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Soft sets have been regarded as a useful mathematical tool to deal with uncertainty. In recent years, many scholars have shown
an intense interest in soft sets and extended standard soft sets to intuitionistic fuzzy soft sets, interval-valued fuzzy soft sets, and
generalized fuzzy soft sets. In this paper, hesitant fuzzy soft sets are defined by combining fuzzy soft sets with hesitant fuzzy sets. And
some operations on hesitant fuzzy soft sets based on Archimedean t-norm and Archimedean t-conorm are defined. Besides, four
aggregation operations, such as the HFSWA, HFSWG, GHFSWA, and GHFSWG operators, are given. Based on these operators,
a multicriteria group decision making approach with hesitant fuzzy soft sets is also proposed. To demonstrate its accuracy and
applicability, this approach is finally employed to calculate a numerical example.

1. Introduction

Since the fuzzy set (FS) was proposed by Zadeh in 1965 [1], it
has been widely studied, developed, and successfully applied
in various fields, such as multicriteria decision making
(MCDM) [2, 3], fuzzy logic and approximate reasoning [4],
and pattern recognition [5]. In real MCDM cases, due to
the fuzziness and uncertainty of decision making problems,
the criteria’s weights and evaluation values of alternatives can
be inaccurate, uncertain, or incomplete. For the problems
like those, FSs, especially fuzzy numbers, can provide good
solutions. However, in FSs the membership degree of the
element is represented by a single value between zero and
one, and a major drawback of FSs is that single values cannot
convey information precisely.

In practice, the information regarding alternatives, when
referring to a fuzzy concept, may be incomplete; that is, the
sum of the membership and nonmembership degree of an
element in the universe can be less than one. The FS fails
when it comes to managing the insufficient understanding
ofmembership degrees.Thus, Atanassov’s intuitionistic fuzzy
sets (IFSs), interval-valued intuitionistic fuzzy sets (IVIFSs),

and trapezoidal or triangular intuitionistic fuzzy sets, as the
extensions of Zadeh’s FSs, were introduced [6–11]. IFSs and
IVIFSs have been widely applied in solvingMCDMproblems
[10, 12–14].

However, in some cases, the membership degree of an
element is neither a single value nor an interval, but a set of
possible values. To manage such situations where decision-
makers are hesitant in expressing their preferences over
alternatives, hesitant fuzzy sets (HFSs), another extension
of traditional FSs, provide a useful reference. HFSs are first
introduced by Torra [15, 16] and permit the membership
degree of an element to be a set of several possible values
between 0 and 1. HFSs are tremendously useful in handling
the situations where people have hesitancy in providing their
preferences over objects in a decision making process. The
aggregation operators of HFSs were studied and applied
to MCDM problems in [17–20]. Besides, Wang et al. [21]
provided an outranking approach with HFSs to solveMCDM
problems. Yu et al. [22] and Chen et al. [23] discussed the
correlation coefficients of HFSs and their applications to
clustering analysis. Xu and Xia [24, 25] discussed the distance
and correlation measures for HFSs.
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However, in somepractical cases, FSs and their extensions
failed to model uncertain data being of various types because
of their inadequacy as a parameterization tool. To overcome
this difficulty, Molodtsov [26] proposed soft sets (SSs), which
were considered as a useful mathematical tool for dealing
with uncertainties which is free from the difficulties affecting
the exiting methods. After that, many scholars have shown
an intense interest in this. Maji et al. [27] gave a theoretical
study of SSs. They [28] also described the application of SSs
in a decision making problem. In addition, the operations
of SSs were extended in [29–31]. Min [32] proposed the
similarity measures between SSs. Aktaş and Çağman [33]
gave a definition of soft groups and discussed the basic
properties. Acar et al. [34] introduced soft rings. Gong et al.
[35] proposed bijective SSs and the corresponding operations.
Furthermore, the relations and functions of SSs were studied
by Babitha and Sunil [36]. Ali et al. studied the algebraic
structures of SSs [37] and also discussed the idea of reduction
of parameters in case of SSs [38]. Çağman and Enginoğlu [39]
defined the products of SSs and uni-int decision function and
then constructed a uni-int decision making method. Feng et
al. [40] improved Çağman and Enginoğlu’s uni-int decision
making method based on choice value being in the form of
SSs.

But situations in real world may be complex because of
the fuzzy nature of parameters. To deal with such situation,
Maji et al. [41] extended classical SSs to fuzzy soft sets
(FSSs). Borah et al. [42] discussed some operations of FSSs.
Guan et al. [43] gave a new order relation of FSSs and Feng
et al. [44] studied the decomposition of FSSs with finite
value spaces. Similar to FS theory, several new extensional
concepts based on FSSs are given. For example,Maji et al. [45]
introduced intuitionistic fuzzy soft sets (IFSSs) by integrating
SSs with IFSs. To overcome the difficulties of representation
of parameter’s vagueness, Xu et al. [46] introduced vague soft
set (VSSs) and Zhou and Li [47] defined generalized vague
soft sets (GVSSs). By combining IVFSs and SSs, Yang et al.
[48] proposed interval-valued fuzzy soft sets (IVFSSs). Ma
et al. [49] analyzed the parameter reduction of IVFSSs and
Jiang et al. [50] studied the entropy of IFSSs and IVFSSs. In
addition, Majumdar and Samanta [51] defined generalized
fuzzy soft sets (GFSSs). Moreover, FSSs have been also
successfully applied in MCDM problems in recent years. Roy
andMaji [52] gave an approach to decisionmaking problems.
By means of level soft sets, Feng et al. [53] presented an
adjustable approach to FSSs based decision making. Kong
et al. [54] presented a decision making algorithm of FSSs
based on grey theory. Mitra Basu et al. [55] proposed a
balanced solution of FSSs in medical science. Xiao et al. [56]
integrated the fuzzy cognitive map and FSSs for solving the
supplier selection problem. In [57, 58], the approaches to
MCDM based on IFSSs are given. Jiang et al. [59] presented
an adjustable approach to IFSSs-based decision making by
using level soft sets of IFSSs. To deal with the problems of
subjective evaluation and uncertain knowledge, Xiao et al.
[60] proposed an evaluation method based on GFSSs and
its application in medical diagnosis problem. They also [61]
extended classical SSs to trapezoidal fuzzy soft sets (TFSSs)
and applied them to MCDM problems. Zhang et al. [62]

applied generalized TFSSs to medical diagnosis. Zhang [63]
presented a rough set approach to IFSSs-based decision
making.

IFSSs [45], VSSs [46], IVFSSs [48], and GFSSs [51] are
all proposed to deal with uncertainties by taking advantages
of SSs. In those extensions of SSs, the value of membership
is either a single value or an interval. But in fact, the
membership degree may be a set of possible values in a SS,
so the purpose of this paper is to deal with this situation
by combining HFSs with FSSs. To do this, a new kind of
SSs, hesitant fuzzy soft sets (HFSSs), can be defined. HFSSs
can represent various different preferences from different
decision-makers and avoid overlooking any subjective inten-
tions of decision-makers. Babitha and John [64] introduced
HFSSs and analyzed some basis operations. However, the
MCDMmethod proposed by Babitha and John [64] was not
persuadable. In fact, HFSSs are more suitable for multiple
criteria group decision making (MCGDM) problems. In this
paper, a further study of HFSSs and their application in
MCGDM problems are given.

The rest of this paper is organized as follows. In Section 2,
some basic concepts of t-norm, t-conorm, SSs, FSSs, and
HFSs are briefly reviewed. In Section 3, the concept of
HFSSs and the corresponding operations are introduced. In
Section 4, some aggregation operators of HFSSs are given.
Based on hesitant fuzzy soft numbers (HFSNs), a MCGDM
approach is proposed in Section 5. An illustrative example
is given in Section 6 and the conclusions are provided in
Section 7.

2. Preliminaries

In this section, some basic concepts of t-norm, t-conorm, SSs,
FSSs, and HFSs are reviewed.

2.1. T-Norm and T-Conorm

Definition 1 (see [65, 66]). A function 𝑇 : [0, 1] × [0, 1] →

[0, 1] is called a t-norm if the following conditions are true:

(1) for all 𝑥 ∈ [0, 1], 𝑇(1, 𝑥) = 𝑥;
(2) for all 𝑥, 𝑦 ∈ [0, 1], 𝑇(𝑥, 𝑦) = 𝑇(𝑦, 𝑥);
(3) for all 𝑥, 𝑦, 𝑧 ∈ [0, 1], 𝑇(𝑥, 𝑇(𝑦, 𝑧)) = 𝑇(𝑇(𝑥, 𝑦), 𝑧);
(4) if 𝑥 ≤ 𝑥

󸀠, 𝑦 ≤ 𝑦
󸀠, then 𝑇(𝑥, 𝑦) = 𝑇(𝑥

󸀠
, 𝑦
󸀠
).

Definition 2 (see [65, 66]). A function 𝑆 : [0, 1] × [0, 1] →

[0, 1] is called a t-conorm if the following four conditions are
true:

(1) for all 𝑥 ∈ [0, 1], 𝑆(0, 𝑥) = 𝑥;
(2) for all 𝑥, 𝑦 ∈ [0, 1], 𝑆(𝑥, 𝑦) = 𝑆(𝑦, 𝑥);
(3) for all 𝑥, 𝑦, 𝑧 ∈ [0, 1], 𝑆(𝑥, 𝑆(𝑦, 𝑧)) = 𝑆(𝑆(𝑥, 𝑦), 𝑧);
(4) if 𝑥 ≤ 𝑥

󸀠, 𝑦 ≤ 𝑦
󸀠, then 𝑆(𝑥, 𝑦) = 𝑆(𝑥

󸀠
, 𝑦
󸀠
).

Definition 3 (see [65, 66]). A t-norm function 𝑇(𝑥, 𝑦) is
calledArchimedean t-norm if it is continuous and, for all 𝑥 ∈

(0, 1), 𝑇(𝑥, 𝑥) < 𝑥. If for all 𝑥, 𝑦 ∈ (0, 1), 𝑇(𝑥, 𝑦) is strictly
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increasing, 𝑇(𝑥, 𝑦) can be called strictly Archimedean t-
norm. A t-conorm function 𝑆(𝑥, 𝑦) is called Archimedean t-
conorm if it is continuous and, for all 𝑥 ∈ (0, 1), 𝑆(𝑥, 𝑥) < 𝑥.
If for all 𝑥, 𝑦 ∈ (0, 1), 𝑆(𝑥, 𝑦) is strictly increasing, 𝑆(𝑥, 𝑦) can
be called strictly Archimedean t-conorm.

