

# **HHS Public Access**

Author manuscript

Magn Reson Med. Author manuscript; available in PMC 2016 February 07.

Published in final edited form as:

Magn Reson Med. 2015 July; 74(1): 93–105. doi:10.1002/mrm.25377.

# Improved Quantitative Myocardial T<sub>2</sub> Mapping

Mehmet Akçakaya<sup>1</sup>, Tamer A. Basha<sup>1</sup>, Sebastian Weingärtner<sup>1,2</sup>, Sébastien Roujol<sup>1</sup>, Sophie Berg<sup>1</sup>, and Reza Nezafat<sup>1</sup>

<sup>1</sup>Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA

<sup>2</sup>Computer Assisted Clinical Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany

#### **Abstract**

**Purpose**—To develop an improved T<sub>2</sub> prepared (T<sub>2</sub>prep) balanced steady-state free-precession (bSSFP) sequence and signal relaxation curve fitting method for myocardial T<sub>2</sub> mapping.

**Methods**—Myocardial  $T_2$  mapping is commonly performed by acquisition of multiple  $T_2$ prep bSSFP images and estimating the voxel-wise  $T_2$  values using a 2-parameter fit for relaxation. However, a 2-parameter fit model does not take into account the effect of imaging pulses in a bSSFP sequence or other imperfections in  $T_2$ prep RF pulses, which may decrease the robustness of  $T_2$  mapping. Therefore, we propose a novel  $T_2$  mapping sequence that incorporates an additional image acquired with saturation preparation, simulating a very long  $T_2$ prep echo time. This enables the robust estimation of  $T_2$  maps using a 3-parameter fit model, which captures the effect of imaging pulses and other imperfections. Phantom imaging is performed to compare the  $T_2$  maps generated using the proposed 3-parameter model to the conventional 2-parameter model, as well as a spin echo reference. In-vivo imaging is performed on eight healthy subjects to compare the different fitting models.

**Results**—Phantom and in-vivo data show that the  $T_2$  values generated by the proposed 3-parameter model fitting do not change with different choices of the  $T_2$ prep echo times, and are not statistically different than the reference values for the phantom (P = 0.10 with three  $T_2$ prep echoes). The 2-parameter model exhibits dependence on the choice of  $T_2$ prep echo times and are significantly different than the reference values (P = 0.01 with three  $T_2$ prep echoes).

**Conclusion**—The proposed imaging sequence in combination with a 3-parameter model allows accurate measurement of myocardial  $T_2$  values, which is independent of number and duration of  $T_2$  prep echo times.

#### Keywords

| Quantitative myocardial tissue cha | racterization; myocardial | T <sub>2</sub> mapping; 3 | -parameter fit; |
|------------------------------------|---------------------------|---------------------------|-----------------|
| myocardial inflammation            |                           |                           |                 |

# Introduction

T<sub>2</sub>-weighted images are commonly used in cardiac MR (CMR) to assess myocardial inflammation and edema in various cardiomyopathies. They have been shown to distinguish acute and chronic myocardial infarction (1), to identify severe transient myocardial ischemia (2), and to predict revascularization needs (3). T<sub>2</sub>-weighted imaging has also been used in patients with myocarditis (4,5), allograft rejection (6) and Takotsubo cardiomyopathy (7), where T<sub>2</sub> values are elevated. The T<sub>2</sub>-weighted imaging sequences used in these studies rely on turbo spin echo readouts with black-blood preparation (8). However, the T<sub>2</sub>-weighted imaging sequences suffer from certain limitations (9-11), including qualitative interpretation that is affected by regional differences; myocardial signal variation due to phased-array coil arrays; and difficulty differentiating edema from stagnant sub-endocardial blood.

Quantification of myocardial  $T_2$  values (12,13) has been proposed as an alternative to  $T_2$ -weighted imaging to reduce the variation in assessment. The earlier  $T_2$  quantification sequences were based on spin echo/fast spin echo acquisitions (12-15). More recently,  $T_2$  mapping techniques (11,16-20) have been proposed, where a number of images are acquired with different  $T_2$ -weightings, and used to generate a quantitative pixel-wise  $T_2$  map based on a spin-spin relaxation model compatible with the acquisition.  $T_2$ -prepared (21) balanced steady-state free precession (bSSFP) techniques have been utilized for efficient  $T_2$  mapping (22). In these techniques, a number of different  $T_2$  preparation ( $T_2$ prep) echo times are used to generate the multiple  $T_2$ -weighted images (11,16-20). In one such approach, three electrocardiogram (ECG)-triggered single-shot bSSFP images are acquired with three different  $T_2$ prep times (0 ms, 24 ms, 55 ms) with 2 heart-beat rest periods for signal recovery between each image, using a breath-hold acquisition (11,18). These images are subsequently registered and then fit to a 2-parameter fit model (consisting of the longitudinal magnetization without  $T_2$ prep and the  $T_2$  time) to generate the myocardial  $T_2$  maps.

Despite the potential of myocardial  $T_2$  mapping for quantitative assessment of myocardial inflammation and edema (18,19,23-26), it has still not replaced  $T_2$ -weighted techniques in clinical CMR protocols. In terms of the sequence, single-shot bSSFP acquisitions following different  $T_2$ prep echo times have replaced the spin echo approach. However, there is a lack of data about the robustness of  $T_2$  estimation with respect to the choice and number of  $T_2$ prep echo times when using the conventional sequences and the curve fitting model.

In terms of the curve-fitting model, the 2-parameter fit has been used extensively in the literature, both with spin echo acquisitions (12,14,27) or bSSFP acquisitions with various profile ordering schemes (16,20,22). However, the 2-parameter model ignores the changes in the  $T_1/T_2$  contrast due to the imaging pulses until the acquisition of the center of k-space when using a bSSFP sequence, with a number of start-up pulses and especially with linear profile ordering. The shortcomings of the 2-parameter model have been noted previously (17,28). In (17), an empirical offset parameter was included to account for the  $T_1$  relaxation during the gradient echo sequence. This value was chosen based on Bloch simulations and was fixed for a given set of sequence parameters and physiology characteristics. In (28), a third parameter was empirically included to characterize the deviations from the 2-parameter

model in numerical simulations and phantom experiments, although no analytical insight was given regarding the necessity of such a term.

In this work, we propose a sequence and a signal recovery curve fitting model for improved myocardial T<sub>2</sub> mapping. We propose a 3-parameter curve fitting model, where the third parameter captures the perturbations in the magnetization curve due to the imaging pulses played between the T<sub>2</sub>prep and the acquisition of the central k-space line. Our proposed sequence acquires multiple single-shot images with different T<sub>2</sub>prep echo times, followed by rest periods for magnetization recovery, as well as one saturation-prepared image. The latter captures the effect of imaging pulses on the magnetization curve, and thus improves the estimation of the third parameter. Additionally, to enable efficient free-breathing acquisitions in-vivo, we propose a new NAV-gating scheme that applies T<sub>2</sub>prep conditionally based on the position of the NAV signal. This eliminates the necessity for rest periods if the NAV signal is outside of the gating window. Phantom experiments and in vivo imaging are performed to evaluate the proposed sequence and the recovery curve fitting model.

# **Methods**

The 2-parameter curve fitting model typically used in myocardial T<sub>2</sub> mapping is given by

$$M_{2-parameter}(t) = Ae^{-t/T_2},$$
 [1]

where t is the  $T_2$ prep echo time. In this work, we propose to use a 3-parameter model to capture the effect of imaging pulses on the magnetization

$$M_{3-parameter}(t) = Ae^{-t/T_2} + B$$
. [2]

The proposed sequence aims to improve the efficiency and accuracy of  $T_2$  mapping, while addressing several aspects of this estimation procedure.

### **Proposed Sequence**

Figure 1(a) shows the schematic of the proposed sequence. Multiple single-shot images of the heart are acquired using ECG-triggering, following  $T_2$ prep (21) of different echo lengths,  $TE_{T2P}$ . Between each image, a 6 second rest period (with no RF pulses) is applied to allow for full re-growth of the myocardial signal. To improve the estimation of the third parameter (B), the sequence additionally acquires an image,  $I_{SAT}$ , directly after a saturation pulse to simulate the effect of a very long  $T_2$ prep echo time (i.e.  $T_2$ prep =  $\infty$ ).

The  $T_2$ prep itself consists of 90° tip-down pulse, followed by four 180° pulses and ends with 90° tip-up pulse. Both the opening and closing 90° pulses are non-selective hard pulses with a bandwidth of 2.3 kHz, and duration of 0.44 ms. These non-composite short pulses were chosen to minimize any  $T_2^*$  effect that might occur during the pulse. The refocus pulses are

weighted in a MLEV opposing phase pairs scheme to compensate for RF pulse shape imperfection (29) and composite refocusing pulses  $(90^{\circ}_{x}, 180^{\circ}_{y}, 90^{\circ}_{x})$  are used to provide second order corrections to variations in  $B_{1}$ . The duration of each refocus pulse is 1.75 ms. For  $I_{SAT}$ , a composite saturation pulse of bandwidth = 1 kHz, and a total duration of 10 ms is used.

