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ABSTRACT Categorical scores for disease susceptibility or resistance often are recorded in plant breeding.
The aim of this study was to introduce genomic models for analyzing ordinal characters and to assess the
predictive ability of genomic predictions for ordered categorical phenotypes using a threshold model
counterpart of the Genomic Best Linear Unbiased Predictor (i.e., TGBLUP). The threshold model was used to
relate a hypothetical underlying scale to the outward categorical response. We present an empirical applica-
tion where a total of nine models, five without interaction and four with genomic · environment interaction
(G·E) and genomic additive · additive · environment interaction (G·G·E), were used. We assessed the
proposed models using data consisting of 278 maize lines genotyped with 46,347 single-nucleotide poly-
morphisms and evaluated for disease resistance [with ordinal scores from 1 (no disease) to 5 (complete
infection)] in three environments (Colombia, Zimbabwe, and Mexico). Models with G·E captured a sizeable
proportion of the total variability, which indicates the importance of introducing interaction to improve pre-
diction accuracy. Relative to models based on main effects only, the models that included G·E achieved
9–14% gains in prediction accuracy; adding additive · additive interactions did not increase prediction
accuracy consistently across locations.
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Since genomic selection (GS) initially was proposed by Meuwissen
et al. (2001), a large number of plant breeding studies have assessed
the prediction accuracy of GS in different economically important
crops. These studies have used different marker platforms and marker
densities, as well as different parametric and nonparametric statistical
models (e.g., de los Campos et al. 2009, 2010; Heffner et al. 2009,
2010; Crossa et al. 2010, 2011, 2013a,b; Heslot et al. 2012; Pérez-
Rodríguez et al. 2010, 2012). Both simulation and empirical studies
have shown that GS has greater prediction accuracy than standard

pedigree-based prediction, and most of the benefits of GS arise from
obtaining accurate predictions early in the breeding cycle. The success
of genomic prediction is affected by the choice of model, the size of
the training data, the heritability of the trait, the span of linkage
disequilibrium, the marker density, and the strength of the genetic
relationships between the training and validation populations, among
other factors. A number of studies have assessed how these factors
affect prediction accuracy for quantitative traits (Kizilkaya et al. 2014);
however, little has been done with categorical traits. As first pointed
out by Gianola (1980, 1982) and Gianola and Foulley (1983), these
traits cannot be dealt with by the use of Gaussian models.

Several studies support the notion that when the number of
categories is large and the data seem to follow an approximately
normal distribution, failure to address the ordinality of the data is
likely negligible (Atkinson 1988). However, significant bias is observed
when the number of categories is less than five and sample size is not
large enough. In addition, analyzing the data as normally distributed
has less power of detection of effects and often produces estimates of
frequency categories outside the 021 range, which does not make

Copyright © 2015 Montesinos-López et al.
doi: 10.1534/g3.114.016188
Manuscript received October 31, 2014; accepted for publication December 19,
2014; published Early Online December 23, 2014.
This is an open-access article distributed under the terms of the Creative
Commons Attribution Unported License (http://creativecommons.org/licenses/
by/3.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.
1Corresponding author: Biometrics and Statistics Unit, International Maize and
Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, México, D.F., México.
E-mail: j.crossa@cgiar.org

Volume 5 | February 2015 | 291

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
mailto:j.crossa@cgiar.org


sense. These problems often occur when the frequencies are small or
very large. Also, even when treatment means obtained with a normal
approximation can be interpreted as estimates of the proportions of
each category, this is not the case for the variance of their estimates as
the data are binary and polychotomous (Stroup 2012). If the data are
transformed, many of the aforementioned problems remain in a linear
model analysis, given that the most commonly used transformations
are intended to stabilize variance but fail to address the problem of
skewness. Consequently, transformations often are ineffective and, in
addition, express the data on scales that are unfamiliar to those who
use the results of the analysis (Littell et al. 2002).

Categorical traits are scored by assigning a data point to one of
several mutually exclusive and exhaustive ordered categories. If these
scores are treated as continuous variables, as in standard GS linear
models, the following assumptions do not hold: (1) the relationship
between genomic data and phenotypes is linear; (2) phenotypes follow
a normal distribution; and (3) the variance is constant and not a
function of the expected value. Therefore, standard GS linear models
currently used in plant and animal breeding do not meet the as-
sumptions required for categorical data.

Results of empirical and simulation studies indicate that general-
ized linear mixed models (GLMMs) provide more sensible results and
have greater power to identify model effects as statistically significant
(Stroup 2012). In a linear model, the response variable (observation)
equals the sum of explanatory variables plus a residual, and a proba-
bility assumption about the residual is made. In GLMM, the statistical
model for a multinomial variable is expressed in a probability distri-
bution form. It is important to point out that the cumulative probit
model (also known as the threshold model) assumes that the process
that gives rise to the observed categories is an underlying continuous
variable with a standard normal distribution that in many applications
uses the linear predictor with reversed signs for the fixed and random
effects: hc ¼ gc þ Xbþ Zb.

Threshold models have been used in animal GS to relate a
hypothetical underlying scale to the outward categorical response.
For example, González-Recio and Forni (2011) developed versions of
BayesA, Bayesian Lasso, and two machine-learning methods for ana-
lyzing dichotomous traits and showed that the differences between
methods are small, particularly with a large number of quantitative
trait loci. On the other hand, Villanueva et al. (2011) developed a ver-
sion of the BayesB method for dichotomous traits and concluded that
the threshold BayesB method improves GS accuracy when disease-
resistant dichotomous phenotypes are encountered, compared with
accuracies obtained with the linear model. The threshold model
showed an increase in accuracy of up to 16%, as well as significant
advantages when heritability and disease prevalence were low and indi-
viduals were genotyped but not measured (testing set). Both González-
Recio and Forni (2011) and Villanueva et al. (2011) pointed out that
the models they developed for dichotomous phenotypes can easily
be extended to traits with more than two discrete categories.