It is well known [67] that a strictly Archimedean t-norm
is generated by its additive generator 𝑘 as𝑇(𝑥, 𝑦) = 𝑘

−1
(𝑘(𝑥)+

𝑘(𝑦)) and 𝑘 is a strictly decreasing function: [0, 1] → [0,∞)

such that 𝑘(1) = 0. Let 𝑙(𝑡) = 𝑘(1 − 𝑡), and then Archimedean
t-conorm can be expressed as 𝑆(𝑥, 𝑦) = 𝑙

−1
(𝑙(𝑥) + 𝑙(𝑦)).

If we use specific forms to represent 𝑘, then some t-norms
and t-conorms can be obtained.

(1) Assuming 𝑘(𝑡) = − log 𝑡, then 𝑙(𝑡) = − log(1 − 𝑡),
𝑘
−1
(𝑡) = 𝑒

−𝑡, and 𝑙
−1
(𝑡) = 1 − 𝑒

−𝑡. Algebraic t-conorm
and t-norm [68] can be obtained: 𝑆𝐴(𝑥, 𝑦) = 𝑥 + 𝑦 −

𝑥𝑦, and 𝑇
𝐴
(𝑥, 𝑦) = 𝑥𝑦.

(2) Assuming 𝑘(𝑡) = log((2 − 𝑡)/𝑡), then 𝑙(𝑡) = log((2 −

(1 − 𝑡))/(1 − 𝑡)), 𝑘−1(𝑡) = 2/(𝑒
𝑡
+ 1), and 𝑙

−1
(𝑡) = 1 −

(2/(𝑒
𝑡
+1)). Einstein t-conorm and t-norm [68] can be

obtained: 𝑆𝐸(𝑥, 𝑦) = (𝑥 + 𝑦)/(1 + 𝑥𝑦), and 𝑇𝐸(𝑥, 𝑦) =
𝑥𝑦/(1 + (1 − 𝑥)(1 − 𝑦)).

2.2. Soft Sets and Fuzzy Soft Sets. In this subsection, the
definitions of SSs and FSSs are introduced.

Definition 4 (see [26]). Let 𝑈 be an initial universe and let 𝐸
be a set of parameters. A pair (𝐹, 𝐸) is called soft set (SS) over
𝑈, where 𝐹 is a mapping of 𝐸 into the set of all subsets of 𝑈.

In otherwords, any SS is a parameterized family of subsets
of the set 𝑈. For all 𝑒 ∈ 𝐸, 𝐹(𝑒) may be considered the set
of elements of the sets (𝐹, 𝐸), or the set of 𝑒-approximate
elements of the SS. To illustrate this idea, let us consider the
following example.

Example 5. Suppose that 𝑈 = {ℎ
1
, ℎ
2
, ℎ
3
, ℎ
4
} is a set of

houses and 𝐸 = {𝑒
1
, 𝑒
2
, 𝑒
3
} is a set of parameters, which

stand for being beautiful, being cheap and being in the
green surroundings, respectively. Consider themapping from
parameter set 𝐸 to the set of all subsets of 𝑈. Then SS (𝐹, 𝐸)
can describe an “attractive” house that Mr. X is going to buy:

𝐹 (𝑒
1
) = {ℎ

2
, ℎ
4
} , 𝐹 (𝑒

2
) = {ℎ

1
, ℎ
3
} ,

𝐹 (𝑒
3
) = {ℎ

3
, ℎ
4
} .

(1)

Thus, we can view the SS (𝐹, 𝐸) as a collection of
approximations as follows: (𝐹, 𝐸) = {beautiful houses =
{ℎ
2
, ℎ
4
}, cheap houses = {ℎ

1
, ℎ
3
}, in the green surroundings

houses = {ℎ
3
, ℎ
4
}}.

For the purpose of storing a SS in a computer, we could
represent the SS of Example 5 in Table 1.

Definition 6 (see [41]). Let 𝐹(𝑈) be the set of all fuzzy subsets
of𝑈, and then a pair (𝐹, 𝐸) is called a fuzzy soft set (FSS) over
𝐹(𝑈), where 𝐹 is a mapping denoted by

𝐹 : 𝐸 󳨀→ 𝐹 (𝑈) . (2)

Table 1: The tabular representation of the SS (𝐹, 𝐸).

𝑈 Beautiful Cheap In the green surroundings
ℎ
1

0 1 0
ℎ
2

1 0 0
ℎ
3

0 1 1
ℎ
4

1 0 1

Example 7. Consider Example 5. If Mr. X thinks ℎ
1
is a little

expensive and this fuzzy information cannot be expressed
only by two crisp numbers, that is, 0 and 1, a membership
degree can be used instead, which is associated with each
element and represented by a real number in the interval
[0, 1].Then FSS (𝐹, 𝐸) can describe the “attractive” house that
Mr. X is going to buy under the fuzzy information:

𝐹 (𝑒
1
) = {

ℎ
1

0.2
,
ℎ
2

0.7
,
ℎ
3

0.1
,
ℎ
4

0.7
} ,

𝐹 (𝑒
2
) = {

ℎ
1

0.8
,
ℎ
2

0.3
,
ℎ
3

0.7
,
ℎ
4

0.1
} ,

𝐹 (𝑒
3
) = {

ℎ
1

0.1
,
ℎ
2

0.2
,
ℎ
3

0.9
,
ℎ
4

0.8
} .

(3)

Similarly, the representation of the FSS of Example 7 can
be shown in Table 2.

2.3. Hesitant Fuzzy Sets

Definition 8 (see [15]). Let 𝑋 be a universal set, and then a
hesitant fuzzy set (HFS) on𝑋 is defined in terms of a function
ℎ that when applied to 𝑋 returns a finite subset of [0, 1]. A
HFS can be represented by

𝐸 = {⟨𝑥, ℎ
𝐸
(𝑥)⟩ | 𝑥 ∈ 𝑋} , (4)

where ℎ
𝐸
(𝑥) is a set of values in [0, 1], denoting the possible

membership degrees of the element 𝑥 ∈ 𝑋 to the set E. ℎ
𝐸
(𝑥)

is called a hesitant fuzzy element (HFE) [17], and 𝐻 is the
set of all HFEs. In particular, if 𝑋 has only one element, we
call 𝐸 a hesitant fuzzy number (HFN), briefly denoted by 𝐸 =

{ℎ
𝐸
(𝑥)}. The set of all hesitate fuzzy numbers is represented

as HFNs.

Torra [15] defined some operations onHFNs, andXia and
Xu [17] defined some new operations on HFNs and also the
score functions.

Definition 9 (see [15]). Let ℎ
1
, ℎ
2
, ℎ ∈ 𝐻, and three operations

are defined as follows:

(1) ℎ𝑐 = ∪
𝛾∈ℎ

{1 − 𝛾};
(2) ℎ
1
∪ ℎ
2
= ∪
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

max{𝛾
1
, 𝛾
2
};

(3) ℎ
1
∩ ℎ
2
= ∩
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

min{𝛾
1
, 𝛾
2
}.

The arithmetical operations of HFNs based on Archime-
dean t-norm and Archimedean t-conorm are defined as
follows.
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Table 2: The tabular representation of the FSS (𝐹, 𝐸).

𝑈 Beautiful Cheap In the green surroundings
ℎ
1

0.2 0.8 0.1
ℎ
2

0.7 0.3 0.2
ℎ
3

0.1 0.7 0.9
ℎ
4

0.7 0.1 0.8

Definition 10 (see [17]). Let ℎ
1
= ∪
𝛾
1
∈ℎ
1

{𝛾
1
}, ℎ
2
= ∪
𝛾
2
∈ℎ
2

{𝛾
2
},

and ℎ = ∪
𝛾∈ℎ

{𝛾} be three HFNs, and 𝜆 ≥ 0. Four operations
are defined as follows:

(1) ℎ𝜆 = ∪
𝛾∈ℎ

{𝑘
−1
(𝜆𝑘(𝛾))};

(2) 𝜆ℎ = ∪
𝛾∈ℎ

{𝑙
−1
(𝜆𝑙(𝛾))};

(3) ℎ
1
⊕ ℎ
2
= ∪
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{𝑙
−1
(𝑙(𝛾
1
) + 𝑙(𝛾

2
))};

(4) ℎ
1
⊗ ℎ
2
= ∪
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{𝑘
−1
(𝑘(𝛾
1
) + 𝑘(𝛾

2
))}.

In particular, if 𝑘(𝑡) = − log 𝑡, then
(5) ℎ𝜆 = ∪

𝛾∈ℎ
{𝛾
𝜆
};

(6) 𝜆ℎ = ∪
𝛾∈ℎ

{1 − (1 − 𝛾)
𝜆
};

(7) ℎ
1
⊕ ℎ
2
= ∪
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{𝛾
1
+ 𝛾
2
− 𝛾
1
𝛾
2
};

(8) ℎ
1
⊗ ℎ
2
= ∪
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{𝛾
1
𝛾
2
}.

If 𝑘(𝑡) = log((2 − 𝑡)/𝑡), then

(9) ℎ𝜆 = ∪
𝛾∈ℎ

{2𝛾
𝜆
/((2 − 𝛾)

𝜆
+ 𝛾
𝜆
)};

(10) 𝜆ℎ = ∪
𝛾∈ℎ

{((1 + 𝛾)
𝜆
− (1 − 𝛾)

𝜆
)/((1 + 𝛾)

𝜆
+ (1 − 𝛾)

𝜆
)};

(11) ℎ
1
⊕ ℎ
2
= ∪
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{(𝛾
1
+ 𝛾
2
)/(1 + 𝛾

1
𝛾
2
)};

(12) ℎ
1
⊗ ℎ
2
= ∪
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{𝛾
1
𝛾
2
/(1 + (1 − 𝛾

1
)(1 − 𝛾

2
))}.

Definition 11 (see [17]). For ℎ ∈ HFN, 𝑠(ℎ) = (1/#ℎ)∑
𝛾∈ℎ

𝛾

is called the score function of ℎ, where #ℎ is the number of
elements in ℎ. For two HFNs and ℎ

2
, if 𝑠(ℎ

1
) > 𝑠(ℎ

2
), then

ℎ
1
> ℎ
2
; if 𝑠(ℎ

1
) = 𝑠(ℎ

2
), then ℎ

1
= ℎ
2
.

It is clear that Definition 11 does not consider the situation
where two HFNs ℎ

1
and ℎ

2
have the same score, but their

deviation degreesmay be different.The deviation degree of all
elements with respect to the average value in a HFN reflects
how elements are consistent with each other, that is, whether
they have a higher consistency or not. To better represent this
issue, Chen et al. [69] defined the deviation degree as follows.