A common issue with  $T_2$  prep sequences is the effect of  $B_0$  and  $B_1$  variations of the excitation and refocusing pulses of the  $T_2$  prep sequence. In the proposed method, this will change the A parameter in Equation [2] for all the images acquired with a non-zero  $TE_{T2P}$ . However, if  $TE_{T2P} = 0$  is acquired with no contrast preparation as in (11), the A parameter for this term will not be affected by these in homogeneity effects, leading to an inconsistency with the other  $TE_{T2P}$  values. To compensate for this effect, we add a  $90^{\circ}$ , followed immediately by a  $-90^{\circ}$ , followed by a crusher gradient, for the acquisition of a  $TE_{T2P} = 0$ , similar to the one proposed in (22). We hypothesize that this compensates for  $B_0$  and  $B_1$  variations, and removes the bias from the estimation of the  $T_2$  parameter that would have been caused by RF flip angle imperfections.

The flowchart for the proposed navigator-gated acquisition scheme is depicted in Figure 1(b). The NAV is placed immediately prior to the  $T_2$ prep. For the acquisition of the kth image,  $I_k$ , if the NAV signal is outside the gating window, no  $T_2$ prep or imaging pulses are applied, leaving the magnetization undisturbed, and the acquisition of  $I_k$  is repeated in the next R-R interval. If the NAV signal is within the gating window, the image with the desired  $T_2$ prep time is acquired, followed by a 6 second rest period for magnetization recovery. Figure 1(c) shows an example of the rejection-reacquisition scheme for a  $T_2$ -prepared image. Figure 1(d) also depicts the acquisition of a saturation-prepared (SAT) image, which immediately follows the  $T_2$ -prepared image without any rest periods, and where the NAV is placed prior to the saturation pulse.

#### 3-parameter Model for T<sub>2</sub> Relaxation

We sought to characterize the effect of the bSSFP imaging pulses that are played until the acquisition of central k-space, on the magnetization measured after  $T_2$  preparation. When a  $T_2$  prep scheme (21) with a  $T_2$  echo time of  $TE_{T2P}$  is used, the longitudinal magnetization is given by:

$$M_{\text{start}} = M_0 e^{-TE_{\text{T2P}}/T_2},$$
 [3]

where  $M_0$  is the signal at full-recovery. When using a bSSFP readout with n RF pulses, the signal is given by (30)

$$M(n) = [\sin (\alpha/2)M_{start} - M_{SS}]\lambda_1^n + M_{SS},$$
 [4]

where a is the flip angle, and where the steady state magnetization, MSS is given by

$$M_{SS} = M_0 \frac{\sqrt{E_2(1 - E_1) \sin{(\alpha)}}}{1 - (E_1 - E_2) \cos{(\alpha)} - E_1 E_2}, \quad [5]$$

with  $E_{1,2}=e^{-TR/T1,2}$  and  $\lambda_1=E_2\sin^2(\alpha/2)+E_1\cos^2(\alpha/2)$ . This can be re-written as (31)

$$M(n) = \sin (\alpha/2) \lambda_1^n M_{start} + \left[1 - \lambda_1^n\right] M_{SS} = \left(M_0 \sin (\alpha/2) \lambda_1^n\right) e^{-TE_{T2P}/T_2} + \left[1 - \lambda_1^n\right] M_{SS}. \quad [6]$$

Thus, for  $T_2$ -prepared bSSFP acquisitions, in which several imaging pulses are used before the acquisition of the center of k-space, the  $T_2$  relaxation between the different images can be characterized as:

$$M_{3-parameter} (TE_{T2P}) = Ae^{-TE_{T2P}/T_2} + B, \quad [7]$$

where the parameters, A and B do not depend on the  $T_2$ prep time,  $TE_{T2P}$ . However, they are functions of the sequence parameters (flip angle, number of pulses, repetition time, etc). Furthermore, based on Equation [6], we note that B captures the effect of the imaging pulses, when  $M_{start} = 0$ .

# T<sub>2</sub> Map Reconstruction

 $T_2$  maps are generated by voxel-wise least-squares curve-fitting to the magnitude signal intensity. Both the 2-parameter model in Equation [1] and the 3-parameter model in Equation [2] are utilized. The following curve-fitting methods are performed for the experiments:

- The 2-parameter model with various T<sub>2</sub>prep echo times. This method does not include the SAT image, since the 2-parameter signal model decays to 0 for large T<sub>2</sub>prep echo times.
- 2. The 3-parameter model with various  $T_2$  prep echo times and with the saturation-prepared image. The SAT image is equivalently characterized as a long ( $\sim$ 2000 ms)  $T_2$  prep echo time.
- The 3-parameter model with various T<sub>2</sub>prep echo times and without the SAT image.

## Numerical Simulations: B<sub>1</sub> field inhomogeneity

Numerical simulations were conducted to study the effect of  $B_0$  and  $B_1$  variations on the estimated  $T_2$  values, and to characterize the effect of using the proposed  $90^{\circ}$ ,  $-90^{\circ}$  and crusher gradient preparation during the acquisition of a  $TE_{T2P}=0$  on these  $T_2$  estimations.

Bloch equation was simulated to consider the effect of spin rotation around  $B_{eff}$  instead of  $B_1$  during the 90°, -90° and 180° pulses of the  $T_2$ prep, with

$$B_{eff} = B_1 \hat{i} + \left(B_0 - \frac{\omega}{\gamma}\right) \hat{k}, \quad [8]$$

where  $B_0$  is the strength of the magnetic field in the z-direction,  $\gamma$  is the gyromagnetic ratio, and  $B_1$  and  $\omega$  are the strength and frequency of the applied RF pulse respectively.

Nominal myocardium  $T_1$  and  $T_2$  values (i.e. 1200 ms and 50 ms respectively) were assumed for the simulations. The sequence was simulated to acquire  $T_2$ prep echo times of 0, 25 and 50 ms, as well as the saturation-prepared image. Then, both the 2-parameter and 3-parameter fits were used to estimate the  $T_2$  values, and the absolute error from the true  $T_2$  value was recorded for different variations of  $B_0$  and  $B_1$ . The simulation was repeated with and without the proposed compensation for  $TE_{T2P} = 0$ .

#### **Phantom Imaging**

All imaging was performed on a 1.5T Philips Achieva (Philips Healthcare, Best, The Netherlands) system using a 32-channel cardiac coil array. Phantom imaging was performed using NiCl<sub>2</sub> doped agarose vials, whose  $T_2$  and  $T_1$  values spanned the ranges of values found in the blood and myocardium. A single-shot ECG-triggered bSSFP sequence with the following parameters was used for the proposed sequence: 2D single-slice, FOV =  $240\times240$  mm<sup>2</sup>, in-plane resolution =  $2.5\times2.5$  mm<sup>2</sup>, slice thickness = 8 mm, TR/TE = 2.7 ms/1.35 ms, flip angle =  $85^{\circ}$ , 10 linear ramp-up pulses, SENSE rate = 2, acquisition window = 138 ms, number of phase encoding lines = 51, linear k-space ordering. A total of 27 different  $T_2$ prep echo times were used, including  $TE_{T2P} = 0$  and  $TE_{T2P}$  ranging from 25 ms to 150 ms in steps of 5 ms. Additionally one image was acquired after saturation preparation for the 3-parameter fit.

A Carr-Purcell-Meiboom-Gill (CPMG) spin-echo sequence with an echo train length of 32 with TE 10 ms was performed as reference. The scan parameters were: FOV =  $240 \times 240$  mm<sup>2</sup>, in-plane resolution =  $1.25 \times 1.25$  mm<sup>2</sup>, slice thickness = 4 mm, TR = 6000 ms, flip angle =  $90^{\circ}$ . Number of averages = 4, reference  $T_2$  times were obtained from a 2-parameter model fit to the spin echo signal.

**3-parameter vs. 2-parameter Fit: Effect of T<sub>2</sub>prep Echo Times**—We hypothesized that the estimated  $T_2$  values would be independent of the  $T_2$ prep times used to sample the images if the true magnetization model and the curve-fitting model matched. On the other hand, the estimated  $T_2$  values would change based on the  $T_2$ prep times sampled if there was mismatch between the true magnetization model and the curve-fitting model. To test this hypothesis, 2-parameter and 3-parameter models were used to generate  $T_2$  maps based on different subsets of images corresponding to different  $T_2$ prep echo times. The following subsets were used:

**a.**  $TE_{T2P} = 0$  and  $n TE_{T2P}$  values starting from 25ms in steps of 5 ms (n from 2 to 26).

- **b.** TE<sub>T2P</sub> = 0 and n TE<sub>T2P</sub> values starting from 25 ms in steps of 10 ms (n from 2 to 13).
- c.  $TE_{T2P} = 0$  and  $n TE_{T2P}$  values starting from 25 ms in steps of 15 ms (n from 2 to 9).
- **d.** TE<sub>T2P</sub> = 0 and n TE<sub>T2P</sub> values starting from 25 ms in steps of 20 ms (n from 2 to 7).
- e.  $TE_{T2P} = 0$  and  $n TE_{T2P}$  values starting from 25 ms in steps of 25 ms (n from 2 to 6).

As described previously, the additional SAT image is used with the 3-parameter model, and not used with the 2-parameter model. In order to quantify the effect of using the SAT image in the 3-parameter fit on accuracy and precision, these experiments were also repeated using the 3-parameter model but excluding the SAT image from the curve-fitting process.