Recently, Wang et al. (2012) proposed threshold models using
the GS framework and extended three Bayesian methods (BayesA,
BayesB, and BayesCp) to estimate genomic breeding values of animal
threshold traits with more than two categories; they named these
methods extended BayesTA, extended BayesTB, and extended
BayesTCp. They derived computing procedures for the three BayesT
methods by using the Gibbs sampler algorithm. Through a simulation
study, they found that the three BayesT methods generally performed
better than the corresponding standard Bayesian methods, especially
when only two phenotypic categories are present. They also found
that BayesTB and BayesTCp produced similar accuracies and that

both performed better than BayesTA. Also, they addressed how her-
itability, number of quantitative trait loci, incidence, and number of
phenotypic categories affect the performance of the three BayesT
methods. Recently, Kizilkaya et al. (2014) proposed performing geno-
mic prediction of ordinal categorical phenotypes using BayesTCp and
compared it with BayesCp; they found that the accuracies of
BayesTCp for ordinal categorical phenotypes were greater than those
of BayesCp and that there was a greater advantage in using BayesTCp
when the training population was small. These authors pointed out
that a 2.25-fold increase in the training population size for ordinal
categorical phenotypes analyzed as a linear model using BayesCp was
sufficient to achieve an accuracy equal to or greater than that for
continuous phenotypes with a training population size of 1000
individuals.

In plant breeding, the most economically important trait is grain
yield, which is greatly affected by environmental factors, as well as by
genotype · environment interaction (G·E). The GS models first in-
troduced by Meuwissen et al. (2001) were further extended into multi-
environment models that can handle large numbers of individuals
genotyped with large numbers of markers and evaluated in multiple
environments. Burgueño et al. (2012) analyzed multienvironment data
using a multivariate version of the genomic best linear unbiased pre-
dictor (GBLUP). Jarquín et al. (2014) extended GBLUP to incorporate
highly dimensional markers, environmental covariates, and their in-
teractions into a class of random-effects models where main and in-
teraction effects are modeled using Gaussian processes with
covariance functions based on genetic and environmental similarity
among entries. In their study, Jarquín et al. (2014) used as a covariance
function the structure induced by a reaction norm model, and applied
the proposed approach to the grain yield trait in wheat lines evaluated
over multiple years and locations.

However, in plant breeding, many economically important traits,
such as the degree of resistance/susceptibility, are categorical. Despite
this, to our knowledge, threshold models have not been considered
in GS for plant breeding. Therefore, in this study, we introduced a
threshold GS model that is an extension of the GBLUP of Jarquín
et al. (2014) which incorporates G·E and additive · additive · envi-
ronment (G·G·E) interactions. The proposed model was evaluated
using a data set consisting of 278 maize lines scored for resistance to
gray leaf spot (GLS) measured using an ordered categorical scale
[1 (no disease) to 5 (complete infection)] in three environments and
genetic information consisting of 46,347 single-nucleotide polymor-
phisms (SNPs).

MATERIALS AND METHODS

Experimental data

Phenotypic data: The trait analyzed in 278 maize lines was gray leaf
spot (GLS), caused by the fungus Cercospora zeae-maydis, which was
evaluated in three environments, Mexico, Zimbabwe, and Colombia.
GLS is one of the most important foliar diseases of maize worldwide.
The GLS trait was analyzed using an ordinal scale from 1 (no disease),
2 (low infection), 3 (moderate infection), 4 (high infection), to 5
(complete infection). These data are part of the data set previously
analyzed by Crossa et al. (2011) and González-Camacho et al. (2012),
among others.

Genotypic data: Genotypes of all 278 lines were obtained using
53,401 SNPs. Those SNPs with.10% missing values or a minor allele
frequency #0.05 were excluded from the data. Call rate per line was
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considered sufficient (.90%) for all lines. Most lines (250 of 278) had
a call rate greater than 99%. After line-specific quality control (apply-
ing the same quality control to each line separately), the maize data
still contained 46,347 SNPs, which were used in the analysis.

Statistical models

Threshold (cumulative probit) model: Let y ¼ fyijkg (i ¼ 1; . . . ; I;
j ¼ 1; 2; . . . ; J; k ¼ 1; 2; . . . rij; where i represents the environment, j
denotes the genotype and k is the number of replicates of each geno-
type in each environment. The response variable (disease resistance),
yijk, represents an assignment into one of C mutually exclusive and
exhaustive categories (here C=5, I = 3 and J = 278) that follow an
order, since 1 indicates no infection, 2 low infection, 3 moderate in-
fection, 4 high infection, and 5 complete infection. Therefore, in
a GLMM framework, this model can be described by defining the
distribution, the linear predictor and the link function.

Distribution: There are two distributions, one for observations
in the response variable: ðy1ij; y2ij; . . . ; yCijjb; bÞ � MultinomialðNij;
p1ij;p2ij; . . . ;pCijÞ, where b is the I·1 vector of fixed environmental
effects and another distribution for the random effects, b � Nð0;GÞ,
where G is the variance-covariance matrix of b ¼ fbjg and bj is the
effect of line j.