Definition 12 (see [69]). For ℎ ∈ HFN, 𝜎(ℎ) = [(1/#ℎ)
∑
𝛾∈ℎ

(𝛾−𝑠(ℎ))
2
]
1/2 is defined as the variance of ℎ, where 𝑠(ℎ) is

the score function of ℎ, and 𝜎(ℎ) denotes the deviation degree
of ℎ.

Definition 13 (see [69]). Let ℎ
1
and ℎ
2
be twoHFNs; if 𝑠(ℎ

1
) >

𝑠(ℎ
2
), then ℎ

1
> ℎ
2
.

If 𝑠(ℎ
1
) = 𝑠(ℎ

2
), then

(1) if 𝜎(ℎ
1
) > 𝜎(ℎ

2
), then ℎ

1
< ℎ
2
;

(2) if 𝜎(ℎ
1
) < 𝜎(ℎ

2
), then ℎ

1
> ℎ
2
;

(3) if 𝜎(ℎ
1
) = 𝜎(ℎ

2
), then ℎ

1
= ℎ
2
.

3. Hesitant Fuzzy Soft Sets and
Their Operations

In this section, aHFSS is defined by combiningHFSs and SSs;
some operations on HFSSs based on Archimedean t-norm
and Archimedean t-conorm are also given.

3.1. Definition of Hesitant Fuzzy Soft Sets. HFSs and SSs are
integrated as mentioned in Section 2. The concept of HFSSs
is defined as follows.

Definition 14. Let 𝑈 be an universe, let 𝐸 be a set of
parameters, and let𝐹(𝑈) be the set of all hesitant fuzzy subsets
of 𝑈. A pair (𝐹, 𝐸) is called a HFSS over 𝑈, where 𝐹 is a
mapping denoted by

𝐹 : 𝐸 󳨀→ 𝐹 (𝑈) . (5)

AHFSS is a parameterized family of hesitant fuzzy subsets
of𝑈, that is,𝐹(𝑈). For all 𝜀 ∈ 𝐸, 𝐹(𝜀) is referred to as the set of
𝜀-approximate elements of the HFSS (𝐹, 𝐸). It can be written
as

𝐹 (𝜀) = {⟨𝑥, 𝜇
𝐹(𝜀)(𝑥)

⟩ | 𝑥 ∈ 𝑈} . (6)

Since HFE can represent the situation, in which different
membership functions are considered possible [15], 𝜇

𝐹(𝜀)(𝑥)

is a set of several possible values, which is the hesitant
fuzzy membership degree. In particular, if 𝐹(𝜀) has only one
element, 𝐹(𝜀) can be called a hesitant fuzzy soft number
(HSSN). For convenience, a HSSN is denoted by 𝐹(𝜀) =

{⟨𝑥, 𝜇
𝐹(𝜀)(𝑥)

⟩}.

Example 15. Consider Example 7. Mr. X found it was hard
to give a single value to express his opinion about the
houses with respect to different criteria. For example, Mr. X
thinks that the degree of house ℎ

1
satisfies that criterion 𝑒

1

“beautiful” is 0.3 or 0.2. Then a HFSS (𝐹, 𝐸) can be used to
describe the “attractive” house that Mr. X is going to buy:

𝐹 (𝑒
1
) = {

ℎ
1

{0.3, 0.2}
,

ℎ
2

{0.8, 0.7}
,

ℎ
3

{0.2, 0.1}
,

ℎ
4

{0.7}
} ;

𝐹 (𝑒
2
) = {

ℎ
1

{0.9, 0.8}
,

ℎ
2

{0.3}
,

ℎ
3

{0.7, 0.6}
,

ℎ
4

{0.1}
} ;

𝐹 (𝑒
3
) = {

ℎ
1

{0.1}
,

ℎ
2

{0.3, 0.2}
,

ℎ
3

{0.9, 0.7}
,

ℎ
4

{0.8}
} .

(7)

For the purpose of storing a HFSS in a computer, the
HFSS of Example 15 is shown in Table 3.

3.2.Operations onHesitant Fuzzy Soft Sets. In this subsection,
some operations on HFSNs are defined.

Definition 16. Let 𝐹(𝑒
𝑖
) = {ℎ

𝑝
/𝜇
𝑖𝑝

| 𝑝 = 1, 2, . . . , 𝑚} and
𝐹(𝑒
𝑗
) = {ℎ

𝑝
/𝜇
𝑗𝑝

| 𝑝 = 1, 2, . . . , 𝑚} be two HFSNs and 𝜆 > 0.
Then the following can be defined:

(1) (𝐹(𝑒
𝑖
))
𝑐
= {ℎ
𝑝
/∪
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝

{1 − 𝛾
𝑖𝑝
} | 𝑝 = 1, 2, . . . , 𝑚};

(2) 𝜆𝐹(𝑒
𝑖
) = {ℎ

𝑝
/∪
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝

{𝑙
−1
(𝜆𝑙(𝛾
𝑖𝑝
))} | 𝑝 = 1, 2, . . . , 𝑚};
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Table 3: The tabular representation of the HFSS (𝐹, 𝐸).

𝑈 Beautiful Cheap In the green surroundings
ℎ
1

{0.3, 0.2} {0.9, 0.8} {0.1}

ℎ
2

{0.8, 0.7} {0.3} {0.3, 0.2}

ℎ
3

{0.2, 0.1} {0.7, 0.6} {0.9, 0.7}

ℎ
4

{0.7} {0.1} {0.8}

(3) 𝐹(𝑒
𝑖
)
𝜆
= {ℎ
𝑝
/∪
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝

{𝑘
−1
(𝑘𝑙(𝛾
𝑖𝑝
))} | 𝑝 = 1, 2, . . . , 𝑚};

(4) 𝐹(𝑒
𝑖
) ⊕ 𝐹(𝑒

𝑗
) = {ℎ

𝑝
/∪
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝
,𝛾
𝑗𝑝
∈𝜇
𝑗𝑝

{𝑙
−1
(𝑙(𝛾
𝑖𝑝
) + 𝑙(𝛾

𝑗𝑝
))} |

𝑝 = 1, 2, . . . , 𝑚};

(5) 𝐹(𝑒
𝑖
) ⊗ 𝐹(𝑒

𝑗
) = {ℎ

𝑝
/∪
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝
,𝛾
𝑗𝑝
∈𝜇
𝑗𝑝

{𝑘
−1
(𝑘(𝛾
𝑖𝑝
) +

𝑘(𝛾
𝑗𝑝
))} | 𝑝 = 1, 2, . . . , 𝑚}.

Theorem 17. Let 𝐹(𝑒
𝑖
) = {ℎ

𝑝
/𝜇
𝑖𝑝

| 𝑝 = 1, 2, . . . , 𝑚} and
𝐹(𝑒
𝑗
) = {ℎ

𝑝
/𝜇
𝑗𝑝

| 𝑝 = 1, 2, . . . , 𝑚} be two HFSNs and
𝜆, 𝜆
1
, 𝜆
2
> 0. Then the following are true:

(1) 𝐹(𝑒
𝑖
) ⊕ 𝐹(𝑒

𝑗
) = 𝐹(𝑒

𝑗
) ⊕ 𝐹(𝑒

𝑖
);

(2) 𝐹(𝑒
𝑖
) ⊗ 𝐹(𝑒

𝑗
) = 𝐹(𝑒

𝑗
) ⊗ 𝐹(𝑒

𝑖
);

(3) 𝜆(𝐹(𝑒
𝑖
) ⊕ 𝐹(𝑒

𝑗
)) = 𝜆𝐹(𝑒

𝑖
) ⊕ 𝜆𝐹(𝑒

𝑗
);

(4) (𝐹(𝑒
𝑖
) ⊗ 𝐹(𝑒

𝑗
))
𝜆
= 𝐹(𝑒
𝑖
)
𝜆
⊗ 𝐹(𝑒
𝑗
)
𝜆;

(5) 𝜆
1
F(ei) ⊕ 𝜆

2
F(ei) = (𝜆

1
+ 𝜆
2
)F(ei);

(6) (𝐹(𝑒
𝑖
))
𝜆
1 ⊗ (𝐹(𝑒

𝑖
))
𝜆
2 = (𝐹(𝑒

𝑖
))
𝜆
1
+𝜆
2 .

Proof. InDefinition 16, it is easy to prove that (1) and (2)hold,
and thus let us prove (3). Consider

𝜆 (𝐹 (𝑒
𝑖
) ⊕ 𝐹 (𝑒

𝑗
))

= 𝜆
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝
,𝛾
𝑗𝑝
∈𝜇
𝑗𝑝

{𝑙−1 (𝑙 (𝛾
𝑖𝑝
) + 𝑙 (𝛾

𝑗𝑝
))}

| 𝑝 ∈ 𝑃
}

}

}

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝
,𝛾
𝑗𝑝
∈𝜇
𝑗𝑝

{𝑙−1 (𝜆𝑙 (𝑙−1 (𝑙 (𝛾
𝑖𝑝
) + 𝑙 (𝛾

𝑗𝑝
))))}

|

𝑝 ∈ 𝑃
}

}

}

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝
,𝛾
𝑗𝑝
∈𝜇
𝑗𝑝

{𝑙−1 (𝜆 (𝑙 (𝛾
𝑖𝑝
) + 𝑙 (𝛾

𝑗𝑝
)))}

| 𝑝 ∈ 𝑃
}

}

}

;

𝜆𝐹 (𝑒
𝑖
) ⊕ 𝜆𝐹 (𝑒

𝑗
)

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝

{𝑙−1 (𝜆𝑙 (𝛾
𝑖𝑝
))}

| 𝑝 ∈ 𝑃
}

}

}

⊕
{

{

{

ℎ
𝑝

⋃
𝛾
𝑗𝑝
∈𝜇
𝑗𝑝

{𝑙−1 (𝜆𝑙 (𝛾
𝑗𝑝
))}

| 𝑝 ∈ 𝑃
}

}

}

=
{

{

{

ℎ
𝑝
( ⋃

𝛾
𝑖𝑝
∈𝜇
𝑖𝑝
,𝛾
𝑗𝑝
∈𝜇
𝑗𝑝

{𝑙
−1
(𝑙 (𝑙
−1
(𝜆𝑙 (𝛾

𝑖𝑝
)))

+ 𝑙 (𝑙
−1
(𝜆𝑙 (𝛾

𝑗𝑝
))))})

−1

|

𝑝 ∈ 𝑃
}

}

}

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝
,𝛾
𝑗𝑝
∈𝜇
𝑗𝑝

{𝑙−1 (𝜆 (𝑙 (𝛾
𝑖𝑝
) + 𝑙 (𝛾

𝑗𝑝
)))}

| 𝑝 ∈ 𝑃
}

}

}

= 𝜆 (𝐹 (𝑒
𝑖
) ⊕ 𝐹 (𝑒

𝑗
)) ,

(8)

where 𝑃 = {1, 2, . . . , 𝑚}.
Similarly, (4)–(6) of Definition 16 can be proved.