Additionally,  $T_2$  map estimation was performed using 3  $T_2$ prep echoes (0, 25, 50 ms), similar to the ones used in the literature (11,17,18) using a 2-parameter fit. 3-parameter fit was performed using these 3 echoes and the proposed SAT image. 3-parameter fit was also performed using a 4<sup>th</sup> echo at 90 ms instead of the SAT image. These acquisitions are referred to as the short acquisition with 2-parameter, 3-parameter fit with SAT, and 3-parameter without SAT, respectively.

**Effect of the B**<sub>1</sub> **inhomogeneities**—To quantify the effect of using the  $90^{\circ}$ ,  $-90^{\circ}$ & crusher gradient preparation during the acquisition of a  $TE_{T2P} = 0$  to compensate for any RF pulse imperfection, imaging was performed with and without (i.e. no pulses applied) this correction. The 2-parameter and 3-parameter fits were performed for all echoes for both acquisitions. An additional SAT image was used for the 3-parameter fit as previously described.

**Length of the Rest Cycles**—Rest cycles are used after the acquisition of each single-shot image to allow for magnetization recovery. Imaging was performed to study the effect of the length of these rest cycles, using rest cycle lengths varying from 0 to 9 seconds in 1 second-steps. Imaging was performed using both 3 echoes (0, 25, 50 ms) and 27 echoes. An additional SAT image was acquired in all cases. The 3-parameter fit was utilized for T<sub>2</sub> map reconstruction.

**T<sub>2</sub> Map Analysis**—A region-of-interest (ROI) analysis was performed, where the mean value and standard deviation was recorded for each vial for each calculated  $T_2$  map. Accuracy was assessed as the difference between the mean of the vial for the spin echo reference  $T_2$  map and the mean of the vial for the given  $T_2$  map. Precision was assessed as the standard deviation of the vial for the given  $T_2$  map. The null hypotheses that there was no difference in the mean value for a vial in the spin echo reference and in a given  $T_2$  map

was tested using a paired t-test across all vials. A P value of <0.05 was considered to be significant.

#### In Vivo Imaging

This portion of the study was approved by the institutional review board and written informed consent was acquired prior to each examination. In a prospective study, eight healthy adult subjects (30.3  $\pm$  17.5 years, range: 22 - 73 years, 4 men) without contraindications to MRI were recruited. For each subject, localizer scouts were acquired to define the mid-ventricular short-axis slice. A two-dimensional spiral NAV echo was positioned on the right hemi-diaphragm, and was used for gating with a 5 mm gating window. A free-breathing single-shot ECG-triggered bSSFP sequence with the following parameters was used for the acquisition of the mid-ventricular short-axis slice: 2D singleslice, FOV =  $320 \times 320 \text{ mm}^2$ , in-plane resolution =  $2.5 \times 2.5 \text{ mm}^2$ , slice thickness = 8 mm, TR/TE = 2.7 ms/1.35 ms, flip angle =  $85^{\circ}$ , 10 linear ramp-up pulses, SENSE rate = 2, acquisition window = 181 ms, number of phase encoding lines = 67, linear k-space ordering. All acquisitions were performed with 27 images corresponding to different T<sub>2</sub>prep echo times, including  $TE_{T2P} = 0$  and  $TE_{T2P}$  ranging from 25 ms to 150 ms in steps of 5 ms. An additional SAT image was also acquired for the 3-parameter fit. T2 maps were also generated for the short acquisition configurations. The nominal scan time for these scans, acquiring all 27 T<sub>2</sub>prep echoes, was 3:10 minutes at 60 heart-beats per min, assuming 100% NAV gating efficiency.

 $T_2$  Map Analysis—The acquired images were registered retrospectively using an advanced non-rigid image registration algorithm (32) to compensate for residual in-slice motion. This algorithm simultaneously estimates a non-rigid motion field and intensity variations, and employs an additional regularization term to constrain the deformation field using automatic feature tracking. Voxel-wise curve-fitting was performed, subsequent to registration, to generate  $T_2$  maps for the 3-parameter and the 2-parameter models.  $T_2$  maps were generated for different subsets of images corresponding to different  $T_2$ prep echo times, as described for phantom imaging. Epi- and endocardial contours were drawn manually by an experienced blinded reader for each  $T_2$  map. The average  $T_2$  value and the standard deviation within the septum were recorded.

Finally, a segment-based analysis was performed for the proposed 3-parameter model with the SAT images. Variations in  $T_2$  and B/A across different segments were studied to see if the regional variations were due to tissue characteristics or due to sequence parameters, as described by Equation [6]. 6 segments were used in the mid-ventricular LV slice, in accordance with the AHA 16-segment model (33). Segment-based  $T_2$  and B/A values were recorded for each subject. These were then averaged over all subjects for each segment. The B/A value was also compared to the value predicted by Equation [6] for the given sequence parameters.

# Results

#### **Numerical Simulations**

Figure 2 shows the effect of  $B_0$  and  $B_1$  variations on  $T_2$  estimation. Figure 2(a) shows the normalized longitudinal magnetization measured directly after the  $T_2$ prep sequence. Figure 2(b-d) shows the errors in  $T_2$  estimation using 2-parameter fit, and 3-parameter fit, with and without the proposed compensation of  $90^\circ$ ,  $-90^\circ$  pulses for  $TE_{T2P} = 0$ . The green area in Figure 2(b) shows valid  $T_2$  estimations (within  $\pm 5$ ms) over a  $B_0$  range of  $\pm 200$  Hz and a  $B_1$  range of 20%. Using the 3-parameter fit in Figure 2(d) reduced the  $B_0$  range to around  $\pm 150$  Hz but increased the  $B_1$  range to nearly 30%. However, when the proposed  $90^\circ$ ,  $-90^\circ$  was used for  $TE_{T2P} = 0$ , the  $B_0$  range to increased to almost 250 Hz with the same  $B_1$  range (Figure 2(e)). This was not the case with the 2-parameter fit in Figure 2(c) where a bias of 10-30 ms was observed in the estimated  $T_2$  values for almost the whole range of  $B_0$ - $B_1$  variations.

# Phantom Imaging

**3-parameter vs. 2-parameter Fit**—Figure 3 shows the accuracy and precision of the three different fitting approaches (2-parameter, 3-parameter without SAT image and the proposed 3-parameter with SAT image) on various subsets of images corresponding to different T2prep echo times for a vial with a T2 value of 47 ms. The red, green, blue, purple and black points correspond to  $TE_{T2P} = 0$  and  $n TE_{T2P}$  values starting from 25 ms in steps of 5, 10, 15, 20 and 25 ms respectively, and the value of n is depicted on the horizontal axis. The  $T_2$  value estimated with the 2-parameter model increased with the number of  $T_2$  prep echoes. For example, a 2-parameter fit on 9 T<sub>2</sub>prep echoes resulted in an estimated T<sub>2</sub> value of 64 ms, as opposed to an estimate of 55 ms for 5  $T_2$ prep echoes, when a 10 ms  $TE_{T2P}$ spacing was used. The echo spacing also affected the estimated T<sub>2</sub> value for the 2-parameter model. For example, using 7  $T_2$  prep echo times, a 5 ms  $TE_{T2P}$  spacing led to a 55 ms  $T_2$ estimate, whereas a 25 ms TE<sub>T2P</sub> spacing resulted in the estimation of 63 ms as the T<sub>2</sub> value. These exemplify the mismatch between the acquisition and the 2-parameter model. The 3parameter fit without SAT image converged to the T<sub>2</sub> value after 7 T<sub>2</sub>prep echoes. However, if the number of T2prep echoes was not sufficient, it overestimated the T2 value, with a high level of noise as apparent in the precision measurements. The T<sub>2</sub> value estimated using the 3-parameter fit with the SAT image remained almost constant (variation: 2 ms) for different subsets of T<sub>2</sub>prep echo times. Figure 4 shows examples of the fit for the short acquisition and for 27 T<sub>2</sub>prep echoes, for the same vial, where the signal in the ROI is averaged prior to fitting. The overestimation of the T<sub>2</sub> value using 3 T<sub>2</sub>prep echoes and the 2-parameter fit were visualized in the under-estimation of the non-zero signal value corresponding to the long  $T_2$  prep echo time (" $T_2$  prep =  $\infty$ "). When using 27 echoes, the 3-parameter fit without SAT image matched the behavior of the proposed 3-parameter fit with SAT image, while the 2-parameter fit still overestimated the T2 values.

Figure 5 depicts the correlation of the different  $T_2$  curve fitting methods using the short acquisition or all 27  $T_2$ prep echoes, with respect to the spin echo sequence. The proposed 3-parameter fit with SAT image, using the short acquisition or all 27  $T_2$ prep echoes, produced  $T_2$  values that were not significantly different than the reference values generated using a

spin echo acquisition (P= 0.104 and 0.3, respectively). The 3-parameter fit without SAT image showed no significant differences for both the short acquisition and 27 T<sub>2</sub>prep echoes (P= 0.073 and 0.126 respectively). The conventional 2-parameter fit significantly overestimated the T<sub>2</sub> values for both 3 and 27 T<sub>2</sub>prep echoes (P= 0.013 and 0.005, respectively).

**Effect of the B**<sub>1</sub> **inhomogeneities**—The T<sub>2</sub> values using the proposed 3-parameter fit with SAT image were not significantly different than the spin echo values, as described above, when using the proposed RF compensation (P= 0.3). However, the difference was significant without the compensation (P< 0.001). The 2-parameter fit led to significant differences in T<sub>2</sub> values, both with and without the compensation (P= 0.005 and 0.010 respectively).