Linear predictor: hcij ¼ gc 2 xTijb2 zTijb, where hcij denotes the
c th link (c ¼ 1; 2; . . . ;C2 1Þ for the fixed and random effects com-
bination, gc is the intercept (threshold) for the c

th link, and xTij and zTij
are known row incidence vectors corresponding to fixed and random
effects in b and b, respectively. Since there are C categories, a total of
C2 1 link functions are required to fully specify the model.

Link function: Cumulative probit fh1ij ¼ F21ðp1ijÞ;h2ij ¼ F21

ðp1ij þ p2ijÞ; . . . ;hðC2 1Þij ¼ F21ðp1ij þ p2ij þ . . . þpðC2 1ÞijÞg.Fð�Þ
is the cumulative distribution function of a standard normal distribu-
tion (probit link) and F21 its corresponding inverse.

The inverse link for this model is given as follows: p1ij ¼ Fðh1ijÞ;
p1ij þ p2ij ¼ Fðh2ijÞ; . . . ;p1ij þ p2ij þ . . .þ pðC2 1Þij ¼ FðhðC2 1ÞijÞ.
Once we have estimates of Fðh1ijÞ;Fðh2ijÞ; . . . ; FðhðC2 1ÞijÞ; we esti-
mate p̂2ij ¼ Fðh2ijÞ 2Fðh1ijÞ, p̂3ij ¼ Fðh3ijÞ2 Fðh2ijÞ,. . .,p̂Cij ¼
12FðhðC2 1ÞijÞ. This threshold model assumes that the process
that gives rise to the observed categories is an underlying contin-
uous variable with a normal distribution lijk ¼ xTijbþ zTijbþ eijk;
where lijk are called “liabilities,” eijk � Nð0; 1Þ (e.g., Gianola 1982,
and Sorensen et al. 1995). Furthermore, to generate ordinal cate-
gorical phenotypes with C categories, the underlying phenotypic
values are mapped to ordinal categorical phenotypes based on threshold
parameters gT ¼ ðgmin , g1 ,⋯, gC2 1 , gmaxÞ with gmin ¼ 2N,
and gmax ¼ N; which are cutpoints of the continuous scale such that
the observed ordinal categorical response (yijkÞ is given by:

yijk ¼

8>><
>>:

1 if 2N, lijk , g1;
2 if g1 , lijk , g2;

⋮
C if gC2 1 , lijk ,N

That is, yijk falls into category C when the latent variable falls into
the cth interval of values. Given b and b, the liabilities lijk are con-
ditionally independent and distributed as

lijkjb;b � NðxTijbþ zTij b;s
2
e ¼ 1Þ

where s2
e is fixed to 1 to achieve identifiability in the likeli-

hood because the liabilities are unobservable. Also, one of the

thresholds was fixed (g1 ¼ 0Þ to center the distribution.
Therefore,

P
�
lijk # gcjb; b

�¼ F
�
gc2 xTijb2 zTij b

�
 for c ¼ 1; 2; . . . ;C2 1:

Note that gc 2 xTijb2 zTijb is the predictor of the GLMM for the
multinomial data given previously. Then, the conditional probability
that yijk falls into category c (c ¼ 1; . . . ; 5Þ given b,b; and
g ¼ ðgmin; g1; g2; gC2 1; gmaxÞ; is given by

Pðyijk ¼ cjb; b;gÞ ¼ Pðgc2 1 , lijk , gcjb; b;gÞ
¼ F

�
gc2 xTijb2 zTijkb

�

2F
�
gc2 1 2 xTijb2 zTij b

�
(1)

The data are assumed conditionally independent, given b, b, and g.
Therefore, the sampling model is

pðyjb; b;gÞ ¼ QI
i¼1

QJ
j¼1

Qrij
k¼1

PC
c¼1

Ifyijk¼cgPðyijk
��b; b;gÞ

¼ QI
i¼1

QJ
j¼1

Qrij
k¼1

PC
c¼1

Ifyijk¼cg
h
F
�
gc 2 xTijb2 zTij b

�

2F
�
gc2 1 2 xTijb2 zTij b

�i

where Ifyijk¼cg is an indicator function taking a value of 1 if the
response falls into category c; and 0 otherwise.

Models fitted: Based on Jarquín et al. (2014), nine models are pro-
posed for analyzing these data sets (Table 1). The sequence of models
described below is similar to those presented by Jarquín et al. (2014)
for a continuous variable. However, for simplicity, only the underlying
latent variables (lijkÞ are presented together with the distribution of the
corresponding random effects that give rise to the observed categorical
phenotypes, given that a probit link function is assumed by all models
described below.

Model 1: The first model used to explain the liability value of the
kth individual in the jth line at the ith environment is

lijk ¼ Ei þ Lj þ eijk (2)

where Ei is the fixed effect of the ith environment and coefficient
regressions were assigned a flat Gaussian prior with mean zero and

n Table 1 Nine models used to fit the data set

Model
Main Effects Interaction

E L G G·G G·E G·G·E

1 X X
2 X X
3 X X X
4 X X X
5 X X X X
6 X X X
7 X X X X X
8 X X X X
9 X X X X X X

E, environment; L, line; G, marker covariates; G·G, additive · additive epistasis
term; G·E, environment · marker interaction; G·G·E, additive · additive epis-
tasis · environment interaction term.
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variance equal to 1 · 1010, Lj is the random effect of the jth line which
is assumed to be identically and independently distributed (IID) as
normal, Lj �IID Nð0;s2

LÞ; and eijk is an error term distributed as
eijk �IID Nð0; 1Þ. The unknown variance parameters (s2

LÞ were
assigned scaled-inverted x2 distributions as prior. This density is
indexed by two hyper-parameters: degrees of freedom (df) and the
scale (S) parameter. In this case, we defined these values using the
internal rules provided by BGLR. By default, that is, if the user does
not specify these parameters, BGLR assigns mildly informative pri-
ors with df=5 and a scale parameter that gives a prior mode, S

dfþ2,
that obeys a prior variance partition where 50% of the variance of
the liability score corresponds to error terms, and the remaining 50%
to the random effects included in the model. The internal rules
implemented in BGLR are fully explained in Pérez-Rodríguez and
de los Campos (2014).

