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Is My Model Good Enough? Best
Practices for Verification and
Validation of Musculoskeletal
Models and Simulations
of Movement
Computational modeling and simulation of neuromusculoskeletal (NMS) systems enables
researchers and clinicians to study the complex dynamics underlying human and animal
movement. NMS models use equations derived from physical laws and biology to help
solve challenging real-world problems, from designing prosthetics that maximize running
speed to developing exoskeletal devices that enable walking after a stroke. NMS modeling
and simulation has proliferated in the biomechanics research community over the past 25
years, but the lack of verification and validation standards remains a major barrier to
wider adoption and impact. The goal of this paper is to establish practical guidelines for
verification and validation of NMS models and simulations that researchers, clinicians,
reviewers, and others can adopt to evaluate the accuracy and credibility of modeling
studies. In particular, we review a general process for verification and validation applied
to NMS models and simulations, including careful formulation of a research question and
methods, traditional verification and validation steps, and documentation and sharing of
results for use and testing by other researchers. Modeling the NMS system and simulating
its motion involves methods to represent neural control, musculoskeletal geometry,
muscle–tendon dynamics, contact forces, and multibody dynamics. For each of these
components, we review modeling choices and software verification guidelines; discuss
variability, errors, uncertainty, and sensitivity relationships; and provide recommenda-
tions for verification and validation by comparing experimental data and testing robust-
ness. We present a series of case studies to illustrate key principles. In closing, we
discuss challenges the community must overcome to ensure that modeling and simulation
are successfully used to solve the broad spectrum of problems that limit human mobility.
[DOI: 10.1115/1.4029304]

1 Introduction

Almost every complex engineering product, from bicycles to
aircraft, is designed using modeling and simulation. Engineers are
confident using modeling and simulation for the design of these
systems because the underlying mathematical models of materials
and system dynamics have been tested in many applications over
the past several decades, and the available computational tools
have been validated relative to precise measurements of analogous
real-world systems. Thus, modeling and simulation of mechanical
systems have great impact on product design and engineering.

Modeling and simulation of biological systems are just begin-
ning to make an impact in healthcare. For example, subject-
specific computational fluid dynamics models of the heart are
being developed to help diagnose coronary artery disease [1].
Despite their potential impact, however, computational models of
biomechanical systems have yet to be applied on a wide scale
in healthcare, largely due to the complexity and variability of
biological systems combined with the heightened challenge of
validation.

Computational modeling and simulation of the human neuro-
musculoskeletal (NMS) system, one branch of biological model-
ing and simulation, shows great promise for improving the
diagnosis and treatment of the many conditions that limit human

mobility. For example, NMS models can reveal internal muscle
forces and joint loads for a wide range of scenarios, from activities
of daily living like walking to high-performance maneuvers like
sprinting and jumping. Internal muscle and joint forces are difficult
or impossible to measure experimentally, but understanding how
muscle forces coordinate motion is essential for applications like
designing assistive devices, planning rehabilitative treatment, and
understanding the fundamental principles of human locomotion.

NMS modeling has grown rapidly in the last 25 years. A search
on Google Scholar for biomechanical or musculoskeletal model-
ing or simulation produced fewer than 200 papers in 1990, about
500 papers in 2000, and nearly 2000 papers in 2013 (Fig. 1). Fur-
ther, motion analyses performed by the hundreds of clinical and
research gait labs around the world represent a type of modeling
that is now standard in the diagnosis of movement disorders in
many hospitals, and is integral to a wide range of biomechanical
studies.

In spite of this growth, NMS modeling and simulation have yet
to be applied widely in clinical practice or medical device design,
in large part due to gaps in validating these models to ensure their
accuracy and reliability. Evaluating the validity of models and
simulations for answering a specific research or clinical question
is the responsibility of all researchers and developers of NMS
models or simulation tools. Verification and validation are essen-
tial for convincing modelers and nonmodelers alike of the utility
of simulation results and overcoming the barriers modelers often
face in publishing papers, attracting funding, and translating
results to the real world. Appropriate validation is needed for
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modeling studies to have a broad impact, and is good scientific
and engineering practice, helping to prevent the proliferation of
erroneous conclusions.

1.1 Definitions. Several terms must be defined before review-
ing verification and validation best practices for NMS modeling
and simulation.