**Length of the Rest Cycles**—Figure 6 shows the effect of the length of rest cycles. The error in the estimated  $T_2$  was the highest for vials with long  $T_1$  values due to insufficient magnetization recovery. This error gradually decreased with increasing rest cycles. For the vials with  $T_1$  and  $T_2$  ranges near the myocardium and for rest cycles 4s, the error was within 2 ms and 1 ms when using the short acquisition and 27 samples, respectively.

#### In Vivo Imaging

The myocardial  $T_2$  mapping sequence was successfully completely in all subjects without complications. The average scan time to acquire all 27 echoes was  $3:30 \pm 0:10$  minutes (range: 3:17 to 3:47 minutes). The difference between the nominal scan time and the actual average scan time is due to the differences in breathing patterns and heart rates of the subjects. Figure 7 shows example  $T_2$  maps from a healthy subject, generated using the three different fitting approaches (2-parameter, 3-parameter without SAT image and the proposed 3-parameter with SAT image) with the short acquisition, as well as all 27  $T_2$ prep echoes. The myocardial  $T_2$  value for the 2-parameter fit increased when using 27  $T_2$ prep echoes instead of 3, which was consistent with phantom imaging. For the short acquisitions, the  $T_2$  map generated using the 3-parameter fit without SAT image visibly showed more signal inhomogeneity compared to that of the proposed 3-parameter fit with SAT. The quality of the  $T_2$  map for the 3-parameter fit without SAT image improved with 27  $T_2$ prep echoes. The proposed 3-parameter fit with SAT image led to similar quality myocardial  $T_2$  maps with 3 and 27 echoes.

Figure 8 shows the estimated  $T_2$  values (averaged over an ROI in the septum) from the same subject in Figure 7 using the three fitting methods (2-parameter, 3-parameter without SAT image and the proposed 3-parameter with SAT image) on various subsets of images corresponding to different  $T_2$ prep echo times. Similar to phantom imaging, the  $T_2$  value estimated with the 2-parameter fitting method increased with increasing number of  $T_2$ prep echo times. The  $T_2$  value estimated using the 3-parameter fit without SAT image showed a convergence trend with increased number of  $T_2$ prep echo times. The proposed 3-parameter fitting with SAT image yielded  $T_2$  values which are independent of number of  $T_2$ prep echoes. The standard deviation of  $T_2$  values in the ROI decreased with higher number of echoes for all fitting methods.

Table 1 summarizes the ventricular septum  $T_2$  values for all of the healthy adult subjects using the three fitting methods, and the short acquisition or 27  $T_2$ prep echoes. The maximum variation (among all subjects) of the myocardial  $T_2$  values between using 3 or 27  $T_2$ prep echoes, was 3.7 ms with the proposed 3-parameter fitting with SAT image. The range of increase in the  $T_2$  values, among all subjects, was 4.6 - 20.0 ms when the 2-parameter fit is used with 27  $T_2$ prep echoes instead of 3  $T_2$ prep echoes.  $T_2$  measurements could not be performed on two maps generated using the 3-parameter fitting without SAT image and the short acquisition due to the high levels of inhomogeneity in the myocardium. Furthermore, for the  $T_2$  maps from the short acquisitions where measurements could be performed, the precision of the 3-parameter fit with the SAT image was significantly better than that of the 3-parameter fit without the SAT image (8.5  $\pm$  2.1 ms vs. 15.5  $\pm$  5.1 ms, P= 0.009).

Table 2 depicts the results of the segment-based analysis for the proposed 3-parameter fit with 27 echoes. The range variation for the average  $T_2$  values across the six segments is 4.2 ms (between 52.6 and 56.8 ms), showing less than 10% variation. The range of variation for the B/A values is 0.01, with a mean value of 0.14 or 0.15 across all segments. The B/A value predicted by Equation [6] for these sequence parameters is 0.13 (with  $T_1$  = 1200 ms and  $T_2$  = 55 ms), which is consistent with the experimental findings.

### **Discussion**

In this study, we proposed a 3-parameter model for  $T_2$  relaxation to characterize  $T_2$ -prepared bSSFP acquisitions. For efficient estimation of these three parameters, we also proposed a novel sequence that incorporates saturation-prepared images in addition to  $T_2$ -prepared images, as well as an efficient navigator-gating scheme for free-breathing acquisitions. This new sequence and the 3-parameter model improve the accuracy of myocardial  $T_2$  mapping.

The 3-parameter model for curve-fitting was found to be independent of the choice of  $T_2$ prep echo times, whereas the estimated  $T_2$  values changed with  $T_2$ prep echo times using the 2-parameter model. Since the 2-parameter model does not take into account the disturbance in magnetization due to the startup and imaging pulses until the acquisition of central k-space, this leads to a model mismatch between the curve-fitting and the underlying acquisition, which makes the estimated  $T_2$  value a function of the  $T_2$ prep echo times. This model mismatch is resolved using the 3-parameter model, and the dependence of the estimated  $T_2$  value on where the  $T_2$  relaxation curve is sampled is eliminated.

Apart from its independence from the sequence parameters, the 3-parameter model with the SAT image is accurate with respect to the spin echo sequence, after the proposed modifications to account for RF pulse imperfection. The inaccuracy of T<sub>2</sub> mapping procedure with the 2-parameter curve-fitting with respect to the spin echo sequence, as well as its dependence on k-space profile ordering, has been noted previously (11). However, this discrepancy was not examined further in (11).

The reference T<sub>2</sub> maps with CPMG spin echo sequence were generated with a 2-parameter fit. The issue of magnetization disturbance due to imaging pulses in single shot sequences is

not present for this acquisition, thus a 2-parameter fit is appropriate. The 3-parameter fit for the spin echo acquisition (not shown) also yields the same values.

We chose to acquire 27 images with different  $T_2$ prep echo times in each scan for this study. This was done to study the effect of different choices of  $T_2$ prep times on the overall estimation procedure using the 3-parameter and 2-parameter models. This number of echoes is not required for attaining accuracy and precision for in-vivo imaging using the proposed 3-parameter curve fitting with the additional SAT image. Furthermore, the precision gain going from 3 echoes to 27 echoes is at most 4.3 ms for the myocardium in this technique.

In (28), it was concluded that the 3-parameter fit cannot be robustly used with 4 finite  $T_2$ prep echoes. However, our experience indicates that 3  $T_2$ prep echoes of 0, 25, 50 ms, and an additional SAT image are sufficient to provide accurate and precise  $T_2$  maps. Using 6 second rest cycles, this exam can be completed in 16 seconds at 60 bpm heart-rate, which is attainable with a breath-hold acquisition. The improvement in our sequence in terms of robustness with a small number of  $T_2$ prep echoes comes from the use of the SAT image instead of a large  $T_2$ prep echo time, which significantly improves the precision in-vivo. Compared to the sampling of a large  $T_2$ prep echo time, such as 90 ms, the SAT image (equivalently  $T_2$ prep echo time  $\infty$ ) enables direct estimation of the B parameter in Equation [2], and higher quality estimates of  $T_2$  values. Furthermore, in Appendix A, we analytically show that from an estimation theoretic perspective, sampling the SAT image is more beneficial in terms of precision of  $T_2$  maps in the presence of noise compared to sampling a large but finite  $T_2$ prep echo time. Another benefit of using the SAT image is that it can be acquired without any preceding rest periods, whereas a 6 second rest period would be necessary to acquire a large  $T_2$ prep echo time.

The segment-based analysis of the B/A parameter from the fitting procedure leads to values which are consistent with the theoretical predictions. The minor pixel-dependent differences may be due to the least squares fitting procedure, which approximates the Rician noise in the images as Gaussian noise with a non-zero mean (34), which would be reflected in the B parameter. Due to this good correspondence, between theory as predicted in Equation [6] and the experimental results, the utility of the B term is expected to extend to different phase encode schemes. Small regional variations of the  $T_2$  values were also observed.

For both the SAT image and for images acquired with large T2prep echo times, the underlying SNR may be too low to approximate the Rician noise as Gaussian noise, which is implicitly done in the least squares estimation process. This may cause a bias in the estimation procedure. However, this was not observed in our phantom experiments. Nonetheless, it might be beneficial to acquire multiple SAT images, since no rest cycles are required between them, and average them prior to fitting to further mitigate any bias.

Apart from the use of SAT images instead of large  $T_2$ prep echo times, optimal selection of  $T_2$ prep echo times to further improve robustness was not explored experimentally. In Appendix A, an estimation theoretic analysis to maximize the precision of the  $T_2$  maps shows that it would be beneficial to choose a tri-modal distribution of  $T_2$ prep echo times, with the points concentrating at 0 ms, at an echo time near the  $T_2$  value of interest and at  $\infty$ ,

with the multiplicity changing based on the total number of echoes. However, in our experiments, we used a more standard distribution of  $T_2$ prep echo times based on the existing literature. Further experiments are warranted to systematically optimize the  $T_2$ prep echo time distribution, but this is not the focus of the current work.

A new navigator-gating scheme was proposed to improve the efficiency for free-breathing acquisitions. In the conventional scheme proposed in (35), the T<sub>2</sub>prep follows the NAV signal, however it is performed regardless of the position of the NAV signal, necessitating additional rest periods if the NAV signal is outside the gating window. In our proposed approach, the T<sub>2</sub>prep is conditionally applied based on the position of the NAV signal. Thus, if the NAV signal is outside the gating window, no preparation or imaging pulses are applied, and the magnetization remains undisturbed. This also eliminates the necessity for rest periods if the NAV signal is outside the gating window. Thus, the overall efficiency of the acquisition is improved.