4. Aggregation Operators of Hesitant Fuzzy
Soft Sets

In this section, some aggregation operators are defined.

Definition 18. Let 𝐹(𝑒
𝑖
) = {ℎ

𝑝
/𝜇
𝑖𝑝

| 𝑝 = 1, 2, . . . , 𝑚} (𝑖 =

1, 2, . . . , 𝑛) be the elements of the HFSS (𝐹, 𝐸), and let 𝜔 =

(𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
) be the weight vector of 𝐹(𝑒

𝑖
) (𝑖 = 1, 2, . . . , 𝑛),

where 𝜔
𝑖
indicates the importance degree of 𝐹(𝑒

𝑖
), satisfying

𝜔
𝑖
≥ 0 (𝑖 = 1, 2, . . . , 𝑛) and ∑

𝑛

𝑖=1
𝜔
𝑖
= 1. Then the HFSWA

operator can be called hesitant fuzzy soft weighted averaging
operator and defined as

HFSWA (𝐹 (𝑒
1
) , 𝐹 (𝑒

2
) , . . . , 𝐹 (𝑒

𝑛
)) =

𝑛

⨁

𝑖=1

𝜔
𝑖
𝐹 (𝑒
𝑖
) . (9)

Theorem 19. Let 𝐹(𝑒
𝑖
) = {ℎ

𝑝
/𝜇
𝑖𝑝

| 𝑝 = 1, 2, . . . , 𝑚} (𝑖 =

1, 2, . . . , 𝑛) be the elements of the HFSS (𝐹, 𝐸), and let 𝜔 =

(𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
) be the weight vector of 𝐹(𝑒

𝑖
) (𝑖 = 1, 2, . . . , 𝑛),

where 𝜔
𝑖
indicates the importance degree of 𝐹(𝑒

𝑖
), satisfying

𝜔
𝑖
≥ 0 (𝑖 = 1, 2, . . . , 𝑛) and ∑

𝑛

𝑖=1
𝜔
𝑖
= 1. Then the aggregated

value by using the HFSWA operator is still a HFSN, and

𝐻𝐹𝑆𝑊𝐴(𝐹 (𝑒
1
) , 𝐹 (𝑒

2
) , . . . , 𝐹 (𝑒

𝑛
))

=

𝑛

⨁

𝑖=1

𝜔
𝑖
𝐹 (𝑒
𝑖
)

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝

{𝑙−1 (∑
𝑛

𝑖=1
𝜔
𝑖
𝑙 (𝛾
𝑖𝑝
))}

| 𝑝 = 1, 2, . . . , 𝑚
}

}

}

.

(10)

Proof. Use the mathematical introduction of 𝑛 to complete
this proof.

For 𝑛 = 2, we have

HFSWA (𝐹 (𝑒
1
) , 𝐹 (𝑒

2
))

=

2

⨁

𝑖=1

𝜔
𝑖
𝐹 (𝑒
𝑖
) = 𝜔
1
𝐹 (𝑒
1
) ⊕ 𝜔
2
𝐹 (𝑒
2
)
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=
{

{

{

ℎ
𝑝

⋃
𝛾
1𝑝
∈𝜇
1𝑝
,𝛾
2𝑝
∈𝜇
2𝑝

{𝑙−1 (𝜔
1
𝑙 (𝛾
1𝑝
) + 𝜔
2
𝑙 (𝛾
2𝑝
))}

|

𝑝 = 1, 2, . . . , 𝑚
}

}

}

.

(11)

Suppose (10) holds for 𝑛 = 𝑘; that is,

HFSWA (𝐹 (𝑒
1
) , 𝐹 (𝑒

2
) , . . . , 𝐹 (𝑒

𝑘
))

=

𝑘

⨁

𝑖=1

𝜔
𝑖
𝐹 (𝑒
𝑖
)

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝

{𝑙−1 (∑
𝑘

𝑖=1
𝜔
𝑖
𝑙 (𝛾
𝑖𝑝
))}

| 𝑝 = 1, 2, . . . , 𝑚
}

}

}

,

HFSWA (𝐹 (𝑒
1
) , 𝐹 (𝑒

2
) , . . . , 𝐹 (𝑒

𝑘
) , 𝐹 (𝑒

𝑘+1
))

=

𝑘

⨁

𝑖=1

𝜔
𝑖
𝐹 (𝑒
𝑖
) ⊕ 𝜔
𝑖+1

𝐹 (𝑒
𝑖+1

)

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝

{𝑙−1 (∑
𝑘

𝑖=1
𝜔
𝑖
𝑙 (𝛾
𝑖𝑝
))}

| 𝑝 = 1, 2, . . . , 𝑚
}

}

}

⊕
{

{

{

ℎ
𝑝

⋃
𝛾
𝑘+1𝑝
∈𝜇
𝑘+1𝑝

{𝑙−1 (𝜆𝑙 (𝛾
𝑘+1𝑝

))}

| 𝑝 = 1, 2, . . . , 𝑚
}

}

}

=
{

{

{

ℎ
𝑝
( ⋃

𝛾
𝑖𝑝
∈𝜇
𝑖𝑝

{𝑙
−1
(𝑙(𝑙
−1
(

𝑘

∑

𝑖=1

𝜔
𝑖
𝑙 (𝛾
𝑖𝑝
)))

+ 𝑙 (𝑙
−1
(𝜔
𝑘+1

𝑙 (𝛾
𝑘+1𝑝

))))})

−1

|

𝑝 = 1, 2, . . . , 𝑚
}

}

}

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝

{𝑙−1 (∑
𝑘

𝑖=1
𝜔
𝑖
𝑙 (𝛾
𝑖𝑝
) + 𝜔
𝑘+1

𝑙 (𝛾
𝑘+1𝑝

))}

|

𝑝 = 1, 2, . . . , 𝑚
}

}

}

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝

{𝑙−1 (∑
𝑘+1

𝑖=1
𝜔
𝑖
𝑙 (𝛾
𝑖𝑝
))}

| 𝑝 = 1, 2, . . . , 𝑚
}

}

}

.

(12)

Now, (10) holds for 𝑛 = 𝑘+1, and thus (10) holds for all 𝑛.
Subsequently, some desirable properties of the HFSWA

operator are investigated.

Property 1. If all 𝐹(𝑒
𝑖
) (𝑖 = 1, 2, . . . , 𝑛) are equal, that is,

𝐹(𝑒
𝑖
) = 𝐹(𝑒) = {ℎ

𝑝
/𝜇
𝑖𝑝
| 𝑝 = 1, 2, . . . , 𝑚} for all 𝑖, then

HFSWA (𝐹 (𝑒
1
) , 𝐹 (𝑒

2
) , . . . , 𝐹 (𝑒

𝑛
)) = 𝐹 (𝑒) . (13)

Proof. Let 𝐹(𝑒
𝑖
) = 𝐹(𝑒), and then

HFSWA (𝐹 (𝑒
1
) , 𝐹 (𝑒

2
) , . . . , 𝐹 (𝑒

𝑛
))

= HFSWA (𝐹 (𝑒) , 𝐹 (𝑒) , . . . , 𝐹 (𝑒)) =

𝑛

⨁

𝑖=1

𝜔
𝑖
𝐹 (𝑒)

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝

{𝑙−1 (∑
𝑛

𝑖=1
𝜔
𝑖
𝑙 (𝛾
𝑖𝑝
))}

| 𝑝 = 1, 2, . . . , 𝑚
}

}

}

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝

{𝑙−1 (𝑙 (𝛾
𝑖𝑝
))}

| 𝑝 = 1, 2, . . . , 𝑚
}

}

}

= {

ℎ
𝑝

𝜇
𝑖𝑝

| 𝑝 = 1, 2, . . . , 𝑚} (𝑖 = 1, 2, . . . , 𝑛) = 𝐹 (𝑒) .

(14)

Property 2. Let 𝐹(𝑒
𝑖
) = {ℎ

𝑝
/𝜇
𝑖𝑝

| 𝑝 = 1, 2, . . . , 𝑚} (𝑖 =

1, 2, . . . , 𝑛) be the elements of the HFSS (𝐹, 𝐸), and let 𝜔 =

(𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
) be the weight vector of 𝐹(𝑒

𝑖
) (𝑖 = 1, 2, . . . , 𝑛)

such that 𝜔
𝑖
≥ 0 (𝑖 = 1, 2, . . . , 𝑛) and ∑

𝑛

𝑖=1
𝜔
𝑖
= 1. If 𝐹(𝜀) =

{ℎ
𝑝
/𝜇
𝜀𝑝

| 𝑝 = 1, 2, . . . , 𝑚} is a hesitant fuzzy soft element
(HFSE), then

HFSWA (𝐹 (𝑒
1
) ⊕ 𝐹 (𝜀) , 𝐹 (𝑒

2
) ⊕ 𝐹 (𝜀) , . . . , 𝐹 (𝑒

𝑛
) ⊕ 𝐹 (𝜀))

= HFSWA (𝐹 (𝑒
1
) , 𝐹 (𝑒

2
) , . . . , 𝐹 (𝑒

𝑛
)) ⊕ 𝐹 (𝜀) .