Model 2: The second model is an extension of the GBLUP for
ordered categorical phenotypes. This model was obtained from model
1 by replacing the line effect, Lj, with a random effect that incorpo-
rates marker information using the genomic relationship matrix G.
Model 2 expresses the liability value of the kth individual in the jth line
in the ith environment as

lijk ¼ Ei þ gj þ eijk (3)

with gj ¼
Pp
m¼1

xjmbm; where gj represents an approximation to the

true genetic value of the jth line, xjm is the genotype of the jth line at
the mth marker (scored as 0 or 2 for genotypes that are homozygous
at minor and major allele frequency, respectively, and 1 for hetero-
zygous genotypes), and bm is the effect of the mth marker with
bm �IID Nð0;s2

bÞ, ðm ¼ 1; . . . ; pÞ. Therefore, g ¼ Xbm contains the
genomic values of all lines, and g ¼ ðg1; . . . ; g278Þ9 is assumed to
follow the normal distribution g � Nð0;Gs2

gÞ; where G is a
marker-derived genomic relationship matrix that has an expected
value equal to (under ideal conditions) twice the coefficient of par-
entage matrix of lines, and s2

g is a genomic variance.

The entries of G were computed as Gjj’ ¼ p21 Pp
m¼1

zjmðzj’mÞ, where
zjm ¼ ðxjm 2 2pmÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmð12 pmÞ

p
and pm is the estimated frequency

of the mth marker. Subtracting 2pm from the genotype codes (center-
ing) and dividing each marker covariate by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmð12 pmÞ

p
(standard-

izing) is not strictly needed; however, standardization allows
interpreting s2

g as a genomic variance. G was constructed using the
genotypes of all 278 lines.

Model 3: The third model is an extension of model 2 that ac-
counts for “marked” epistatic additive · additive relationships,
gA � Nð0;GAs

2
AgÞ; where gA represents a regression on genomic

epistatic additive · additive relationships with GA ¼ G#G (# is
the element-wise multiplication operator, that is, a Hadamard prod-
uct). The prior used for s2

Ag was a scaled-inverted x2 distribution. In
this model, the liability score of the kth individual in the jth line in the
ith environment is equal to

lijk ¼ Ei þ gj þ gAj þ eijk (4)

Model 4: The third model combines model 1 and model 2 as

lijk ¼ Ei þ Lj þ gj þ eijk (5)

Model 4 partitions the line effects into two components, one that is
explained by a regression on markers (gj) and another representing

variation among lines that is not explained by regression on
markers.

Model 5: This model is an extension of model 4 that accounts for
epistatic additive · additive relationships, with liability equal to

lijk ¼ Ei þ Lj þ gj þ gAj þ eijk (6)

Note that none of the aforementioned models accounts for G·E
(gEijÞ and G·G·E (gAEijÞ interactions. Next, we consider models
that incorporate G·E and G·G·E.

Model 6: Model 6 considers model 2 but, in addition to the main
effects of environments (E) and markers (G), it takes into account the
interaction between markers and environments (G·E). Because the
data include multiple phenotypic records per line, the genetic covari-
ance structure of genetic effects in the full data set is equal to ZgGZT

g ,
where Zg is the incidence matrix for the vector of additive genetic
effects of markers (Jarquín et al. 2014). Therefore, the covariance
structure for the vector of interaction terms in the full data set
gE ¼ fgEijg is the Hadamard product of ZgGZT

g and ZEZT
E ; where

ZE represents the incidence matrix of the effects of environments (i.e.,
the matrix that connects phenotypes with environments) (Jarquín
et al. 2014). Therefore, the liability value of the kth individual in the
jth line in the ith environment is explained by

lijk ¼ Ei þ gj þ gEij þ eijk (7)

where g � Nð0;Gs2
gÞ; gE � Nð0;ZgGZT

g #ZEZT
Es

2
gEÞ and eijk �IID

Nð0; 1Þ.
Model 7: Model 7 extends model 6 to account for marked epistatic

additive · additive relationships and the interaction between the ep-
istatic additive · additive term and the environments. The liability
value of the kth individual in the jth line in the ith environment is now

lijk ¼ Ei þ gj þ gAj þ gEij þ gAEij þ eijk (8)

where gAE � Nð0;ZgGAZT
g #ZEZT

Es
2
gAEÞ with GA ¼ G#G.