Since the NAV signal is placed before the  $T_2$  preparation, there is a longer separation between the image acquisition and the NAV signal. This may lead to residual motion in the images, necessitating image registration to mitigate residual motion artifacts. The efficacy of the particular image registration algorithm in  $T_2$  mapping was not systematically studied in this study, and is beyond the scope and focus of this work.

A 6 second rest period was used to allow for a full magnetization recovery between subsequent  $T_2$ prep modules. This choice was based on a  $5\times T_1$  approximation, using reported myocardial  $T_1$  values in the literature. While a 6 second rest period was used in this study to ensure sufficient recovery, phantom results indicated that 4 seconds may be sufficient, reducing the breath-hold duration for an acquisition with 3  $T_2$ prep echoes and a SAT image. Although shorter rest periods are desirable, phantom results showed arbitrary,  $T_1$ -dependent biases in the estimated  $T_2$  values when shorter durations were used.

This study has several limitations. Only a small number of healthy subjects were recruited. Further clinical evaluations on larger cohorts are warranted to quantify changes in  $T_2$  relaxation times in different populations. No validation of the  $T_2$  values has been performed in vivo, since a reference  $T_2$  time cannot be assessed in the myocardium in a reasonable scan time. The intra-patient reproducibility of the  $T_2$  values was also not studied. We have only considered single-shot sequences with linear ordering. The effect of including the third parameter on accuracy may be less for centric ordering or multi-shot sequences. Only a single mid-ventricular short-axis slice was imaged in this study. The low in-plane resolution used in this study may lead to partial imaging artifacts if more apical slices are acquired.

# Conclusion

We propose a 3-parameter model for  $T_2$  relaxation accurately models myocardial  $T_2$  mapping using  $T_2$ -prepared bSSFP acquisitions. This model exhibits no dependency on the choice of  $T_2$ prep echo times, whereas such dependence is observed if a conventional 2-parameter model is used for curve-fitting. The proposed sequence incorporates SAT images in addition to  $T_2$ -prepared images, and the improved navigator-gating technique augments

the efficiency of the myocardial  $T_2$  mapping acquisition, allowing for accurate and precise  $T_2$  maps.

# **Acknowledgments**

The project described was partially supported by NIH R01EB008743-01A2, NIH K99HL111410-01 and Samsung Electronics, Suwon, South Korea.

The authors thank Warren J. Manning for his editorial comments.

# Appendix A

We use the Cramér-Rao Bound (CRB) to provide a lower bound on the precision of an unbiased  $T_2$  estimator, and subsequently minimize this bound numerically to find the optimal selection of  $T_2$  prep echo times, similar to the approaches in (36,37). For the model in Equation [7] with least squares estimation of  $T_2$ , and for  $KT_2$  prep echo times,  $\{x_1, x_2, ..., x_k\}$ , the Fisher information matrix is given by

$$\mathbf{I} = \begin{bmatrix} \sum_{k=1}^{K} \left( e^{\frac{-x_k}{T_2}} \right)^2 & \sum_{k=1}^{K} e^{\frac{-x_k}{T_2}} & \sum_{k=1}^{K} A e^{\frac{-x_k}{T_2}} \frac{x_k}{T_2^2} \\ \sum_{k=1}^{K} e^{\frac{-x_k}{T_2}} & \sum_{k=1}^{K} (1)^2 & \sum_{k=1}^{K} A e^{\frac{-x_k}{T_2}} \frac{x_k}{T_2^2} \\ \sum_{k=1}^{K} A e^{\frac{-x_k}{T_2}} \frac{x_k}{T_2^2} \sum_{k=1}^{K} A e^{\frac{-x_k}{T_2}} \frac{x_k}{T_2^2} \sum_{k=1}^{K} \left( A e^{\frac{-x_k}{T_2}} \frac{x_k}{T_2^2} \right)^2 \end{bmatrix}. \quad [A1]$$

The CRB on the variance of the T<sub>2</sub> estimate is given by

$$\operatorname{var}(\widehat{T}_{2}) \ge J(A, T_{2}, \{x_{k}\}) = \begin{bmatrix} \mathbf{I}^{-1} \end{bmatrix}_{3,3}$$

$$= \frac{\mathbf{I}_{11}\mathbf{I}_{22} - \mathbf{I}_{12}^{2}}{\mathbf{I}_{11}(\mathbf{I}_{22}\mathbf{I}_{33} - \mathbf{I}_{23}^{2}) - \mathbf{I}_{12}(\mathbf{I}_{33}\mathbf{I}_{12} - \mathbf{I}_{23}\mathbf{I}_{13}) + \mathbf{I}_{13}(\mathbf{I}_{12}\mathbf{I}_{23} - \mathbf{I}_{22}\mathbf{I}_{13})},$$
[A2]

where  $I_{ij}$  denotes the  $(i,j)^{th}$  entry of **I**. To find the selection of  $T_2$  prep echo times that minimizes the variance of the error, we propose to solve

$$\left\{ x_k^{samp} \right\} = \arg \min_{\left\{ x_k \right\}} J(A, T_2, \left\{ x_k \right\}) \quad [A3]$$

for a given range of  $T_2$  values of interest. We also note that  $J(A, T_2, \{x_k\})$  scales with  $1/A^2$ , and thus  $J(A, T_2, \{x_k\}) = J(1, T_2, \{x_k\})/A^2$ , and hence the selection of  $T_2$  prep echo times does not depend on A or B, but only on the  $T_2$  values of interest.

 $J(1, T_2, \{x_k\})$  was numerically minimized for  $T_2$  values of interest from 45 ms to 60 ms, for K = 4 and K = 28. For K = 4, this yielded a tri-modal distribution with  $T_2$  prep echo times of 0, 49 ms (sampled twice) and  $\infty$ . For K = 28, the distribution of  $T_2$  prep echo times of 0 (sampled six times), 53 ms (sampled fourteen times) and  $\infty$  (sampled 8 times). This kind of tri-modal distribution is consistent with the bi-modal distribution in (36) for the 2-parameter  $T_2$  model, and the tri-modal one in (37) for the 3-parameter  $T_1$  model.

Furthermore, if instead of the  $\infty$  T<sub>2</sub>prep echo time, one could only sample a maximum finite value of 90 ms, the distributions changed to 0, 32 ms (sampled twice) and 90 ms for K=4; and 0 (sampled six times), 33 ms (sampled fourteen times) and 90 (sampled 8 times) for K=28. In this case, the variance of the T<sub>2</sub> estimate increased by 5.4-fold and 5.5-fold for K=4 and 28, respectively. A direct comparison for K=4 also showed that T<sub>2</sub>prep echo times {0, 25, 50, 90} had 5.6-fold higher variance compared to {0, 25, 50,  $\infty$ }. These results indicate that sampling the  $\infty$  T<sub>2</sub>prep echo time improves the precision of the fit compared to sampling a large but finite T<sub>2</sub>prep echo time.

We note that this derivation is based on the least squares estimation, which has a one-to-one correspondence with a Gaussian noise model in the images. However, the noise in the magnitude images is Rician, which can be well-approximated by Gaussian noise for images with sufficient SNR (34), and assumption that may not hold for  $I_{SAT}$  images. This may lead to a model mismatch and an apparent bias in  $T_2$  estimates, although this was not observed in our study.

#### References

- Abdel-Aty H, Zagrosek A, Schulz-Menger J, Taylor AJ, Messroghli D, Kumar A, Gross M, Dietz R, Friedrich MG. Delayed enhancement and T2-weighted cardiovascular magnetic resonance imaging differentiate acute from chronic myocardial infarction. Circulation. 2004; 109(20):2411–2416.
   [PubMed: 15123531]
- Cury RC, Shash K, Nagurney JT, Rosito G, Shapiro MD, Nomura CH, Abbara S, Bamberg F, Ferencik M, Schmidt EJ, Brown DF, Hoffmann U, Brady TJ. Cardiac magnetic resonance with T2weighted imaging improves detection of patients with acute coronary syndrome in the emergency department. Circulation. 2008; 118(8):837–844. [PubMed: 18678772]
- Raman SV, Simonetti OP, Winner MW 3rd, Dickerson JA, He X, Mazzaferri EL Jr, Ambrosio G. Cardiac magnetic resonance with edema imaging identifies myocardium at risk and predicts worse outcome in patients with non-ST-segment elevation acute coronary syndrome. J Am Coll Cardiol. 2010; 55(22):2480–2488. [PubMed: 20510215]
- 4. Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, White JA, Abdel-Aty H, Gutberlet M, Prasad S, Aletras A, Laissy JP, Paterson I, Filipchuk NG, Kumar A,