Model: We define a model as a set of mathematical equations
that describe a physical system, along with the computational
expression of these equations. For our purposes, the physical sys-
tem is the human or animal neural and/or muscular system acting
on a rigid multibody skeletal structure, possibly in interaction
with external devices and/or the environment (e.g., the ground).

Simulation: A simulation is the result of using a model to study
a specific motion or biophysical event. A kinematic simulation
involves analyzing the motion of a system without regard to the
forces causing or produced by this motion. A dynamic simulation
can be forward or inverse. In a forward dynamic simulation,
the model’s equations of motion are integrated forward in time to
predict the motion resulting from the application of forces. In an
inverse dynamic simulation, the motion of a model is used to
predict the forces that caused that motion.

Verification: We follow the ASME definition, where verifica-
tion is “the process of determining that a computational model
accurately represents the underlying mathematical model and its
solution,” [2] or “are we solving the equations correctly?”

Validation: We also follow the ASME definition, where valida-
tion is “the process of determining the degree to which a model is
an accurate representation of the real world from the perspective
of the intended uses of the model,” [2] or “are we solving the
correct equations?”

Calibration: Calibration is the process of choosing model and
simulation parameters that provide the best match to experimental
or other reference data. Models and simulations must be carefully
calibrated before verification and validation are performed. Data
used to calibrate a model cannot be used to validate a model or
simulation.

Error, Accuracy, Uncertainty, Sensitivity, Credibility: Error is
the difference between a measured or estimated value of a param-
eter and its true value. Conversely, accuracy quantifies the agree-
ment between measured or estimated values and their true values.

Uncertainty is a potential source of error, which can arise from a
gap in knowledge about the biological or physical system under
study, or from inherent variability in the subject or phenomenon
being measured. Sensitivity is a measure of the effect of a change
in a particular variable on the simulation outputs of interest. We
define credibility as the degree of trust placed in a particular
model or simulation for answering a specific research question.
A simulation is most credible when the outputs of interest are
insensitive to variables with high uncertainty. Anderson et al. [3]
provide an excellent review of these concepts.

1.2 Objective. Most biomechanics researchers are aware of
the importance of validation, but the field lacks best practices for
the challenging process of verifying and validating NMS models
and simulations. Several papers [3–5] have laid the groundwork,
identifying principles and considerations, but these papers stop
short of providing specific guidelines for NMS modeling and sim-
ulation. The knowledge and practices of how to best validate a
biomechanical model and verify modeling software used in past
research studies have not been adequately synthesized. The goal
of this paper, therefore, is to establish practical guidelines for veri-
fication and validation of NMS models and simulations that
researchers, clinicians, reviewers, and others can adopt to evaluate
the accuracy and credibility of modeling studies.

In Sec. 2, we provide an overview of the verification and vali-
dation process in NMS modeling and simulation based on prac-
tices that have evolved in our research group and a review of the
literature. Then in Sec. 3 we detail best practices for verification
and validation of each common component of an NMS modeling
and simulation framework, from multibody dynamics to neural
control modeling. We discuss: (1) recommended modeling
choices (e.g., appropriate level of modeling complexity) and veri-
fication and validation best practices for a given model or simula-
tion output of interest; (2) how close a match is expected for
comparisons between different types of simulation data and the
corresponding experimental data; and (3) which variables have
the greatest error, uncertainty, or influence and must be most rig-
orously tested in the validation process.

We illustrate the best practices through case studies. While
these studies use the OPENSIM [6] software platform for modeling
and simulation, our guidelines are broadly applicable across the
NMS modeling and simulation field, regardless of the software
used. We close the paper with a discussion of key challenges for
the field.

2 Verification and Validation Process

We break the verification and validation process for modeling
and simulation into seven stages:

(1) Formulate a research question that a model and simulation
can answer.

(2) Prototype your methods and create a verification and vali-
dation plan.

(3) Verify your software.
(4) Validate your results by comparing your model and simula-

tion to independent experiments and other models.
(5) Test the robustness of the study by evaluating the sensitiv-

ity of your results to model parameters and other modeling
choices.

(6) Document and share your model and simulation.
(7) Generate predictions and hypotheses that can be tested in

the real world.