(15)

Proof. Since 𝐹(𝑒
𝑗
) ⊕ 𝐹(𝜀) = {ℎ

𝑝
/∪
𝛾
𝑗𝑝
∈𝜇
𝑗𝑝
,𝛾
𝜀𝑝
∈𝜇
𝜀𝑝

{𝑙
−1
(𝑙(𝛾
𝑗𝑝
) +

𝑙(𝛾
𝜀𝑝
))} | 𝑝 = 1, 2, . . . , 𝑚}, then

HFSWA (𝐹 (𝑒
1
) ⊕ 𝐹 (𝜀) , 𝐹 (𝑒

2
) ⊕ 𝐹 (𝜀) , . . . , 𝐹 (𝑒

𝑛
) ⊕ 𝐹 (𝜀))

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝
,𝛾
𝜀𝑝
∈𝜇
𝜀𝑝

(𝑙−1 (∑
𝑛

𝑖=1
𝜔
𝑖
𝑙 (𝑙−1 (𝑙 (𝛾

𝑖𝑝
) + 𝑙 (𝛾

𝜀𝑝
)))))

|

𝑝 = 1, 2, . . . , 𝑚
}

}

}

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝
,𝛾
𝜀𝑝
∈𝜇
𝜀𝑝

(𝑙−1 (∑
𝑛

𝑖=1
𝜔
𝑖
𝑙 (𝛾
𝑖𝑝
) + 𝑙 (𝛾

𝜀𝑝
)))

|

𝑝 = 1, 2, . . . , 𝑚
}

}

}

,

HFSWA (𝐹 (𝑒
1
) , 𝐹 (𝑒

2
) , . . . , 𝐹 (𝑒

𝑛
)) ⊕ 𝐹 (𝜀)

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝

{𝑙−1 (∑
𝑛

𝑖=1
𝜔
𝑖
𝑙 (𝛾
𝑖𝑝
))}

| 𝑝 = 1, 2, . . . , 𝑚
}

}

}

⊕ {

ℎ
𝑝

𝜇
𝜀𝑝

| 𝑝 = 1, 2, . . . , 𝑚}
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=
{

{

{

ℎ
𝑝
( ⋃

𝛾
𝑖𝑝
∈𝜇
𝑖𝑝
,𝛾
𝜀𝑝
∈𝜇
𝜀𝑝

{𝑙
−1
(𝑙(𝑙
−1
(

𝑛

∑

𝑖=1

𝜔
𝑖
𝑙 (𝛾
𝑖𝑝
))))

+ 𝑙 (𝛾
𝜀𝑝
)})

−1

| 𝑝 = 1, 2, . . . , 𝑚
}

}

}

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝
,𝛾
𝜀𝑝
∈𝜇
𝜀𝑝

(𝑙−1 (∑
𝑛

𝑖=1
𝜔
𝑖
𝑙 (𝛾
𝑖𝑝
) + 𝑙 (𝛾

𝜀𝑝
)))

|

𝑝 = 1, 2, . . . , 𝑚
}

}

}

.

(16)

Therefore, HFSWA (𝐹(𝑒
1
) ⊕ 𝐹(𝜀), 𝐹(𝑒

2
) ⊕ 𝐹(𝜀), . . . , 𝐹(𝑒

𝑛
) ⊕

𝐹(𝜀)) =HFSWA (𝐹(𝑒
1
), 𝐹(𝑒
2
), . . . , 𝐹(𝑒

𝑛
)) ⊕ 𝐹(𝜀).

Property 3. Let 𝐹(𝑒
𝑖
) = {ℎ

𝑝
/𝜇
𝑖𝑝

| 𝑝 = 1, 2, . . . , 𝑚} (𝑖 =

1, 2, . . . , 𝑛) be the elements of the HFSS (𝐹, 𝐸), and let 𝜔 =

(𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
) be the weight vector of 𝐹(𝑒

𝑖
) (𝑖 = 1, 2, . . . , 𝑛)

such that 𝜔
𝑖
≥ 0 (𝑖 = 1, 2, . . . , 𝑛) and ∑

𝑛

𝑖=1
𝜔
𝑖
= 1. If 𝜆 > 0,

then

HFSWA (𝜆𝐹 (𝑒
1
) , 𝜆𝐹 (𝑒

2
) , . . . , 𝜆𝐹 (𝑒

𝑛
))

= 𝜆HFSWA (𝐹 (𝑒
1
) , 𝐹 (𝑒

2
) , . . . , 𝐹 (𝑒

𝑛
)) .

(17)

Proof. According to Definition 16, 𝜆𝐹(𝑒
𝑖
) = {ℎ

𝑝
/∪
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝

{𝑙
−1

(𝜆𝑙(𝛾
𝑖𝑝
))} | 𝑝 = 1, 2, . . . , 𝑚}.

Then

HFSWA (𝐹 (𝑒
1
) , 𝐹 (𝑒

2
) , . . . , 𝐹 (𝑒

𝑛
))

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝

{𝑙−1 (∑
𝑛

𝑖=1
𝜔
𝑖
𝑙 (𝑙−1 (𝜆𝑙 (𝛾

𝑖𝑝
))))}

|

𝑝 = 1, 2, . . . , 𝑚
}

}

}

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝

{𝑙−1 (∑
𝑛

𝑖=1
𝜔
𝑖
(𝜆𝑙 (𝛾

𝑖𝑝
)))}

| 𝑝 = 1, 2, . . . , 𝑚
}

}

}

,

𝜆HFSWA (𝐹 (𝑒
1
) , 𝐹 (𝑒

2
) , . . . , 𝐹 (𝑒

𝑛
))

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝

{𝑙−1 (𝜆𝑙 (𝑙−1 (∑
𝑛

𝑖=1
𝜔
𝑖
𝑙 (𝛾
𝑖𝑝
))))}

|

𝑝 = 1, 2, . . . , 𝑚
}

}

}

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝

{𝑙−1 (𝜆 (∑
𝑛

𝑖=1
𝜔
𝑖
𝑙 (𝛾
𝑖𝑝
)))}

| 𝑝 = 1, 2, . . . , 𝑚
}

}

}

.

(18)

Therefore, the proof of Property 3 is completed.

According to Properties 2 and 3, Property 4 can be given.

Property 4. Let 𝐹(𝑒
𝑖
) = {ℎ

𝑝
/𝜇
𝑖𝑝

| 𝑝 = 1, 2, . . . , 𝑚} (𝑖 =

1, 2, . . . , 𝑛) be all the elements of the HFSS (𝐹, 𝐸), and let
𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
) be the weight vector of 𝐹(𝑒

𝑖
), such that

𝜔
𝑖
≥ 0 (𝑖 = 1, 2, . . . , 𝑛) and ∑

𝑛

𝑖=1
𝜔
𝑖
= 1. If 𝜆 > 0 and

𝐹(𝜀) = {ℎ
𝑝
/𝜇
𝜀𝑝
| 𝑝 = 1, 2, . . . , 𝑚} is a HFSE, then

HFSWA (𝜆𝐹 (𝑒
1
) ⊕ 𝐹 (𝜀) , 𝜆𝐹 (𝑒

2
) ⊕ 𝐹 (𝜀) , . . . ,

𝜆𝐹 (𝑒
𝑛
) ⊕ 𝐹 (𝜀))

= 𝜆HFSWA (𝐹 (𝑒
1
) , 𝐹 (𝑒

2
) , . . . , 𝐹 (𝑒

𝑛
)) ⊕ 𝐹 (𝜀) .

(19)

Property 5. Let 𝐹(𝑒
𝑖
) = {ℎ

𝑝
/𝜇
𝑖𝑝

| 𝑝 = 1, 2, . . . , 𝑚} (𝑖 =

1, 2, . . . , 𝑛) be the elements of the HFSS (𝐹, 𝐸
1
), let 𝐹(𝜀

𝑖
) =

{ℎ
𝑝
/𝜇
𝜀
𝑖
𝑝
| 𝑝 = 1, 2, . . . , 𝑚} (𝑖 = 1, 2, . . . , 𝑛) be the elements of

HFSS (𝐹, 𝐸
2
), and let𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
) be theweight vector

of them, satisfying 𝜔
𝑖
≥ 0 (𝑖 = 1, 2, . . . , 𝑛) and ∑

𝑛

𝑖=1
𝜔
𝑖
= 1.

Then

HFSWA (𝐹 (𝑒
1
) ⊕ 𝐹 (𝜀

1
) , 𝐹 (𝑒

2
) ⊕ 𝐹 (𝜀

2
) , . . . ,

𝐹 (𝑒
𝑛
) ⊕ 𝐹 (𝜀

𝑛
))

= HFSWA (𝐹 (𝑒
1
) , 𝐹 (𝑒

2
) , . . . , 𝐹 (𝑒

𝑛
))

⊕HFSWA (𝐹 (𝜀
1
) , 𝐹 (𝜀

2
) , . . . , 𝐹 (𝜀

𝑛
)) .

(20)

Proof. According to Definition 16, 𝐹(𝑒
𝑖
) ⊕ 𝐹(𝜀

𝑖
) = {ℎ

𝑝
/

∪
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝
,𝛾
𝜀𝑖𝑝
∈𝜇
𝑗𝑝

{𝑙
−1
(𝑙(𝛾
𝑖𝑝
) + 𝑙(𝛾

𝜀
𝑖
𝑝
))} | 𝑝 = 1, 2, . . . , 𝑚}.

Then

HFSWA (𝐹 (𝑒
1
) ⊕ 𝐹 (𝜀

1
) , 𝐹 (𝑒

2
) ⊕ 𝐹 (𝜀

2
) , . . . , 𝐹 (𝑒

𝑛
) ⊕ 𝐹 (𝜀

𝑛
))

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝
,𝛾
𝜀𝑖𝑝
∈𝜇
𝜀𝑖𝑝

{𝑙−1 (∑
𝑛

𝑖=1
𝜔
𝑖
𝑙 (𝑙−1 (𝑙 (𝛾

𝑖𝑝
) + 𝑙 (𝛾

𝜀
𝑖
𝑝
))))}

|

𝑝 = 1, 2, . . . , 𝑚
}

}

}

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝
,𝛾
𝜀𝑖𝑝
∈𝜇
𝜀𝑖𝑝

{𝑙−1 (∑
𝑛

𝑖=1
𝜔
𝑖
(𝑙 (𝛾
𝑖𝑝
) + 𝑙 (𝛾

𝜀
𝑖
𝑝
)))}

|

𝑝 = 1, 2, . . . , 𝑚
}

}

}

,

HFSWA (𝐹 (𝑒
1
) , 𝐹 (𝑒

2
) , . . . , 𝐹 (𝑒

𝑛
))

⊕HFSWA (𝐹 (𝜀
1
) , 𝐹 (𝜀

2
) , . . . , 𝐹 (𝜀

𝑛
))

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝

{𝑙−1 (∑
𝑛

𝑖=1
𝜔
𝑖
𝑙 (𝛾
𝑖𝑝
))}

| 𝑝 = 1, 2, . . . , 𝑚
}

}

}

⊕
{

{

{

ℎ
𝑝

⋃
𝛾
𝜀𝑖
∈𝜇
𝜀𝑖𝑝

{𝑙−1 (∑
𝑛

𝑖=1
𝜔
𝑖
𝑙 (𝛾
𝜀
𝑖
𝑝
))}

| 𝑝 = 1, 2, . . . , 𝑚
}

}

}
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=
{

{

{

ℎ
𝑝
( ⋃

𝛾
𝑖𝑝
∈𝜇
𝑖𝑝
,𝛾
𝜀𝑖
∈𝜇
𝜀𝑖𝑝

{𝑙
−1

× (𝑙(𝑙
−1
(

𝑛

∑

𝑖=1

𝜔
𝑖
𝑙 (𝛾
𝑖𝑝
)))

+ 𝑙(𝑙
−1

×(

𝑛

∑

𝑖=1

𝜔
𝑖
𝑙 (𝛾
𝜀
𝑖
𝑝
))))})

−1

|

𝑝 = 1, 2, . . . , 𝑚
}

}

}

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝
,𝛾
𝜀𝑖
∈𝜇
𝜀𝑖𝑝

{𝑙−1 (∑
𝑛

𝑖=1
𝜔
𝑖
𝑙 (𝛾
𝑖𝑝
) + ∑
𝑛

𝑖=1
𝜔
𝑖
𝑙 (𝛾
𝜀
𝑖
𝑝
))}

|

𝑝 = 1, 2, . . . , 𝑚
}

}

}

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝
,𝛾
𝜀𝑖𝑝
∈𝜇
𝜀𝑖𝑝

{𝑙−1 (∑
𝑛

𝑖=1
𝜔
𝑖
(𝑙 (𝛾
𝑖𝑝
) + 𝑙 (𝛾

𝜀
𝑖
𝑝
)))}

|

𝑝 = 1, 2, . . . , 𝑚
}

}

}

.