- Pauschinger M, Liu P. Cardiovascular magnetic resonance in myocarditis: A JACC White Paper. J Am Coll Cardiol. 2009; 53(17):1475–1487. [PubMed: 19389557]
- Abdel-Aty H, Boye P, Zagrosek A, Wassmuth R, Kumar A, Messroghli D, Bock P, Dietz R, Friedrich MG, Schulz-Menger J. Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J Am Coll Cardiol. 2005; 45(11):1815–1822. [PubMed: 15936612]
- Butler CR, Thompson R, Haykowsky M, Toma M, Paterson I. Cardiovascular magnetic resonance in the diagnosis of acute heart transplant rejection: a review. J Cardiovasc Magn Reson. 2009; 11:7.
   [PubMed: 19284612]
- Abdel-Aty H, Cocker M, Friedrich MG. Myocardial edema is a feature of Tako-Tsubo cardiomyopathy and is related to the severity of systolic dysfunction: insights from T2-weighted cardiovascular magnetic resonance. Int J Cardiol. 2009; 132(2):291–293. [PubMed: 18086501]
- 8. Simonetti OP, Finn JP, White RD, Laub G, Henry DA. "Black blood" T2-weighted inversion-recovery MR imaging of the heart. Radiology. 1996; 199(1):49–57. [PubMed: 8633172]
- Abdel-Aty H, Simonetti O, Friedrich MG. T2-weighted cardiovascular magnetic resonance imaging. J Magn Reson Imaging. 2007; 26(3):452–459. [PubMed: 17729358]
- Arai AE. Using magnetic resonance imaging to characterize recent myocardial injury: utility in acute coronary syndrome and other clinical scenarios. Circulation. 2008; 118(8):795–796.
   [PubMed: 18711021]
- Giri S, Chung YC, Merchant A, Mihai G, Rajagopalan S, Raman SV, Simonetti OP. T2 quantification for improved detection of myocardial edema. J Cardiovasc Magn Reson. 2009; 11:56. [PubMed: 20042111]
- 12. McNamara MT, Higgins CB, Schechtmann N, Botvinick E, Lipton MJ, Chatterjee K, Amparo EG. Detection and characterization of acute myocardial infarction in man with use of gated magnetic resonance. Circulation. 1985; 71(4):717–724. [PubMed: 3971541]
- 13. Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM. A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys. 1984; 11(4):425–448. [PubMed: 6482839]
- He T, Gatehouse PD, Anderson LJ, Tanner M, Keegan J, Pennell DJ, Firmin DN. Development of a novel optimized breathhold technique for myocardial T2 measurement in thalassemia. J Magn Reson Imaging. 2006; 24(3):580–585. [PubMed: 16892203]
- 15. Foltz WD, Stainsby JA, Wright GA. T2 accuracy on a whole-body imager. Magn Reson Med. 1997; 38(5):759–768. [PubMed: 9358450]
- Blume U, Lockie T, Stehning C, Sinclair S, Uribe S, Razavi R, Schaeffter T. Interleaved T(1) and T(2) relaxation time mapping for cardiac applications. J Magn Reson Imaging. 2009; 29(2):480–487. [PubMed: 19161206]
- 17. van Heeswijk RB, Feliciano H, Bongard C, Bonanno G, Coppo S, Lauriers N, Locca D, Schwitter J, Stuber M. Free-breathing 3 T magnetic resonance T2-mapping of the heart. JACC Cardiovasc Imaging. 2012; 5(12):1231–1239. [PubMed: 23236973]
- 18. Verhaert D, Thavendiranathan P, Giri S, Mihai G, Rajagopalan S, Simonetti OP, Raman SV. Direct T2 quantification of myocardial edema in acute ischemic injury. JACC Cardiovasc Imaging. 2011; 4(3):269–278. [PubMed: 21414575]
- Zia MI, Ghugre NR, Connelly KA, Strauss BH, Sparkes JD, Dick AJ, Wright GA. Characterizing myocardial edema and hemorrhage using quantitative T2 and T2\* mapping at multiple time intervals post ST-segment elevation myocardial infarction. Circ Cardiovasc Imaging. 2012; 5(5): 566–572. [PubMed: 22744938]
- Foltz WD, Al-Kwifi O, Sussman MS, Stainsby JA, Wright GA. Optimized spiral imaging for measurement of myocardial T2 relaxation. Magn Reson Med. 2003; 49(6):1089–1097. [PubMed: 12768587]
- 21. Brittain JH, Hu BS, Wright GA, Meyer CH, Macovski A, Nishimura DG. Coronary angiography with magnetization-prepared T2 contrast. Magn Reson Med. 1995; 33(5):689–696. [PubMed: 7596274]

 Huang TY, Liu YJ, Stemmer A, Poncelet BP. T2 measurement of the human myocardium using a T2-prepared transient-state TrueFISP sequence. Magn Reson Med. 2007; 57(5):960–966.
 [PubMed: 17457877]

- 23. Foltz WD, Yang Y, Graham JJ, Detsky JS, Dick AJ, Wright GA. T2 fluctuations in ischemic and post-ischemic viable porcine myocardium in vivo. J Cardiovasc Magn Reson. 2006; 8(3):469–474. [PubMed: 16755833]
- 24. Park CH, Choi EY, Kwon HM, Hong BK, Lee BK, Yoon YW, Min PK, Greiser A, Paek MY, Yu W, Sung YM, Hwang SH, Hong YJ, Kim TH. Quantitative T2 mapping for detecting myocardial edema after reperfusion of myocardial infarction: validation and comparison with T2-weighted images. Int J Cardiovasc Imaging. 2013; 29(Suppl 1):65–72. [PubMed: 23765068]
- 25. Usman AA, Taimen K, Wasielewski M, McDonald J, Shah S, Giri S, Cotts W, McGee E, Gordon R, Collins JD, Markl M, Carr JC. Cardiac magnetic resonance T2 mapping in the monitoring and follow-up of acute cardiac transplant rejection: a pilot study. Circ Cardiovasc Imaging. 2012; 5(6): 782–790. [PubMed: 23071145]
- 26. Wassmuth R, Prothmann M, Utz W, Dieringer M, von Knobelsdorff-Brenkenhoff F, Greiser A, Schulz-Menger J. Variability and homogeneity of cardiovascular magnetic resonance myocardial T2-mapping in volunteers compared to patients with edema. J Cardiovasc Magn Reson. 2013; 15:27. [PubMed: 23537111]
- 27. Walker PM, Marie PY, Mezeray C, Bessieres M, Escanye JM, Karcher G, Danchin N, Mattei S, Villemot JP, Bertrand A. Synchronized inversion recovery-spin echo sequences for precise in vivo T1 measurement of human myocardium: a pilot study on 22 healthy subjects. Magn Reson Med. 1993; 29(5):637–641. [PubMed: 8389415]
- Giri, S., Chung, Y., Shah, S., Xue, H., Guehring, J., Zuehlsdorff, S., Simonetti, OP. T2 mapping using T2prepared-SSFP: optimizing echo time, flip angle and parameter fitting. 2010 May; Stockholm. Proceedings of the 18th Scientific Meeting of ISMRM; p. 2960
- 29. Levitt M, Freeman R, Frenkiel T. Broadband heteronuclear decoupling. J Magn Reson. 1982; 47:328–330.
- 30. Scheffler K. On the transient phase of balanced SSFP sequences. Magn Reson Med. 2003; 49(4): 781–783. [PubMed: 12652552]
- 31. Chow K, Flewitt JA, Green JD, Pagano JJ, Friedrich MG, Thompson RB. Saturation recovery single-shot acquisition (SASHA) for myocardial T1 mapping. Magn Reson Med. 2013; Epub ahead of print. doi: 10.1002/mrm.24878
- 32. Roujol S, Foppa M, Weingartner S, Manning WJ, Nezafat R. Adaptive registration of varying contrast-weighted images for improved tissue characterization (ARCTIC): Application to T1 mapping. Magn Reson Med. 2014; Epub ahead of print. doi: 10.1002/mrm.25270
- 33. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002; 105(4):539–542. [PubMed: 11815441]
- 34. Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magn Reson Med. 1995; 34(6): 910–914. [PubMed: 8598820]
- 35. Giri S, Shah S, Xue H, Chung YC, Pennell ML, Guehring J, Zuehlsdorff S, Raman SV, Simonetti OP. Myocardial T(2) mapping with respiratory navigator and automatic nonrigid motion correction. Magn Reson Med. 2012; 68(5):1570–1578. [PubMed: 22851292]
- 36. Jones JA, Hodgkinson P, Barker AL, Hore PJ. Optimal sampling strategies for the measurement of spin–spin relaxation times. J Magn Res Series B. 1996; 113:25–34.
- 37. Akcakaya M, Weingartner S, Roujol S, Nezafat R. On the selection of sampling points for myocardial T1 mapping. Magn Reson Med. 2014; Epub ahead of print. doi: 10.1002/mrm.25285

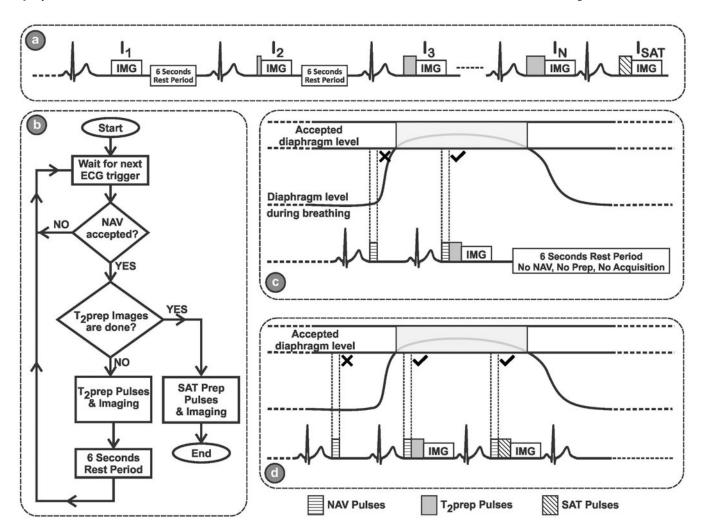



Figure 1.