The verification and validation process begins with the defini-
tion of a suitable research question, continues through the process
of designing and conducting your study, and extends beyond study
completion, since sharing and documenting your results allows
others to reproduce, extend, and test your models and simulations
(Fig. 2). Although we have enumerated a sequence of stages, the
verification and validation process typically requires iteration. For

Fig. 1 Publications per year related to biomechanical or
musculoskeletal modeling or simulation. Statistics were
generated by using Google Scholar to search publication
titles and abstracts for the terms “biomechanical model”,
“musculoskeletal model”, “biomechanical simulation”, or
“musculoskeletal simulation.” The line represents a smoothed
interpolation between averages computed in 5-year increments.
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example, the validation plan should be complete before experi-
mental data are collected, but the discovery of a particularly sensi-
tive variable might necessitate additional experiments. We have
geared this paper toward researchers performing NMS modeling
and simulation; however, the process we describe could be
adapted to other types of modeling (e.g., finite element modeling
of the musculoskeletal system) or to modeling and simulation for
engineering or clinical applications. This section gives an over-
view of the entire process; more details for each potential compo-
nent of a modeling and simulation pipeline are provided in Sec. 3.

2.1 Formulate a Research Question That a Model and
Simulation Can Answer. Your research question must be well
posed for modeling and simulation; otherwise, adequate validation
will not be possible. Given the challenging nature of validating
models and simulations, you must first assess whether answering
the proposed research question will make a novel and important
contribution to the field. This assessment is subjective, but several
considerations can help establish importance and novelty, includ-
ing (1) whether your research will improve our fundamental
understanding of normal or pathological human movement; (2)
whether your research will improve the diagnosis, treatment, or
prevention of pathology or injury that inhibits human movement;
(3) whether your research will enhance mobility or performance;

and (4) whether others will be able to reproduce, apply, and
extend your work.

Next, you must determine whether modeling and simulation are
necessary to answer your research question. In some cases, for
example, an experimental analysis may be more appropriate, or
sufficient experimental data may already be available to test your
hypothesis. Conversely, you must also determine whether it is
possible to test your hypothesis with a model or simulation. For
example, the variables of interest must be robust outputs of the
model or simulation so that you can draw credible conclusions in
the face of model uncertainty. Further, there must exist a model-
ing and simulation framework capable of answering your research
question, or you must have the expertise and resources to build
one. In Fig. 3, we introduce our verification and validation case
studies [7–12] and describe how we formulated high-impact
research questions that could be addressed with modeling and
simulation.

2.2 Prototype Your Methods and Create a Verification
and Validation Plan. The next step is to design your methods,
including the modeling and simulation framework you will use
and any experimental data you will collect, and create a verifica-
tion and validation plan to ensure confidence in the analysis of
your results and conclusions drawn (credibility). You should be
able to answer “yes” to each of these questions before collecting
data or generating models and simulations:

(1) Do you understand how your modeling framework maps to
the physical system of interest and how the framework is
implemented?

(2) Does your research question lie within the scope of
intended uses of the model and the simulation framework?

(3) Have you eliminated model complexity not required to an-
swer your research question?

(4) Have you identified modeling assumptions and their
implications?

(5) Have you collected or obtained experimental data to use as
inputs to calibrate your model and generate simulations, or
will you collect experimental data? Do you know the vari-
ability, error, and uncertainty in these measurements?

(6) Do you have independent data to assess the variability,
errors, and uncertainty identified above?

(7) Can you address remaining variability, error, and uncer-
tainty with sensitivity testing?

In Sec. 3, we review the common components of a modeling
and simulation pipeline and for each component, provide informa-
tion about the questions above, including making modeling
choices to fit your intended use, common modeling assumptions
and limitations, typical inputs along with their errors or uncertain-
ties, and best practices for independent validation and sensitivity
testing.

2.3 Verify Your Software. Before generating any results or
conducting validation, you must verify your software to ensure
that the computational model and underlying algorithms used to
simulate the physiological or physical phenomenon are imple-
mented correctly (i.e., the results match known standards). One
cannot overstate the difficulty and importance of this step: if
an algorithm has been implemented incorrectly, all resulting simu-
lations will be incorrect and any conclusions drawn from these
data will be contaminated. Paradoxically, it is not the most sub-
stantial errors that are most problematic, since the erroneous
results they produce are likely to be immediately apparent. Rather,
it is the small errors that can be most pernicious, as they can pro-
duce results that are plausible and can, therefore, easily go
unnoticed.