Model 8: Model 8 extends model 6 by adding the random effect of
the lines (Lj). Thus, the liability value of the kth individual in the jth

line in the ith environment is explained by

lijk ¼ Ei þ Lj þ gj þ gEij þ eijk (9)

Model 9: Finally, model 9 extends model 8 by adding marked
epistatic additive · additive relationships and the interaction between
the epistatic additive · additive term and the environments. The
liability value of the kth individual in the jth line in the ith environment
is explained by

lijk ¼ Ei þ Lj þ gj þ gAj þ gEij þ gAEij þ eijk (10)

Implementation with BGLR: The nine models were fitted using the
R-package BGLR (de los Campos and Pérez-Rodríguez 2013) in the
R-software (R Core Team 2014). Parametric and semi-parametric
models with both molecular marker and pedigree data can be fitted
in this R package. It also allows including various random effects with
user-defined covariance matrices. In Appendix 1, we provide the R
code used for fitting the most parameterized model (model 9). The
implementation of the other models is similar to that of model 9 but
with fewer random effects. All these models are implemented via
a Bayesian approach using the Gibbs sampler algorithm, and sampling
from the fully conditional distributions, as shown in Sorensen et al.
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(1995). For more details about Gibbs sampler implementation used in
the R-package BGLR (de los Campos and Pérez-Rodríguez 2013) for
binary and ordered categorical phenotypes, refer to Sorensen et al.
(1995). The prior distributions of the variance components of all the
models are described in the appendix of the BGLR package (de los
Campos and Pérez-Rodríguez 2013).

Assessing predictive ability for ordered categorical phenotypic
data: The performance of the models was evaluated employing
a cross-validation approach to estimate their prediction accuracies. To
that end, we split each of the data sets into two parts (training and
validation sets), where the training set was used to fit the model and
the validation set was used to evaluate the training model’s prediction
ability. A total of 20 random partitions were performed, and the
validation results were averaged over the 20 partitions with observa-
tions assigned to training and testing completely at random. This
represents a prediction problem similar to that labeled as CV2 in
Burgueño et al. (2012), where the performance of some lines was
observed in some environments (training set) but not in others (test-
ing set).

Measuring prediction accuracy for categorical traits is more
challenging than for quantitative traits, where the Euclidean metric
appears as a natural choice. A variety of scoring rules have been pro-
posed to assess accuracy for categorical traits. A scoring rule provides
a summary measure for evaluating probabilistic prediction by as-
signing a numerical score based on the predictive distribution and on
the event or value that materializes (Garthwaite et al. 2005; Kneib
et al. 2007). This goal is achieved in a reasonable way by taking in-
to account not only point prediction but the whole predictive
distribution.

In the case of a multinomial model, this predictive distribution is
simply obtained by computing the probabilities for all C categories of
the response according to the estimated model, i.e., we obtain the
predictive distribution p̂i ¼ ðp̂i1; p̂i2; . . . ; p̂iC), derived from the es-
timated model for observation i, and ci is the realized value for this
observation in the data set. A scoring rule is any real-value function
Sðp̂ic; ciÞ, ci ¼ 1; 2; . . . ;C, that assigns a value to the event that cat-
egory c is observed when p̂ic is the predictive probability for individual
i in category c. A suitable score is the sum

S ¼
Xn
i¼1

Sðp̂ic; ciÞ

where S is the sum over all observations in the test data set. The hit
rate (i.e., the percentage of true positive predictions) and the log-
likelihood are two popular scoring rules. However, both have the
drawback that they involve only one of the probabilities of the pre-
dictive distribution (p̂i). In addition, it has been well documented
that the log-likelihood score is sensitive to extreme observations. In
our applications, we utilize the Brier score (Brier 1950), which is
equal to

BS ¼ n21
Xn
i¼1

XC
c¼1

ðp̂ic2dicÞ2 (11)

where dic takes the value of 1 if the ordinal categorical response
observed for individual i falls into category c, and dic ¼ 0 otherwise.
This scoring rule uses all the information contained in the predictive
distribution, not just a small part such as the hit rate or the log-
likelihood score. Therefore, it is a reasonable choice for comparing
categorical regression models, even though there are other scoring

rules that also have good properties. The range of BS in equation
(11) is between 0 and 2. For this reason, we took BS=2; to get the
Brier score bound between 0 and 1, and lower scores imply better
predictions.

Data and software: The phenotypic data for GLS in three environ-
ments (Mexico, Zimbabwe, and Colombia) for the 278 maize lines, the
46,347 SNPs data and the R scripts developed to fit the predictive
models used in this study are given in the GLScode.rar file deposited
at http://repository.cimmyt.org/xmlui/handle/10883/4128. The BGLR
package (de los Campos and Pérez-Rodríguez 2013) can be down-
loaded from CRAN.

RESULTS
Figure 1 shows the relative frequencies of each category for the whole
data set and for each country. The whole data set contains 2798
observations; category 3 has the most observations (923), and category
1 is the one with the fewest (234). This pattern was also observed in
Zimbabwe (1485 total observations; 37 in category 1 and 581 in cat-
egory 3) but somewhat more pronounced. Colombia had 832 obser-
vations, with 215 in category 3, 208 in category 2, and only 63 in
category 5. Mexico had 481 observations, most of them in category 2
(212), and category 1 had the fewest data (26 observations).

When applying eigenvalue decomposition to the genomic re-
lationship matrix, 82 eigenvectors (components) of a total of 278 were
needed to explain 80% of the total variance of genotypes. The first
eigenvector captured 13.68% of the total variation of marker genotypes,
whereas the second eigenvector explained 6.28% of the total variation.
For these reasons, we can say that there is some, but not strong,
evidence of population (and family) stratification, indicating a relatively
diverse set of lines. This was expected because these lines came from
different breeding programs.