(a) The schematic of the proposed sequence. Multiple single-shot images of the heart are acquired using ECG-triggering, following  $T_2$ prep of different echo lengths,  $TE_{T2P}$ . Between each image, a 6 second rest period (with no RF pulses) is applied to allow for full re-growth of the myocardium signal. An image,  $I_{SAT}$ , is acquired directly after a saturation pulse to simulate the effect of a very long  $T_2$ prep echo time (i.e.  $T_2$ prep =  $\infty$ ) for improved estimation of the third parameter in the 3-parameter fit. (b) Flowchart for the proposed navigator (NAV)-gated acquisition scheme, The NAV is placed before the  $T_2$ prep. If the NAV signal preceding the acquisition of the  $k^{th}$  image is outside the gating window, no  $T_2$ prep or imaging pulses are applied, leaving the magnetization undisturbed, and the acquisition of this image is repeated in the next R-R interval. If the NAV signal is within the gating window, the image with the desired  $T_2$ prep time is acquired, followed by a 6 second rest period for magnetization recovery. (c) An example of the rejection-reacquisition scheme for a  $T_2$ -prepared image. (d) An example of the acquisition of a saturation-prepared image, which immediately follows the  $T_2$ -prepared image without any rest periods, and where the NAV is placed before the saturation pulse.

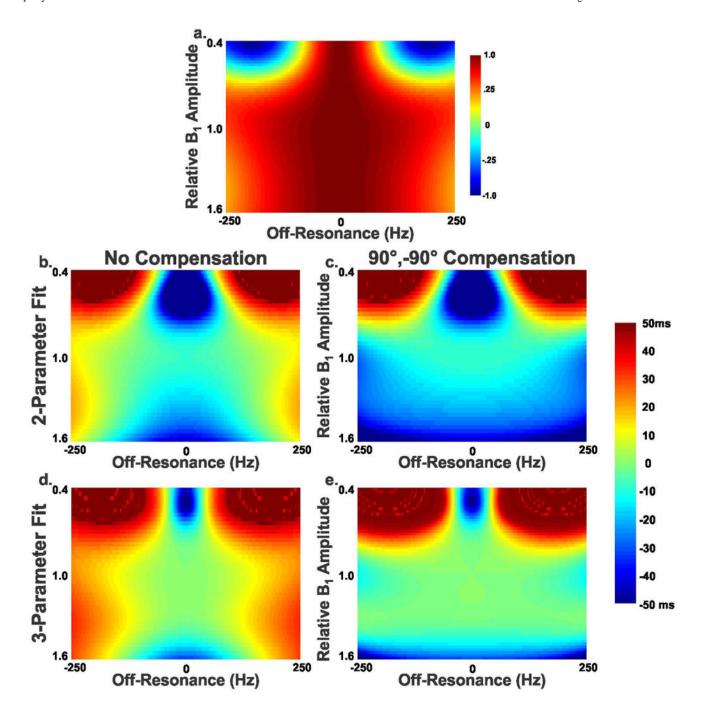



Figure 2. Effect of  $B_0$  and  $B_1$  variations on  $T_2$  estimation using simulation of Bloch equation. Nominal myocardium  $T_1$  and  $T_2$  values (1200 ms and 50 ms respectively) were used during simulation. The error is reported as the difference between the estimated  $T_2$  value and the true  $T_2$  value (50 ms). (a) Normalized longitudinal magnetization directly after applying the  $T_2$ prep pulse, (b) Error in  $T_2$  estimation, relative to the used reference  $T_2$  value using 2-parameter fit, (c) using 2-parameter fit and the proposed compensation of  $90^{\circ}$ ,  $90^{\circ}$  pulses for

 $TE_{T2P}=0$ , (d) using 3-parameter fit, and (e) using 3-parameter fit and the proposed compensation of  $90^{\circ}$ ,- $90^{\circ}$  pulses for  $TE_{T2P}=0$ .

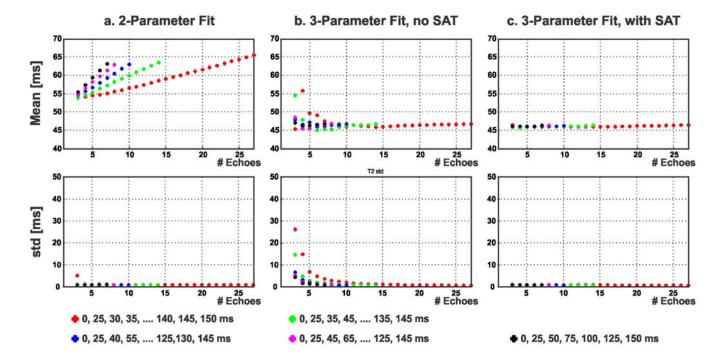
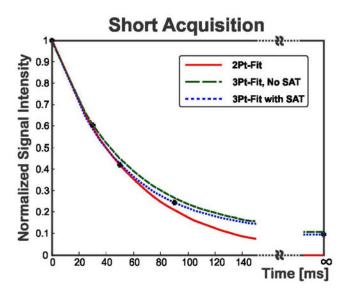




Figure 3. Accuracy and precision of the three different fitting approaches (2-parameter, 3-parameter without saturation-prepared (SAT) image and the proposed 3-parameter with SAT image) on various subsets of images corresponding to different  $T_2$ prep echo times for a vial with a  $T_2$  value of 47 ms. The  $T_2$  value estimated with the 2-parameter model (a) shows dependence on the choice and number of  $T_2$ prep echo times. The 3-parameter fit without SAT image (b) showed large deviations in accuracy and precision for a small number of  $T_2$ prep echoes, but converged to the  $T_2$  value with a large number of  $T_2$ prep echoes. The  $T_2$  value estimated using the proposed 3-parameter fit with the SAT image (c) remained almost constant (variation: 2 ms) for different subsets of  $T_2$ prep echo times.



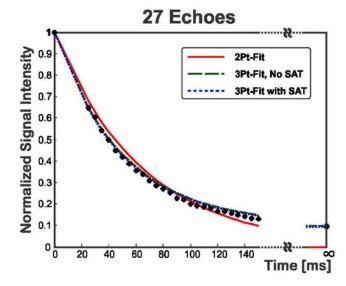



Figure 4. Example of the fit for the short acquisition and using 27  $T_2$ prep echoes, for the same vial in Figure 3, where the signal in the region of interest (ROI) is averaged prior to fitting. With the short acquisition, the 2-parameter overestimates the  $T_2$  value, as apparent in the underestimation of the non-zero signal for " $T_2$ prep =  $\infty$ ." The proposed 3-parameter fit with SAT image fits this signal value well for both 3 and 27  $T_2$ prep echoes. With 27 echoes, the 3-parameter fit without SAT image matches the behavior of the proposed 3-parameter fit with SAT image, while the 2-parameter fit still overestimates the  $T_2$  values.

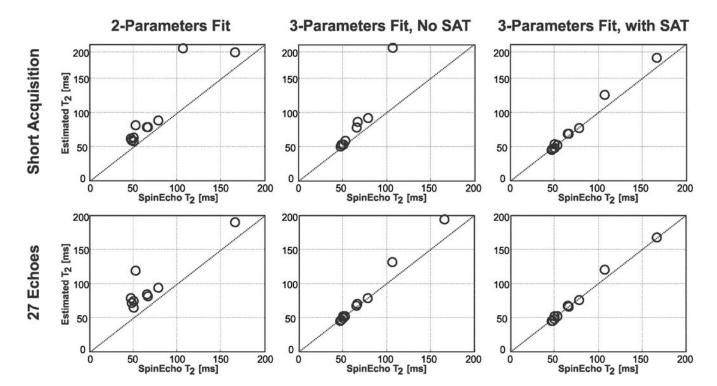



Figure 5.

 $T_2$  values from different  $T_2$  curve fitting methods versus the reference  $T_2$  values generated from the spin echo sequence for all vials of the phantom, as well as the identity line. In the upper row,  $T_2$  values are estimated using short acquisitions (i.e. 3 (0, 25, 50 ms) samples for the 2-parameter fit, 4 samples (0, 25, 50, 90 ms) for the 3-parameter fit without SAT, and 4 samples (0, 25, 50,  $\infty$  ms) for the 3-parameter fit with SAT. In the lower row,  $T_2$  values are estimated using long acquisitions (i.e. all 27  $T_2$ prep echoes). The conventional 2-parameter fit significantly overestimates the  $T_2$  values for both 3 and 27  $T_2$ prep echoes (P= 0.013 and 0.005 respectively). The 3-parameter fit without SAT image results in no significant difference for either the short acquisition echoes (P= 0.073) or with 27  $T_2$ prep echoes (P= 0.126). The proposed 3-parameter fit with SAT image, using 3 or 27  $T_2$ prep echoes, produces  $T_2$  values that are not significantly different than the reference values (P= 0.104 and 0.3 respectively).