(21)

Thus, the proof of Property 5 is completed.

Definition 20. Let 𝐹(𝑒
𝑖
) = {ℎ

𝑝
/𝜇
𝑖𝑝

| 𝑝 = 1, 2, . . . , 𝑚} (𝑖 =

1, 2, . . . , 𝑛) be the elements of the HFSS (𝐹, 𝐸), and let 𝜔 =

(𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
) be the weight vector of 𝐹(𝑒

𝑖
) (𝑖 = 1, 2, . . . , 𝑛),

where 𝜔
𝑖
indicates the importance degree of 𝐹(𝑒

𝑖
), satisfying

𝜔
𝑖
≥ 0 (𝑖 = 1, 2, . . . , 𝑛) and ∑

𝑛

𝑖=1
𝜔
𝑖
= 1. Then the HFSWG

operator can be called hesitant fuzzy soft weighted geometric
operator and defined as

HFSWG (𝐹 (𝑒
1
) , 𝐹 (𝑒

2
) , . . . , 𝐹 (𝑒

𝑛
)) =

𝑛

⨁

𝑖=1

𝐹 (𝑒
𝑖
)
𝜔
𝑖

. (22)

Theorem 21. Let 𝐹(𝑒
𝑖
) = {ℎ

𝑗
/𝑝
𝑗
| 𝑗 = 1, 2, . . . , 𝑚} (𝑖 =

1, 2, . . . , 𝑛) be the elements of the HFSS (𝐹, 𝐸), and let 𝜔 =

(𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
) be the weight vector of 𝐹(𝑒

𝑖
) (𝑖 = 1, 2, . . . , 𝑛),

where 𝜔
𝑖
indicates the importance degree of 𝐹(𝑒

𝑖
), satisfying

𝜔
𝑖
≥ 0 (𝑖 = 1, 2, . . . , 𝑛) and ∑

𝑛

𝑖=1
𝜔
𝑖
= 1. Then the aggregated

value by using HFSWG operator is a HFSN, and

𝐻𝐹𝑆𝑊𝐺(𝐹 (𝑒
1
) , 𝐹 (𝑒

2
) , . . . , 𝐹 (𝑒

𝑛
)) =

𝑛

⨁

𝑖=1

𝐹 (𝑒
𝑖
)
𝜔
𝑖

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝

{𝑘−1 (∑
𝑛

𝑖=1
𝜔
𝑖
𝑘 (𝛾
𝑖𝑝
))}

| 𝑝 = 1, 2, . . . , 𝑚
}

}

}

.

(23)
Similarly, it is clear that theHFSWGoperator also satisfies

the properties that HFSWA operator has, and the relative
details are omitted here.

Definition 22. Let𝐹(𝑒
𝑖
) (𝑖 = 1, 2, . . . , 𝑛) be the elements of the

HFSS (𝐹, 𝐸), and let 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
) be the weight vector

of 𝐹(𝑒
𝑖
) (𝑖 = 1, 2, . . . , 𝑛), where 𝜔

𝑖
indicates the importance

degree of 𝐹(𝑒
𝑖
), satisfying 𝜔

𝑖
≥ 0 (𝑖 = 1, 2, . . . , 𝑛) and

∑
𝑛

𝑖=1
𝜔
𝑖
= 1. Then the GHFSWA operator can be called the

generalized hesitant fuzzy soft weighted averaging operator
and defined as

GHFSWA
𝜆
(𝐹 (𝑒
1
) , 𝐹 (𝑒

2
) , . . . , 𝐹 (𝑒

𝑛
))

= (

𝑛

⨁

𝑖=1

𝜔
𝑖
(𝐹 (𝑒
𝑖
))
𝜆

)

1/𝜆

.

(24)

In particular, if 𝜆 = 1, then the GHFSWA operator is
reduced to the HFSWA operator.

Theorem 23. Let 𝐹(𝑒
𝑖
) (𝑖 = 1, 2, . . . , 𝑛) be the elements of the

HFSS (𝐹, 𝐸), and let 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
) be the weight vector

of 𝐹(𝑒
𝑖
) (𝑖 = 1, 2, . . . , 𝑛), where 𝜔

𝑖
indicates the importance

degree of 𝐹(𝑒
𝑖
), satisfying𝜔

𝑖
≥ 0 (𝑖 = 1, 2, . . . , 𝑛) and∑𝑛

𝑖=1
𝜔
𝑖
=

1. Then the aggregated value by using GHFSWA operator is a
HFSN, and

𝐺𝐻𝐹𝑆𝑊𝐴
𝜆
(𝐹 (𝑒
1
) , 𝐹 (𝑒

2
) , . . . , 𝐹 (𝑒

𝑛
)) = (

𝑛

⨁

𝑖=1

𝜔
𝑖
(𝐹 (𝑒
𝑖
))
𝜆

)

1/𝜆

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝

{𝑘−1 ((1/𝜆) 𝑘 (𝑙−1 (∑
𝑛

𝑖=1
𝜔
𝑖
𝑙 (𝑘−1 (𝜆𝑘 (𝛾

𝑖𝑝
))))))}

| 𝑝 = 1, 2, . . . , 𝑚
}

}

}

.

(25)

Definition 24. Let𝐹(𝑒
𝑖
) (𝑖 = 1, 2, . . . , 𝑛) be the elements of the

HFSS (𝐹, 𝐸), and let 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
) be the weight vector

of 𝐹(𝑒
𝑖
) (𝑖 = 1, 2, . . . , 𝑛), where 𝜔

𝑖
indicates the importance

degree of 𝐹(𝑒
𝑖
), satisfying 𝜔

𝑖
≥ 0 (𝑖 = 1, 2, . . . , 𝑛) and
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∑
𝑛

𝑖=1
𝜔
𝑖
= 1. Then the GHFSWG operator can be called the

generalized hesitant fuzzy soft weighted geometric operator
and defined as

GHFSWG
𝜆
(𝐹 (𝑒
1
) , 𝐹 (𝑒

2
) , . . . , 𝐹 (𝑒

𝑛
))

=
1

𝜆
(

𝑛

⨁

𝑖=1

(𝜆𝐹 (𝑒
𝑖
))
𝜔
𝑖

) .

(26)

In particular, if 𝜆 = 1, then the GHFSWG operator is
reduced to the HFSWG operator.

Theorem 25. Let 𝐹(𝑒
𝑖
) (𝑖 = 1, 2, . . . , 𝑛) be the elements of the

HFSS (𝐹, 𝐸), and let 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
) be the weight vector

of 𝐹(𝑒
𝑖
) (𝑖 = 1, 2, . . . , 𝑛), where 𝜔

𝑖
indicates the importance

degree of 𝐹(𝑒
𝑖
), satisfying 𝜔

𝑖
≥ 0 (𝑖 = 1, 2, . . . , 𝑛) and∑𝑛

𝑖=1
𝜔
𝑖
=

1. Then the aggregated value by using GHFSWG operator is a
HFSN, and

𝐺𝐻𝐹𝑆𝑊𝐺
𝜆
(𝐹 (𝑒
1
) , 𝐹 (𝑒

2
) , . . . , 𝐹 (𝑒

𝑛
))

=
1

𝜆
(

𝑛

⨁

𝑖=1

(𝜆𝐹 (𝑒
𝑖
))
𝜔
𝑖

)

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝

{𝑙−1 ((1/𝜆) 𝑙 (𝑘−1 (∑
𝑛

𝑖=1
𝜔
𝑖
𝑘 (𝑙−1 (𝜆𝑙 (𝛾

𝑖𝑝
))))))}

|

𝑝 = 1, 2, . . . , 𝑚
}

}

}

.

(27)

Similarly, it is clear that the GHFSWA and GHFSWG
operators possess the same properties that the HFSWA
operator has.

Example 26. Suppose 𝐹(𝑒
1
) = {ℎ

1
/{0.3, 0.5}, ℎ

2
/{0.4, 0.6}}

and 𝐹(𝑒
2
) = {ℎ

1
/{0.4, 0.5}, ℎ

2
/{0.8, 0.9}} are the elements of

the HFSS (𝐹, 𝐸), and 𝜔 = (0.3, 0.7) is the weight vector of
𝐹(𝑒
𝑖
) (𝑖 = 1, 2), which indicate the corresponding importance

degrees.

Using Theorems 19 and 21, if we assign 𝑘(𝑡) = − log(𝑡),
then

HFSWA (𝐹 (𝑒
1
) , 𝐹 (𝑒

2
)) =

2

⨁

𝑖=1

𝜔
𝑖
𝐹 (𝑒
𝑖
)

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝

{1 − ∏
2

𝑖=1
(1 − 𝛾

𝑖𝑝
)
𝜔
𝑖

}

| 𝑝 = 1, 2
}

}

}

= {
ℎ
1

{0.37, 0.45, 0.43, 0.50}
,

ℎ
2

{0.72, 0.83, 0.75, 0.85}
} ;

HFSWG (𝐹 (𝑒
1
) , 𝐹 (𝑒

2
)) =

2

⨁

𝑖=1

𝐹 (𝑒
𝑖
)
𝜔
𝑖

=
{

{

{

ℎ
𝑝

⋃
𝛾
𝑖𝑝
∈𝜇
𝑖𝑝

{∏
2

𝑖=1
𝛾
𝜔
𝑖

𝑖𝑝
}

| 𝑝 = 1, 2
}

}

}

= {
ℎ
1

{0.37, 0.43, 0.43, 0.50}
,

ℎ
2

{0.65, 0.71, 0.73, 0.80}
} .

