roche
Protector RNAse inhibitor cocktail).
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Representative cDNA amplification
EpiStem RNA-Amp™
RNA (1 ng-25 pg) or cell lysates in CLS were adjusted to
6.75 μl volume and RNA-Amplified using the EpiStem
RNA-Amp™ Kit according to the manufacturers protocols
(EpiStem, Manchester, UK). Briefly the samples underwent
oligo-dT priming and 5’ capping prior to ×35 cycles of
PCR amplification using the conditions 90°C 30 sec, 42°C
2 min and 72°C 6 min. Following amplification, all samples
were purified using a MoBio UltraClean® PCR Clean-Up
Kit (Carlsbad, CA, USA) and quantified on a NanoDrop
spectrophotometer.
Miltenyi μMACS™ SuperAmp™
1 μl MCF7 RNA (25 pg μl−1) was added to 5.4 μl of freshly
prepared Incubation Buffer and RNA-Amplified using the
Miltenyi μMACS™ SuperAmp™ according to the manufac-
turers protocols (Miltenyi, Gladbach, Germany). Briefly,
the samples underwent in-column cDNA synthesis and
purification, cDNA tailing and finally cDNA amplification
using the conditions 78°C 30 sec followed by ×20 cycles of
94°C 15 sec, 65°C 30 sec, 68°C 2 min, then ×21 cycles of
94°C 15 sec, 65°C 30 sec, 68°C 2 30 sec + 10 sec/cycle with
a final incubation of 68°C for 7 min. Following amplifica-
tion, cDNA was purified using a Roche High Pure® PCR
purification Kit (Basel, CH) and quantified on a NanoDrop
spectrophotometer.
NuGEN ovation® one-direct system™
5 μl MCF7 RNA (10 pg μl−1) was added to 2 μl of First
Strand Primer mix and RNA-Amplified using the NuGEN
Ovation® One-Direct System™ Kit according to the manu-
facturers protocols (NuGEN, CA, USA). Briefly, the sam-
ples underwent first strand cDNA synthesis, second
strand cDNA synthesis, SPIA Amplification followed by
Post-SPIA modification using the conditions 4°C 1 min,
30°C 10 min, 42°C 60 min then 75°C for 10 min. Following
amplification, cDNA was purified using a QIAGEN Mine-
lute column (Hilden, Germany) and quantified on a Nano-
Drop spectrophotometer.
Real-time PCR analysis of house keeper transcripts
The expression levels of 6 house keeper gene transcripts
was analysed using real-time PCR. Briefly, following RNA-
Amp™ amplification each sample was diluted 1:100 and
1 μl of the resulting sample used as the template in a real-
time PCR reaction. All reactions contained 350nM for-
ward and reverse primer and 1x SYBR Green Master mix
(Applied Biosystems, Warrington, UK), run on an ABI
7900 and data analysed using SDS2.4 software (Applied
Biosystems, Warrington, UK). The primers used are
shown in Table S1.
Affymetrix DNA microarrays
Following amplification the cDNA was fragmented and
Biotin-labeled using the EpiStem RNA-Amp™ labeling kit
(EpiStem, Manchester, UK) and the hybridisation cocktail
containing 5 μg of biotin cDNA heated to 99°C for 5 mins.
The hybridisation cocktail was then transferred to 45°C
for 5 mins and centrifuged at maximum speed for 5 mins
to remove insoluble material. Samples were then hybri-
dised to HU133plus2 arrays for 16 hours and then stained
with SAPE using a biotin targeted antibody step and
washed according to the EukGE_Ws2v4_450 fluidics
protocol from Affymetrix. Samples were then scanned in
an Affymetrix 3000 scanner.

RNA-Seq NGS
To ensure all cDNA generated using the Epistem RNA
Amp kit was double stranded, one cycle of re-
amplification was performed (95°C for 2 mins, 55°C for 1
mins followed by 72°C for 15 mins). A library was then
prepared using 1ug of the dsDNA in the Life Technologies
5500 SOLiD Fragment Library Core kit (Life Tech, Paisley,
UK) according to the manufacturer’s instructions. The li-
braries were quantified using the Life Technologies SOLiD
Library Taqman Quantitation kit and Emulsion PCR was
performed using the Life Technologies SOLiD EZ Bead
System (Life Tech, Paisley, UK). 50 bp single read sequen-
cing was carried out on the Life Technologies 5500XL
SOLiD System (Life Tech, Paisley, UK).