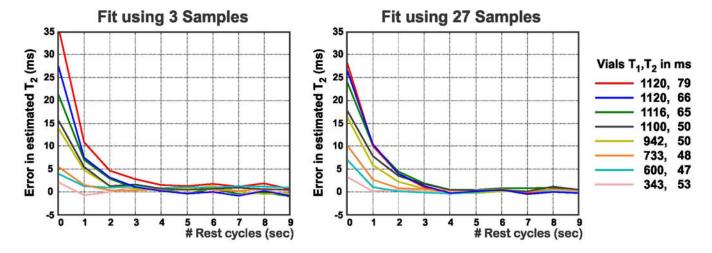



Figure 6. Rest cycles effect on the estimated  $T_2$  values. ROIs are placed in vials with different  $T_1$  and  $T_2$  values. The error is within 2 ms for both acquisitions when using rest cycles of length 4 s.

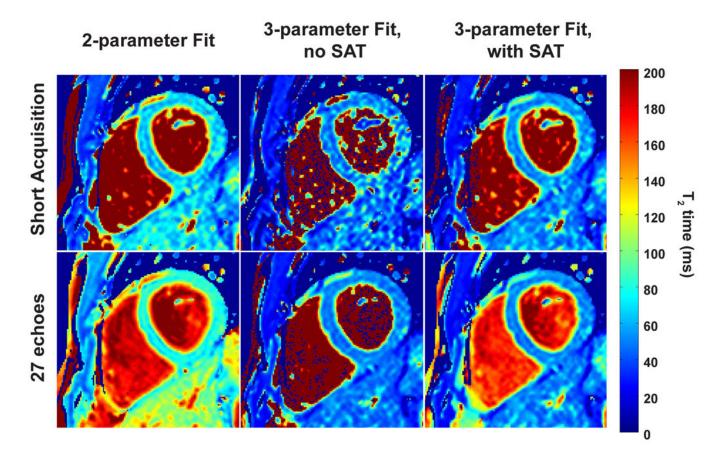



Figure 7. Example  $T_2$  maps from a healthy adult subject (No. 3), generated using 2-parameter fitting (left column), 3-parameter fitting without SAT image (middle column) and the proposed 3-parameter with SAT image (right column) with the short acquisition and using all 27 (top and bottom row respectively)  $T_2$ prep echoes. The myocardial  $T_2$  value increases when going from 3 to 27 echoes using the 2-parameter fit. For the short acquisition, the  $T_2$  map generated using the 3-parameter fit without SAT image has 1.8-fold more variation in the septum compared to that generated using the proposed 3-parameter fit with SAT image. When using all 27  $T_2$ prep echoes, the 3-parameter fits with and without SAT image leads to similar quality in the myocardium.

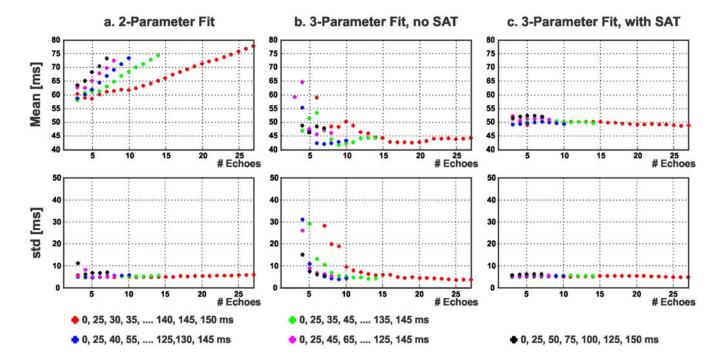



Figure 8. Myocardial  $T_2$  values from the same subject in Figure 7 (averaged over an ROI in the septum) using 2-parameter fit, 3-parameter fit without SAT image and the proposed 3-parameter fit with SAT image, on various subsets of image corresponding to different  $T_2$  prepecho times. The 2-parameter model (a) shows dependence on the choice and number of  $T_2$  prepecho times. The 3-parameter fit without SAT image (b) converges to the  $T_2$  value with a large number of  $T_2$  prepechoes, but shows deviations otherwise. The proposed 3-parameter fit with the SAT image (c) results in  $T_2$  values that are almost constant (variation: 3.6 ms) over different subsets of  $T_2$  prepecho times.

# Table 1

acquisition and 27 T<sub>2</sub>prep echoes. The short acquisition consists of T<sub>2</sub>prep echoes (0 25, 50 ms) for the 2-parameter fit; (0, 25, 50, 90 ms) 3-parameter fit Quantitative myocardial T<sub>2</sub> values in the ventricular septum using 2-parameter fitting, 3-parameter fitting with and without SAT image for the short without SAT image; and (0 25, 50,  $\infty$  ms) for the 3-parameter fit with SAT image.

|         | 2-parameter Fit | neter Fit       | 3-parameter Fit, no SAT | Fit, no SAT    | 3-parameter Fit, with SAT | Fit, with SAT  |
|---------|-----------------|-----------------|-------------------------|----------------|---------------------------|----------------|
| Subject | Short Acq (ms)  | 27-echoes (ms)  | Short Acq (ms)          | 27-echoes (ms) | Short Acq (ms)            | 27-echoes (ms) |
| 1       | $68.2 \pm 8.0$  | $88.2 \pm 10.3$ | $56.2 \pm 12.0$         | $49.1 \pm 4.3$ | $54.5 \pm 7.0$            | $52.4 \pm 6.1$ |
| 2       | $78.4 \pm 14.3$ | 87.3 ± 8.4      | N/A                     | $61.7 \pm 8.7$ | $62.9 \pm 11.5$           | $61.1 \pm 7.2$ |
| 3       | $63.3 \pm 11.3$ | $77.5 \pm 6.1$  | $50.3 \pm 8.8$          | $46.9 \pm 4.0$ | $51.7 \pm 5.0$            | $49.0 \pm 4.3$ |
| 4       | $56.3 \pm 10.5$ | 74.3 ± 15.8     | $36.6 \pm 13.0$         | $44.0 \pm 7.9$ | $46.5 \pm 10.7$           | $46.3 \pm 9.9$ |
| 5       | $71.0 \pm 9.4$  | $75.6 \pm 8.4$  | $75.9 \pm 22.4$         | $5.8 \pm 8.8$  | $58.3 \pm 9.0$            | $56.2 \pm 7.5$ |
| 9       | $71.0 \pm 14.2$ | $79.4 \pm 9.7$  | N/A                     | $54.2 \pm 7.7$ | $57.7 \pm 11.3$           | $54.0\pm7.1$   |
| 7       | $67.7 \pm 11.0$ | $75.4 \pm 14.1$ | $68.3 \pm 19.5$         | $57.1 \pm 9.0$ | $56.8 \pm 10.1$           | $56.2 \pm 9.9$ |
| 8       | $62.4 \pm 10.6$ | $73.5 \pm 12.2$ | $55.0 \pm 17.1$         | $48.0 \pm 5.7$ | $51.7 \pm 9.4$            | $7.7 \pm 2.94$ |
| average | 67.3            | 78.9            | 57.1                    | 52.5           | 55.0                      | 53.1           |

Table 2

mid-ventricular myocardial segments is 4.2 ms. The range of variation for the B/A parameter is 0.01. The value predicted for B/A by Equation [6] for the Segment-based analysis for the proposed 3-parameter fit with 27 echoes. The results show that the range of variation for average T<sub>2</sub> values across the six given sequence parameters is 0.13 (subj = subject, seg = segment).

|          |            |            | $T_2$ (    | T <sub>2</sub> (ms) |                |                |                 |                 | B/A             | Α               |                 |                 |
|----------|------------|------------|------------|---------------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Subj\Seg | 1          | 7          | 3          | 4                   | 3              | 9              | 1               | 7               | ε               | 4               | 5               | 9               |
| 1        | 70         | <i>L</i> 9 | 09         | 99                  | 51             | 22             | 0.13            | 0.18            | 0.20            | 0.19            | 0.21            | 0.18            |
| 2        | 09         | 99         | 58         | 09                  | 25             | 95             | 0.17            | 0.16            | 0.18            | 0.17            | 0.17            | 0.17            |
| 3        | 53         | 53         | 49         | 51                  | 52             | 52             | 0.17            | 0.16            | 0.15            | 0.14            | 0.16            | 0.16            |
| 4        | 43         | 39         | 43         | 47                  | 46             | 41             | 0.18            | 0.20            | 0.18            | 0.14            | 0.13            | 0.14            |
| 5        | 59         | 58         | 59         | 65                  | 53             | 99             | 60.0            | 0.10            | 0.13            | 0.12            | 0.12            | 0.13            |
| 9        | 53         | 56         | 55         | 53                  | 52             | 90             | 0.16            | 0.13            | 0.13            | 0.15            | 0.15            | 0.15            |
| 7        | 58         | 53         | 54         | 65                  | 25             | 19             | 0.12            | 0.10            | 0.12            | 0.12            | 0.12            | 0.14            |
| 8        | 58         | 53         | 54         | 59                  | 25             | 61             | 0.12            | 0.10            | 0.12            | 0.12            | 0.12            | 0.14            |
| average  | 56.8 ± 7.6 | 54.3 ± 7.6 | 53.8 ± 5.6 | 55.5 ± 4.7          | $52.6 \pm 3.2$ | $54.2 \pm 6.7$ | $0.14 \pm 0.03$ | $0.14 \pm 0.04$ | $0.15 \pm 0.03$ | $0.14 \pm 0.03$ | $0.15 \pm 0.03$ | $0.15 \pm 0.02$ |