(28)

5. Multicriteria Group Decision Making
Approach with HFSSs

Consider a MCGDM with hesitant fuzzy soft information,
and assume there are n alternatives𝑈 = {ℎ

1
, ℎ
2
, . . . , ℎ

𝑛
} andm

criteria 𝐸 = {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑚
}, and the weight vector of criteria

is 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑚
), where 𝜔

𝑗
≥ 0 (𝑗 = 1, 2, . . . , 𝑚)

and ∑
𝑚

𝑗=1
𝜔
𝑗
= 1. Suppose that there are 𝑘 decision-makers

𝐷 = {𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑘
}, whose corresponding weight vector

is 𝜂 = (𝜂
1
, 𝜂
2
, . . . , 𝜂

𝑘
). Then a MCGDM problem can be

concisely expressed by 𝑘HFSSs as follows:

𝐹
𝑘
(𝑒
𝑖
) = {

ℎ
𝑗

𝜇
𝑖𝑗

| 𝑗 = 1, 2, . . . , 𝑛} (𝑖 = 1, 2, . . . , 𝑚) . (29)

To obtain the best alternative, the steps of the proposed
MCGDM approach with HFSSs are given as follows.

Step 1 (normalize the decision information). For benefit-type
criteria, no further action need be taken. However, for cost-
type criteria, the negation operator given in Definition 16
need be used. The normalized information can be denoted
as follows:

𝐹 (𝑒
𝑖
) =

{{{{{{

{{{{{{

{

{

ℎ
𝑗

𝜇
𝑖𝑗

} , 𝑗 ∈ 𝐵
𝑇

{

{

{

ℎ
𝑗

∪
𝛾
𝑖𝑗
∈𝜇
𝑖𝑗

{1 − 𝛾
𝑖𝑗
}

}

}

}

, 𝑗 ∈ 𝐶
𝑇

(𝑖 = 1, 2, . . . , 𝑚; 𝑗 = 1, 2, . . . , 𝑛) .

(30)

Here, 𝐵
𝑇
is the set of benefit-type criteria and𝐶

𝑇
is the set

of cost-type criteria.

Step 2 (aggregate the HFSEs of each decision-maker). Calcu-
late the comprehensive evaluation values of each alternative
for each decision-maker by using the GHFSWAor GHFSWG
operator:
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𝐹
𝑘
(𝑒) = GHFSWA

𝜆
(𝐹
𝑘
(𝑒
1
) , 𝐹
𝑘
(𝑒
2
) , . . . , 𝐹

𝑘
(𝑒
𝑛
)) = (

𝑛

⨁

𝑖=1

𝜔
𝑖
(𝐹
𝑘
(𝑒
𝑖
))
𝜆

)

1/𝜆

=
{

{

{

ℎ
𝑗

⋃
𝛾
𝑖𝑗
∈𝜇
𝑖𝑗

{𝑘−1 ((1/𝜆) 𝑘 (𝑙−1 (∑
𝑛

𝑖=1
𝜔
𝑖
𝑙 (𝑘−1 (𝜆𝑘 (𝛾

𝑖𝑗
))))))}

| 𝑗 = 1, 2, . . . , 𝑚
}

}

}

(𝑖 = 1, 2, . . . , 𝑛) ,

(31)

or

𝐹
𝑘
(𝑒
󸀠
) = GHFSWG

𝜆
(𝐹
𝑘
(𝑒
1
) , 𝐹
𝑘
(𝑒
2
) , . . . , 𝐹

𝑘
(𝑒
𝑛
)) =

1

𝜆
(

𝑛

⨁

𝑖=1

(𝜆𝐹
𝑘
(𝑒
𝑖
))
𝜔
𝑖

)

=
{

{

{

ℎ
𝑗

⋃
𝛾
𝑖𝑗
∈𝜇
𝑖𝑗

{𝑙−1 ((1/𝜆) 𝑙 (𝑘−1 (∑
𝑛

𝑖=1
𝜔
𝑖
𝑘 (𝑙−1 (𝜆𝑙 (𝛾

𝑖𝑗
))))))}

| 𝑗 = 1, 2, . . . , 𝑚
}

}

}

(𝑖 = 1, 2, . . . , 𝑛) .

(32)

Step 3 (aggregate the comprehensive HFSEs of all decision–
makers). Calculate the overall values by using the HFSWA
or HFSWG operator:

𝐹 (𝑒) = HFSWA (𝐹
1
(𝑒) , 𝐹
2
(𝑒) , . . . , 𝐹

𝑘
(𝑒)) =

𝑘

⨁

𝑖=1

𝜂
𝑖
𝐹
𝑖
(𝑒)

=
{

{

{

ℎj

⋃
𝛾
𝑖𝑗
∈𝜇
𝑖𝑗

{𝑙−1 (∑
𝑘

𝑖=1
𝜂
𝑖
𝑙 (𝛾
𝑖𝑗
))}

| 𝑗 = 1, 2, . . . , 𝑚
}

}

}

,

(33)

or

𝐹 (𝑒) = HFSWG (𝐹
1
(𝑒
󸀠
) , 𝐹
2
(𝑒
󸀠
) , . . . , 𝐹

𝑘
(𝑒
󸀠
))

=

𝑘

⨁

𝑖=1

𝐹
𝑘
(𝑒
󸀠
)
𝜂
𝑖

=
{

{

{

ℎ
𝑗

⋃
𝛾
𝑖𝑗
∈𝜇
𝑖𝑗

{𝑘−1 (∑
𝑘

𝑖=1
𝜂
𝑖
𝑘 (𝛾
𝑖𝑗
))}

| 𝑗 = 1, 2, . . . , 𝑚
}

}

}

.

(34)

Step 4. Rank the HFNs 𝜇
𝑖
(𝑖 = 1, 2, . . . , 𝑛) of the alternative

ℎ
𝑖
(𝑖 = 1, 2, . . . , 𝑛) by using the ranking method described in

Definitions 11–13.

Step 5. Rank all the alternatives and select the best one(s) in
accordance with the ranking of 𝜇

𝑖
(𝑖 = 1, 2, . . . , 𝑛).

6. Illustrative Example

In this section, we cite the commonly used example [27] and
extend it to the hesitant fuzzy soft environment.

Mr. X’s family wants to buy an attractive house consid-
ering three criteria: being beautiful (𝑒

1
), being cheap (𝑒

2
) and

being in the green surroundings (𝑒
3
), respectively.Theweight

of the criteria is 𝜔 = (0.3, 0.3, 0.4). The family can make their
choice among four houses 𝑈 = {ℎ

1
, ℎ
2
, ℎ
3
, ℎ
4
}. Mr. X, his

wife, and his son have their own opinions about the given
houses, whose corresponding weight vector is (0.5, 0.3, 0.2).
They make their evaluations for four houses according to
three criteria 𝐸 = {𝑒

1
, 𝑒
2
, 𝑒
3
} and the evaluation values are in

the form of HFSSs, as shown in Tables 4, 5, and 6.

6.1. The Decision Making Procedure Based on HFSSs. To
obtain the best alternative, let 𝜆 = 1, 𝑘(𝑡) = − log(𝑡), and
then the following steps are given.

Step 1 (normalize the decision information). The criteria are
of benefit-type, so no transformation is required.

Step 2 (aggregate the HFSEs of each decision-maker). By
using the GHFSWA operator, the comprehensive evaluation
values of Mr. X are

𝐹
1
(𝑒)

= GHFSWA (𝐹
1
(𝑒
1
) , 𝐹
1
(𝑒
2
) , 𝐹
1
(𝑒
3
))

= {
ℎ
1

{0.568, 0.468, 0.551, 0.448}
,

ℎ
2

{0.519, 0.493, 0.457, 0.427}
,

ℎ
3

{0.741, 0.597, 0.717, 0.561, 0.731, 0.574, 0.707, 0.545}
,

ℎ
4

{0.645}
} .

(35)

The comprehensive evaluation values of Mrs. X are

𝐹
2
(𝑒) = GHFSWA (𝐹

2
(𝑒
1
) , 𝐹
2
(𝑒
2
) , 𝐹
2
(𝑒
3
))

= {
ℎ
1

{0.848}
,

ℎ
2

{0.703, 0.650}
,

ℎ
3

{0.482}
,

ℎ
4

{0.735}
} .

(36)
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Table 4: Mr. X’s evaluation for the alternative houses.

𝑈 Beautiful Cheap In the green surroundings
ℎ
1

{0.3, 0.2} {0.9, 0.8} {0.1}

ℎ
2

{0.8, 0.7} {0.3} {0.3, 0.2}

ℎ
3

{0.2, 0.1} {0.7, 0.6} {0.9, 0.7}

ℎ
4

{0.7} {0.1} {0.8}

Table 5: Mrs. X’s evaluation for the alternative houses.

𝑈 Beautiful Cheap In the green surroundings
ℎ
1

{0.8} {0.8} {0.9}

ℎ
2

{0.5} {0.7} {0.8, 0.7}

ℎ
3

{0.7} {0.4} {0.3}

ℎ
4

{0.7} {0.9} {0.5}

Table 6: The evaluation of Mr. X for the alternative houses.

𝑈 Beautiful Cheap In the green surroundings
ℎ
1

{0.7} {0.5} {0.8, 0.7}

ℎ
2

{0.8} {0.8} {0.5}

ℎ
3

{0.7} {0.1} {0.6}

ℎ
4

{0.5, 0.4} {0.9} {0.7}

The comprehensive evaluation values of Mr. X’s son are

𝐹
3
(𝑒) = GHFSWA (𝐹

3
(𝑒
1
) , 𝐹
3
(𝑒
2
) , 𝐹
3
(𝑒
3
))

= {
ℎ
1

{0.703, 0.650}
,

ℎ
2

{0.711}
,

ℎ
3

{0.532}
,

ℎ
4

{0.748, 0.734}
} .