Table 2 gives the estimates of the fixed (environment) effects and
threshold parameters for each of the nine models; the first five models
(125) had similar parameter estimates (fixed and threshold) that were
different from those of models 629. Models 629 produced similar
fixed and threshold parameter estimates. In plant and animal breed-
ing, the focus is on estimating response probabilities associated with
specific linear parameter combinations (Gianola and Foulley 1983).
Figure 2 gives the probabilities for each ordinal categorical phenotype
for model 9, for the whole data set, and for each country. In Figure 2,
the average probabilities for category 5 (complete infection) were
slightly greater than 0.20 (20%) in the whole data set and in each
country. Colombia shows the greatest probability of complete infec-
tion (category 5), but it was only slightly greater than the probabilities
in Mexico and Zimbabwe.

It is important to point out that the average probabilities of high
infection (category 4) were very similar to the average probabilities of
complete infection (category 5) for the whole data set and for each
country, and that no infection (category 1) was the category with the
lowest average probabilities (around 15%). These probability estimates
were very different from estimates obtained based on raw frequencies
(Figure 1) because they take into account the distribution of records
across countries, the structure of lines, and the interaction between
markers and environments (countries). The linear predictor used for
doing this calculation was taken from model 9, which is given in
Equation (10).

Estimates of variance components derived from the full data
analysis are given in Table 3. The interaction (G·E) explained the
largest proportion of the variance of liabilities, with estimated poste-
rior means greater than 1.03 (models 629). The total variance
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explained by model 1 was 1.20, which is 1.7659 times smaller than the
total variance captured by the most parameterized model (model 9),
with a total variance of 2.1191. Also, model 2 (with E and G as main

effects) only captured a total variance equal to 1.1911, which was
1.7791 times smaller than the total variance captured by model 9.
The variance explained by models 3, 4, and 5 were, respectively,

Figure 1 Relative frequency of each category in the whole data set.

n Table 2 Mean and SD of posterior distributions of fixed (environment) effects (b1 for Colombia;b2 for Zimbawe; and b3 for Mexico)
and threshold parameters of the nine proposed models

Model
Mean Fixed Parameters Mean Threshold Parameters

b1 b2 b3 g2 g3 g4 g5

1 22.5108 21.9852 22.3863 23.7668 22.5652 21.6167 20.8285
2 22.5522 22.0165 22.4118 23.8006 22.6059 21.6544 20.8544
3 22.5129 22.0008 22.3791 23.7776 22.5840 21.6313 20.8338
4 22.5397 22.0142 22.4125 23.7951 22.5989 21.6518 20.8497
5 22.5202 21.9898 22.3855 23.7718 22.5675 21.6242 20.8322
6 23.4488 22.7384 23.2335 25.1665 23.4851 22.2005 21.1765
7 23.4497 22.7242 23.2277 25.1629 23.4768 22.2021 21.1821
8 23.4587 22.7354 23.2449 25.1674 23.4795 22.2056 21.1766
9 23.4402 22.7111 23.2167 25.1345 23.4641 22.1834 21.1645

SD Fixed Parameters SD Threshold Parameters
1 0.3362 0.3242 0.3381 0.3525 0.3479 0.3310 0.2951
2 0.3403 0.3284 0.3415 0.3566 0.3518 0.3366 0.3028
3 0.3422 0.3311 0.3438 0.3593 0.3545 0.3391 0.3031
4 0.3242 0.3132 0.3256 0.3389 0.3341 0.3215 0.2903
5 0.3321 0.3210 0.3338 0.3479 0.3429 0.3289 0.2956
6 0.4749 0.4515 0.4720 0.5324 0.4923 0.4490 0.3910
7 0.4801 0.4569 0.4770 0.5338 0.4953 0.4564 0.3997
8 0.4791 0.4571 0.4756 0.5316 0.4949 0.4561 0.4014
9 0.4819 0.4588 0.4783 0.5352 0.4981 0.4576 0.4007

SD, standard deviation.
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1.7755, 1.7767, and 1.782 times smaller than the variance captured by
model 9. However, models 6, 7, and 8 captured a total variance equal
to 2.1321, 2.0967, and 2.116, respectively, which were almost identical
to the total variance captured by model 9; model 6 captured the
highest variability. It should be noted that in models 6, 7, 8, and 9,
the percentages of variance explained by the interaction term (G·E)
were 51.68, 49.42, 51.23, and 50.19%, respectively, clearly indicating
that the interaction term was the most important source of variability
in these models. It should be noted that if interactions were omitted,
a large proportion of the variability in models 6 and 8 was not cap-
tured by main effects and the variance of the error term eijk was the
greatest source of variability. Another important finding was that the
additive · additive epistatic terms explained 1.72, 1.06, 0.58, and
0.46% of the total variability in models 3, 5, 7, and 9, respectively,
which means that adding this type of epistasis is not very important
for this trait in these populations.