High density qPCR
Gene expression was assessed using the SmartChip Real-
Time PCR System (WaferGen BioSystems, Fremont,
USA). Sample and assay mixes were prepared with Sensi-
FAST™ SYBR Hi-ROX (Bioline, London, UK) in 384-well
source plates using a Freedom Evo 150 robot (Tecan,
Mannedorf, Switzerland). Assay and sample mixes were
then automatically loaded into the nanowells of a
MyDesign SmartChip with WaferGen’s MultiSample
NanoDispenser using a ‘384 assays × 12 samples’ dispens-
ing layout. The final reaction volume per nanowell was
100 nl, with an equivalent of 100 pg unamplified cDNA
(total RNA equivalents) loaded per reaction. SmartChips
were run in the SmartChip Cycler, and the cycling condi-
tions were comprised of 3 minutes activation at 95°C, and
40 cycles of 30 seconds at 95°C and 60s at 60°C, followed
by a dissociation curve analysis from 60°C to 95°C. Cq
values, generated by the software from the SmartChip
Cycler were used for down-stream data-analysis.

Isolation of NSCLC-PDX CIC populations
Patient derived xenografts (PDX) were established from
lung cancer primary tumors and expanded as previously
described [46]. Briefly, after approval from the Internal
Review and the Ethics Boards of the Fondazione IRCCS
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Istituto Nazionale Tumori, samples of primary NSCLC
were obtained from patients undergoing surgical resec-
tion following receipt of informed consent in compliance
with the Declaration of Helsinki. Each sample was cut in
small pieces (25–30 mm3) and implanted subcutane-
ously using a trocar gauge in the flank of female SCID
mice. PDXs were then expanded in vivo through succes-
sive rounds of transplantation from donor to recipient
mice. To obtain single cell suspension, PDXs were
mechanically and then enzymatically digested in a solu-
tion of collagenase IV (5 mg/ml) and DNAse (100U/ml)
(Sigma-Aldrich) in DMEM/F12 (Lonza) for 1 h at 37°C.
Partially digested tissue was filtered through a 100 μm
cell strainer (BD Falcon) and red blood cells were re-
moved by Lysing Buffer 1X (BD Bioscience).
Single cell suspensions from dissociated NSCLC-PDXs

were washed and incubated in staining solution 1% BSA
and 2 mM EDTA with specific antibodies at appropriate
dilutions for 30 min at 4°C: PE anti-human CD133/1,
FITC anti-human CD326 (EpCAM) (Miltenyi Biotech),
APC anti-human CD187 (CXCR4) (BD Pharmingen), Alexa
Fluor® 488 anti-human HLA-ABC (BD Pharmingen),
PerCP-eFluor 710 anti-mouse MHC class I (e-Bioscience).
Prior to sorting, cells were resuspended to a final concen-
tration of 10 ×106 cells/ml in Hepes Buffered Saline (HBS)
(Lonza) + 0.1% B27 Supplements (Gibco) and 7-AAD
viability staining solution (1:10) (e-Bioscience) for dead cells
exclusion.
PDX-cells were sorted with FACSAria (Becton Dickinson)

into a chilled 96-well plate (Corning Incorporated). For
sorting of different CIC fractions, an initial gate excluding
doublets, dead cells and mouse MHC class I+ cells was set.
Then, within the gate of human viable CD133+ cells, the
fraction of EpCAM+ and CXCR4+EpCAM− cells were iden-
tified and sorted. Total tumor population was isolated
based on human HLA-ABC+ expression. For each cell frac-
tion, 300 cells were directly sorted in 30 μl of CLS per well
and within 1 h approximately 100 cells/10 μl were trans-
ferred into 0.5 ml tubes and stored to −80°C.