(37)

By using the GHFSWG operator, the comprehensive
evaluation values of Mr. X are

𝐹
1
(𝑒
󸀠
)

= GHFSWG (𝐹
1
(𝑒
1
) , 𝐹
1
(𝑒
2
) , 𝐹
1
(𝑒
3
))

= {
ℎ
1

{0.269, 0.259, 0.238, 0.230}
,

ℎ
2

{0.403, 0.342, 0.387, 0.329}
,

ℎ
3

{0.532, 0.481, 0.508, 0.459, 0.432, 0.390, 0.412, 0.373}
,

ℎ
4

{0.412}
} .

(38)

The comprehensive evaluation values of Mrs. X are

𝐹
2
(𝑒
󸀠
) = GHFSWG (𝐹

2
(𝑒
1
) , 𝐹
2
(𝑒
2
) , 𝐹
2
(𝑒
3
))

= {
ℎ
1

{0.839}
,

ℎ
2

{0.668, 0.633}
,

ℎ
3

{0.422}
,

ℎ
4

{0.660}
} .

(39)

The comprehensive evaluation values of Mr. X’s son are

𝐹
3
(𝑒
󸀠
) = GHFSWG (𝐹

3
(𝑒
1
) , 𝐹
3
(𝑒
2
) , 𝐹
3
(𝑒
3
))

= {
ℎ
1

{0.668, 0.633}
,

ℎ
2

{0.663}
,

ℎ
3

{0.367}
,

ℎ
4

{0.682, 0.638}
} .

(40)

Step 3 (aggregate the comprehensive HFSEs of all decision–
makers). By utilizing the HFSWA operator, the overall HFSS
𝐹(𝑒) can be obtained as follows:

𝐹 (𝑒)

= HFSWA (𝐹
1
(𝑒) , 𝐹
2
(𝑒) , 𝐹
3
(𝑒))

= {
ℎ
1

{0.707, 0.697, 0.675, 0.664, 0.701, 0.691, 0.669, 0.658}
,

ℎ
2

{0.624, 0.605, 0.614, 0.595, 0.600, 0.580, 0.590, 0.569}
,

ℎ
3

{0.641, 0.552, 0.625, 0.533, 0.634, 0.540, 0.618, 0.524}
,

ℎ
4

{0.696, 0.693}
} .

(41)

By utilizing HFSWG operator, the overall HFSS 𝐹(𝑒󸀠) can
be obtained as follows:

𝐹 (𝑒
󸀠
)

= HFSWG (𝐹
1
(𝑒
󸀠
) , 𝐹
2
(𝑒
󸀠
) , 𝐹
3
(𝑒
󸀠
))

= {
ℎ
1

{0.454, 0.449, 0.445, 0.441, 0.427, 0.422, 0.420, 0.415}
,

ℎ
2

{0.518, 0.510, 0.477, 0.470, 0.508, 0.500, 0.468, 0.461}
,

ℎ
3

{0.461, 0.438, 0.450, 0.428, 0.415, 0.395, 0.405, 0.386}
,

ℎ
4

{0.525, 0.518}
} .

(42)

Step 4. Rank the HFNs 𝜇
𝑖
(𝑖 = 1, 2, . . . , 4) of the alternative

ℎ
𝑖
(𝑖 = 1, 2, . . . , 4) by using the ranking method described in

Definitions 11–13.

The ranking results of 𝑠(𝜇
𝑖
) (𝑖 = 1, 2, 3, 4) are shown in

Table 7.

Step 5. Rank all the alternatives and select the best one(s) in
accordance with the ranking of 𝑠(𝜇

𝑖
) (𝑖 = 1, 2, . . . , 4).

Obviously, the best alternative is ℎ
4
, and the worst

alternative is ℎ
3
.
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Table 7: Ranking of the alternatives by utilizing 𝑘(𝑡) = − log(𝑡).

𝑠(𝜇
1
) 𝑠(𝜇

2
) 𝑠(𝜇

3
) 𝑠(𝜇

4
) Ranking

HFSWA 0.683 0.597 0.583 0.695 𝑠(ℎ
4
) > 𝑠(ℎ

1
) > 𝑠(ℎ

2
) > 𝑠(ℎ

3
)

HFSWG 0.434 0.489 0.422 0.522 𝑠(ℎ
4
) > 𝑠(ℎ

2
) > 𝑠(ℎ

1
) > 𝑠(ℎ

3
)

Table 8: Ranking of the alternatives by utilizing 𝑘(𝑡) = log((2−𝑡)/𝑡).

𝑠(𝜇
1
) 𝑠(𝜇

2
) 𝑠(𝜇

3
) 𝑠(𝜇

4
) Ranking

HFSWA 0.658 0.582 0.563 0.680 𝑠(ℎ
4
) > 𝑠(ℎ

1
) > 𝑠(ℎ

2
) > 𝑠(ℎ

3
)

HFSWG 0.474 0.506 0.447 0.555 𝑠(ℎ
4
) > 𝑠(ℎ

2
) > 𝑠(ℎ

1
) > 𝑠(ℎ

3
)

Table 9: Ranking of the alternatives by utilizing different 𝜆 in
GHFSWA.

𝜆 𝑠(ℎ
1
) 𝑠(ℎ

2
) 𝑠(ℎ

3
) 𝑠(ℎ

4
) The final ranking

𝜆 = 1 0.683 0.597 0.583 0.695 𝑠(ℎ
4
) > 𝑠(ℎ

1
) > 𝑠(ℎ

2
) > 𝑠(ℎ

3
)

𝜆 = 2 0.710 0.617 0.612 0.716 𝑠(ℎ
4
) > 𝑠(ℎ

1
) > 𝑠(ℎ

2
) > 𝑠(ℎ

3
)

𝜆 = 5 0.756 0.664 0.662 0.752 𝑠(ℎ
1
) > 𝑠(ℎ

4
) > 𝑠(ℎ

2
) > 𝑠(ℎ

3
)

𝜆 = 10 0.788 0.703 0.698 0.783 𝑠(ℎ
1
) > 𝑠(ℎ

4
) > 𝑠(ℎ

2
) > 𝑠(ℎ

3
)

Table 10: Ranking of the alternatives by utilizing different 𝜆 in
GHFSWG.

𝜆 𝑠(ℎ
1
) 𝑠(ℎ

2
) 𝑠(ℎ

3
) 𝑠(ℎ

4
) The final ranking

𝜆 = 1 0.434 0.489 0.422 0.522 𝑠(ℎ
4
) > 𝑠(ℎ

2
) > 𝑠(ℎ

1
) > 𝑠(ℎ

3
)

𝜆 = 2 0.409 0.470 0.385 0.462 𝑠(ℎ
2
) > 𝑠(ℎ

4
) > 𝑠(ℎ

1
) > 𝑠(ℎ

3
)

𝜆 = 5 0.366 0.437 0.309 0.378 𝑠(ℎ
2
) > 𝑠(ℎ

4
) > 𝑠(ℎ

1
) > 𝑠(ℎ

3
)

𝜆 = 10 0.334 0.399 0.255 0.318 𝑠(ℎ
2
) > 𝑠(ℎ

1
) > 𝑠(ℎ

4
) > 𝑠(ℎ

3
)

6.2. Sensitivity Analysis and Discussion. In this subsection,
different t-norms as well as the parameter 𝜆 are adopted to
calculate the same example given in Section 6.1.

Case 1. If Einstein t-norm and t-conorm are used to handle
hesitant fuzzy soft information, then 𝑘(𝑡) = log((2 − 𝑡)/𝑡) and
the ranking results of 𝑠(ℎ

𝑖
) (𝑖 = 1, 2, 3, 4) are shown in Table 8.

Obviously, the rankings of the alternatives in Table 8, got
by using 𝑘(𝑡) = log((2 − 𝑡)/𝑡), are completely the same as
those got by using 𝑘(𝑡) = − log(𝑡), shown in Table 7. So using
different t-norms could lead to no influence on the results.

Case 2. In the following, in order to illustrate the influence of
the parameter 𝜆 on this example, we use different values of 𝜆
in Step 2 of the proposed approach to rank the alternatives.
And the ranking results are shown in Tables 9 and 10.

From Tables 9 and 10, it can be seen that if the value
of 𝜆 is one, then the best alternative is ℎ

4
and the worst

alternative is ℎ
3
, no matter which operators are used in Step

2 of the proposed approach. However, either the GHFSWA
or GHFSWA operator is used in Step 2, and different 𝜆 for
the same operator may lead to different aggregation results

and the final ranking of alternatives is also different as the
parameter changes. On the other hand, if 𝜆 remains the
same, the results obtained by using the GHFSWA operator
are also different from those by the GHFSWG operator. By
using theGHFSWAoperator, decision-makers emphasize the
comprehensive priority of all criteria. By using the GHFSWG
operator, decision-makers avoid choosing the alternatives
that have poor performances in some criteria. Apparently,
regardless of using different operators or different𝜆, theworst
alternative is always ℎ

3
while the best alternative may be

one of the other three alternatives. Thus, Mr. X’s family can
properly select the desirable alternative according to their
interests and the actual needs.

In a word, the developed approach based on different
t-norms and t-conorms can be used to deal with different
relationships among the aggregated arguments. It can handle
MCGDM problems in a flexible and objective manner under
hesitant fuzzy soft environment and canprovidemore choices
for decision-makers. At the same time, different results
may be obtained by using different aggregation operators,
which reflected the preferences of decision-makers. The
main advantages of the approach proposed in this paper are
not only its ability to effectively deal with the preference
information expressed by HFSNs, but also its consideration
that different t-norm and t-conorms can lead to different
aggregation operators. This can avoid losing and distorting
the preference information provided, which makes the final
results suitably correspond with real life decision making
problems.

7. Conclusion

In this paper, we introduced hesitant fuzzy soft sets, which
can be regarded as an extension of both a SS and a HFS.
HFSSs can describe the real preferences of decision-makers
and reflect their uncertainty and hesitancy, which permit the
membership degree to have a set of possible values in SSs.
This paper also focuses on MCGDM problems in which the
preferences of decision-makers are expressed by HFSNs. The
newapproach to solving these problems is based on the aggre-
gation operators of HFSNs. Having reviewed the relevant lit-
eratures, operations ofHFSNs based onArchimedean t-norm
and Archimedean t-conorm are defined. Then four aggrega-
tion operators such as the HFSWA, HFSWG, GHFSWA, and
GHFSWA operators are developed. Different t-norms and
different parameters in generalized operators can be used in
MCGDMmethods. Finally, a numerical example is provided
to illustrate the advantages of the proposed approach. From
the example, it can be seen that HFSSs could vividly and
effectively represent various preferences of different decision-
makers and avoid overlooking any subjective intentions of
decision-makers. In the future work, HFSSs can be used to
deal with much more uncertain problems.
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