Table 4 presents the Brier scores of the validation samples for each
country and for the nine models. Because phenotype was ordinal
categorical, we used Brier scores instead of Pearson’s correlation co-
efficient for assessing prediction accuracy, because the Brier scores are
bounded between 0 and 1, and values closer to zero imply better
prediction accuracy. In Table 4, models 6, 7, 8, and 9 presented the
lowest Brier scores, so these four models had better prediction ability.
Models 125 showed the worst prediction ability. In Colombia, the
prediction ability of model 9 was 19.85% greater than that of model 1.
In Mexico, the increase in the prediction ability of model 9 over model
1 (the simplest model) was 11.26%, while in Zimbabwe this increase
was 8.71%. Although Table 3 showed that inclusion of the interaction
term (G·E) explained the largest proportion of variability in models 6
and 8, this did not produce a large increase in the prediction ability of
these two models over that of the models without interactions (models
1, 2, and 4). This may be due to three reasons: (1) predictive power

Figure 2 Estimated probability of each category in the whole data set and of each location in model 9.

n Table 3 Estimated variance components of the nine proposed models

Model L G G·G G·E G·G·E TotVar

1 0.2000 (16.67) 1.2000
2 0.1911 (16.04) 1.1911
3 0.1730 (14.50) 0.0205 (1.72) 1.1935
4 0.0112 (0.94) 0.1815 (15.22) 1.1927
5 0.0090 (0.76) 0.1676 (14.09) 0.0126 (1.06) 1.1892
6 0.0303 (1.42) 1.1018 (51.68) 2.1321
7 0.0165 (0.79) 0.0121 (0.58) 1.0362 (49.42) 0.0319 (1.52) 2.0967
8 0.0117 (0.55) 0.0202 (0.95) 1.0841 (51.23) 2.116
9 0.0080 (0.38) 0.0122 (0.58) 0.0097 (0.46) 1.0636 (50.19) 0.0256 (1.21) 2.1191

Numbers in parenthesis are the percentages of variance explained by each component. L, line; G, marker covariates; G·G, additive · additive epistasis term; G·E,
environment · marker interaction; G·G·E, additive · additive epistasis · environment interaction term; TotVar, total variance explained by each model including the
variance of eijk ; which is equal to 1.
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differs from goodness of fit, that is, a model may fit a particular data
set well even though the predictive power the model provides is small;
(2) even though the added interaction term explained the largest pro-
portion of variability in models 6 and 8, the total variability explained
in all models was not large; and (3) the set of lines was relatively
diverse. However, including the interaction terms G·E plus the addi-
tive · additive epistatic terms [main (gAjÞ and interaction term (gAEijÞ�
did not improve predictions by much, and the inclusion of these terms
did not explain a large percentage of the total variability.

DISCUSSION
GS offers important opportunities to improve genetic gains in plant
and animal breeding programs; however, more powerful estimation
and prediction methods are required to fully exploit the advantages of
GS. Most GS methods assume a Gaussian response; however, many
important traits in plant breeding, such as disease resistance, percent
protein content, and proportion of seed or plant damage, are not
normally distributed and need special treatment. In this study, we
extended the GBLUP method to ordinal categorical responses. To this
end, we used the implementation available in BGLR with a probit link
that can accommodate both binary and ordinal traits (Pérez-Rodríguez
and de los Campos 2014). To our knowledge, this is the first study in
GS that uses an ordinal threshold model to analyze a categorical re-
sponse in plant breeding.

Most non-normal response variables are not linear with respect to
model parameters and, unlike normal responses, the variance of the
phenotypes is dependent on the mean. The GLMM uses: (1) a link
function (typically nonlinear on the parameters) to specify the
relationship between the mean of the response variable and a linear
model; and (2) a variance function to describe the relationship between
the mean and the variance of the distribution of the response variable,
which enables it to relate traditional linear regression to non-normal
data. This gives the GLMM framework a stronger basis for hypothesis
testing and for more precise estimates of fixed and random effects. This
statement applies to response variables coming from many different
distributions, and not only to ordinal categorical responses.

GS methods have been implemented for threshold (ordinal
categorical) traits in animal breeding. For example, González-Recio
and Forni (2011) developed versions of BayesA, Bayesian Lasso, and
two machine learning methods for dichotomous traits; Villanueva
et al. (2011) also developed a version of BayesB for dichotomous traits;
Wang et al. (2012) implemented methods BayesA, BayesB, and
BayesCp for ordinal categorical traits; and Kizilkaya et al. (2014)
implemented BayesCp for ordinal categorical traits. All these studies
concluded that the traditional GS linear models are not suitable for
threshold traits, since the basic assumptions of the linear model are

violated, which produces a considerable reduction in prediction accu-
racy. However, to our knowledge, no plant breeding study so far has
addressed the analysis of categorical traits. Our study fills this gap by
providing a full description of a multithreshold GBLUP model
(TGBLUP) and an empirical evaluation based on real data.

Prediction accuracy in GS usually is assessed using the sample
correlation between predictions and phenotypes. However, this metric
is not appropriate for categorical outcomes. For this reason, we used
the Brier score for assessing the prediction ability of the proposed
threshold model, which assigns a numerical score based on the
predictive distribution. This scoring rule is “strictly proper” in the
sense that it maximizes the expected score of an observation (and is
unique) and allows making fair comparisons among models. To our
knowledge, our study is the first one in GS to use this score for
assessing prediction accuracy.

We presented nine specifications of the TGBLUP model which
differ on the type of effects included. We considered main effects
models and models for interactions between genetic factors (e.g., ad-
ditive ·additive epistatic) and between genetic and environmental
factors e.g., additive ·additive· environment interaction. For specify-
ing these interactions, we used the framework proposed by Jarquín
et al. (2014) within a threshold model framework. We found that
models that take into account interactions (models 629) explained
almost two times more variability than those without interaction
(models 125). However, the interaction that was clearly most impor-
tant was the G·E term; this effect captured the largest proportion of
the total variability explained by the models (51.68% in model 6 and
50.19% in model 9), and was the one that led to the largest gain in
prediction accuracy. This result is in agreement with previous studies
that have highlighted the importance of modeling G·E in GS in plant
breeding (Burgueño et al. 2012; Jarquin et al. 2014).