Bioinformatics analysis of microarray data
MCF7 cDNA was generated by three different protocols,
NuGEN, EpiStem and Miltenyi and each sample had
two replicates. The probe-level expression values for
each replicate of one sample were obtained from the
Affymetrix HG133plus2 array and were normalised and
summarised as the expression values at the probeset
level using the RMA method [47], implemented in the
Affymetrix’s tool ‘apt-probeset-summarize’. The Bio-
conductor [25] package panp was used to determine
that a probeset was present in one replicate if the p-
value calculated by panp was less than 0.05. For each
replicate, the present probesets were mapped to the
genes using the ENSEMBL human gene annotation
database version 70 via the BioConductor package
annmap [48]. Gene lists for one sample were compiled
from the two replicates, containing the genes which
were present in both replicates.
Data for the MCF7 and MCF10A samples were gener-

ated using Affymetrix Human HGU133plus2 arrays
(referred to as Affymetrix arrays throughout). Data were
normalised and summarised using RMA [47], as imple-
mented by Affymetrix Power Tools (APT) software pack-
age (http://www.affymetrix.com/estore/partners_programs/
programs/developer/tools/powertools.affx) using the ‘apt-
probeset-summarize’ default parameter setting. Gene level
summaries were computed as the geometric mean of all
probesets mapping to a gene, as defined by annmap [48],
using ENSEMBL version 70 as the source of underlying
genome annotation. The empirical Bayes statistics [49]
implemented in the Bioconductor package LIMMA
[50] were used to identify protein-coding genes show-
ing differential levels in MCF7 and MCF10A samples
(FDR < 0.01; FC > 2).
Bioinformatics analysis on the single cell RNA-Seq data
50mer single-ended strand specific RNA-Seq data were
generated using a SOLiD 5500XL sequencing machine
and aligned to human genome hg19 using SHRIMP2
[51,52]. Reads that aligned to multiple loci were discarded.
Subsequent analyses were performed using R and Biocon-
ductor [26]. Between 7.6 and 10.4 million reads aligned
uniquely for each sample in the MCF10A and MCF7 data-
set. For the single cell lung cancer samples, reads were
aligned to the human (hg19) and mouse genomes (mm9)
separately. For the 4 TT and 4 RCIC samples, 38% - 48% of
reads mapped uniquely to the human genome, while 5.8% -
7.1% mapped uniquely to mouse. For the 4 MCIC samples,
12 - 13% of reads aligned uniquely to the human genome
and 37 - 42% of reads to mouse. We therefore discarded
reads that aligned both to human and mouse genomes in
order to retain, for each of the 12 samples, only those reads
that aligned uniquely and exclusively to the human gen-
ome. Following this filtering step, the number of reads
retained for the 4 MCIC samples ranged from 1.7 - 3.6
million and between 5.2 and 14.2 million reads remained
for the 8 TT and RCIC samples.
For each sample, reads were positioned relative to

annotated genes from ENSEMBL version 70, using the
annmap database and Bioconductor package [48], and
the number of reads hitting exonic regions was counted
for each gene. These data were then used to identify dif-
ferentially expressed (DE) genes using the Bioconductor
package EdgeR [53] (FDR < 0.05; FC > 2; exact test
method [54]). Four gene lists were produced: MCF10A
vs. MCF7, TT vs. MCIC, TT vs. RCIC, and MCIC vs.
RCIC samples.

http://www.affymetrix.com/estore/partners_programs/programs/developer/tools/powertools.affx
http://www.affymetrix.com/estore/partners_programs/programs/developer/tools/powertools.affx
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Accession numbers
The MCF7 and MCF10A single cell and 1 ng Affymetrix
microarray, RNA-Seq and WaferGen qPCR data have
been deposited to the NCBI under accession number
GSE52717.
Additional file

Additional file 1: Table S1. Housekeeper genes primer sequences.
Table S2. Single cell RNA-Seq mapped reads information. Table S3.
Single cell RNA-Seq EdgeR data. Table S4. Differentially expressed genes
identified in both RNA-Seq and Affymetrix Array analysed data of single
MCF7 & MCF10A cells. Table S5. WaferGen primer sequences for 173
amplicons. Table S6. NSCLC-PDX RNA-Seq EdgeR data. Table S7. MCIC
up-regulated genes DAVID analysis. Table S8. MCIC down-regulated
genes DAVID analysis. Table S9. MCIC up-regulated genes GeneSigDB
analysis. Table S10. MCIC down-regulated genes GeneSigDB analysis.
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