Inclusion of additive · additive epistatic terms did not explain
much of the total variability, and did not help much to improve pre-
diction ability. Also, we found that estimated threshold parameters
could be clustered into two groups, one for those without interactions
(models 125), and another for those with interaction terms (models
629). This was because including interactions increases the variance
of the liability score and, therefore, changes in threshold values are
needed to accommodate the observed probabilities of each of the
categories.

Finally, although the analyses presented here used Gaussian priors
for marker effects, the multi-threshold model used in this study can be
implemented with any of the priors commonly used in GS, including
those that induce differential shrinkage of estimates of effects or
a combination of variable selection and shrinkage. The current
implementation of BGLR allows users to do this.

n Table 4 Brier scores (mean, minimum and maximum; smaller indicates better prediction) evaluated for the validation samples

Model
Colombia Zimbabwe Mexico

Mean Min Max Mean Min Max Mean Min Max

1 0.3924 0.3798 0.4115 0.3617 0.3554 0.3698 0.3507 0.3386 0.3604
2 0.3869 0.3744 0.4011 0.3611 0.3542 0.3663 0.3434 0.3331 0.3572
3 0.3845 0.3733 0.4021 0.3628 0.3559 0.3701 0.3433 0.3302 0.3591
4 0.3856 0.3706 0.4024 0.3621 0.3538 0.3697 0.3431 0.3337 0.3526
5 0.3860 0.3734 0.4012 0.3619 0.3528 0.3734 0.3448 0.3251 0.3598
6 0.3261 0.3121 0.3402 0.3337 0.3249 0.3413 0.3145 0.2972 0.3295
7 0.3315 0.3170 0.3427 0.3308 0.3214 0.3363 0.3183 0.3003 0.3364
8 0.3249 0.3141 0.3417 0.3345 0.3247 0.3441 0.3189 0.3094 0.3277
9 0.3274 0.3159 0.3401 0.3327 0.3155 0.3455 0.3152 0.2981 0.3280

298 | O. A. Montesinos-López et al.



We extended the GBLUP, a model commonly used in GS for
analyses of normal traits, to situations where the response is ordinal
(TGBLUP). We provided a detailed description of the model and
introduced a metric, the Brier score, for assessing prediction accuracy
of ordinal categorical outcomes. We presented an empirical evaluation
using a (real) data set of 278 maize lines genotyped with 46,347 SNPs
and evaluated for disease resistance using an ordinal categorical
scoring system in three environments (Colombia, Zimbabwe, and
Mexico). A total of nine models were used. In addition, we provide
details of the R code used to implement these models using the BGLR
package.

Our results highlight the importance of including G·E (capturing
at least 49.42% of the total variability); when this interaction was taken
into account, this increased the total variability explained by these
models and increased prediction accuracy between 8 and 19% relative
to models based on main effects only. Considering additive · additive
epistasis did not produce a sizable increase in prediction accuracy.
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Appendix 1

FITTING MODEL 9 TO RANDOMLY SAMPLED TRAINING AND TESTING SETS
library(BGLR)
library(matrixcalc)
# X, data frame containing the elements described below;
# - X$loc: (n·1), a factor giving the IDs for the environments (location);
# - X$line: (n·1), a factor giving the IDs for the varieties;
# - X$y: (n·1), a numeric vector for rating the 5 levels of the disease;
# - M: a matrix containing the genetic information (dimensions equal to the number of lines by the
# - number of SNPs [46,347]).
### Note: To replicate the results presented in this article, the sampling of training-testing sets must be done #according to the methods

described in the article (70% training and 30% testing); this example simply #illustrates how to fit model 9 for a randomly chosen testing data set.
The code for the other model is similar.

#Calculating the marker-derived genomic relationship matrix (GRM)
M,-scale(M,center=TRUE,scale=TRUE)
G,-tcrossprod(M)/ncol(M)
# Incidence matrix and covariance for main effects of environments.
ZE,-model.matrix(�factor(X$loc)-1)
KE=tcrossprod(ZE);
# Incidence matrix and covariance for main effects of lines.
X$lines,-factor(x=X$lines, levels=rownames(M), ordered=TRUE)
ZL,-model.matrix(�X$lines-1)
KL=tcrossprod(ZL);
# Genetic covariance structure of genetic effects in the full data
KG= ZL%�%G%�%t(ZL);
# Epistasis additive · additive covariance structure in the full data
GA=hadamard.prod(G,G)
KGG= ZL%�%GA%�%t(ZL);
# G·E covariance structure for the full data set
KGE=hadamard.prod(KG, KE)
diag(KGE)=diag(KGE)
KGE=KGE/mean(diag(KGE))
# GG·E Epistasis additive · additive structure for the full data set
KGGE=hadamard.prod(KGG, KE)
diag(KGGE)=diag(KGGE)
KGGE=KGGE/mean(diag(KGGE))
yNA,- X$y; n=length(X$y); p=round(0.30�n);
tst,-sample(1:nrow(X), size=p, replace=FALSE)
yNA[tst],-NA
ETA,-list(ENV=list(K=ZE, model=’FIXED’), LINE=list(K=KL, model=’RKHS’),
G=list(K=KG, model=’RKHS’), GG=list(K=KGG, model=’RKHS’),
GE=list(K=KGE, model=’RKHS’), GGE=list(K=KGGE, model=’RKHS’))
fm9,-BGLR(y=yNA,response_type=’ordinal’, saveAt=’M9_’, nIter=52000, burnIn=6000)
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