If the software has been designed in a modular fashion, the
software engineer can perform verification for each component on
its own (called “unit testing”), and can design higher-level tests

Fig. 2 Overview of the verification and validation process. We
begin a study by defining a research question and hypothesis.
Proceeding clockwise, we then prototype the study methods
and perform verification to ensure our computational model
has been implemented correctly. We next perform simulations
and validate the results against independent data to ensure the
model and simulation faithfully represent the physical phenom-
ena of interest. Only then can real-world predictions be gener-
ated, the robustness of which we must test to determine
applicability as model parameters and inputs vary. These real-
world predictions often suggest new research questions,
beginning the cycle once more. Verifying software, validating
simulation results, and testing the robustness of predictions
form the core of the verification and validation process, and of-
ten lead to iteration as the study is refined. Documenting and
sharing models and simulations ensures that results can be
confirmed and extended by others.
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for functionalities that depend on aggregates of components.
A comprehensive verification suite ensures that inputs are
bounded, only the state and unknowns can change, and computa-
tions—preferably for benchmark problems with known

solutions—are repeatable as the code is updated. If modeling a
physical system, the verification suite should test for physical
principles such as energy conservation, including targeted tests
where errors and miscalculations are likely.

Fig. 3 Introduction to verification and validation case studies

020905-4 / Vol. 137, FEBRUARY 2015 Transactions of the ASME



The most effective technique for software verification is to
employ existing software modules that have been independently
verified and widely used for a range of applications, whether com-
mercial or open source. If you choose open source modules, you
and others can review and verify the code directly. There are
well-established examples of widely applied and well-validated
open source tools. Some that we have used successfully include
LAPACK, GCVSPLINE [13], and IPOPT [14]. The OPENSIM [6,15] and SIM-

BODY [16] software packages are also open source to promote
community review and contributions. Publicly available modeling
and simulation platforms should include a suite of verification
tests for their modeling libraries and simulation algorithms. Even
if you are not conducting the verification yourself and instead
relying on existing testing suites, you should be aware of the key
requirements for verification.

As mentioned above, using modular or object-oriented software
design is a particularly useful strategy for efficient and robust soft-
ware verification. In object-oriented design, complex code is built
up from simpler atomic components, each of which can function
(and, therefore, can be tested) in isolation. Each component has a
clear interface that defines its inputs, the modifiable quantities
(state), and its outputs, but hides its internal implementations from
users (including other components) to help promote compartmen-
talization and facilitate unit testing. Complexity is engineered
through hierarchy, with high-level components coordinating the
activities of simpler subcomponents. Consider the following
example, adapted from Reddy [17], of a multibody system con-
sisting of a collection (“container”) of rigid bodies. Suppose the
container has two methods: it can return a body’s color given its
index (e.g., calling the function getColor on “body #2” returns
“blue”) and it can return a body’s index given its name (e.g., call-
ing getIndex on “femur” returns “2”). This design obviates the
need to provide a third method that directly returns the body’s
color given its name, since the two existing methods can be cas-
caded to do the same job (i.e., calling getIndex on femur and then
calling getColor on the returned index, 2, will give the desired an-
swer, blue). Providing only the first two methods is preferable: if
naming or indexing conventions change in the future, the third
method will create errors that will go unnoticed unless there is a
separate verification test for this new method. Branching logic and
circular relationships are also discouraged, even if they make the
code shorter, since linear processing is easier to understand, test,
and debug. Components should be reusable so that new and cus-
tom code can be minimized, isolated, and easily targeted by tests.
The more a block of code is used, the more likely it is to be veri-
fied in a wide range of use cases. Much has been written on the
topic of object-oriented design (e.g., Refs. [17] and [18]).

More details about verification testing for each part of the mod-
eling and simulation pipeline are included in Sec. 3. Following
the verification stage, you should be confident that your equations
(mathematical models) are implemented correctly. You can
then begin generating and analyzing your initial modeling and
simulation results and proceed with formal validation, described
in Secs. 2.4 and 2.5, below.

2.4 Validate Your Results by Comparing Your Model and
Simulation to Independent Experiments and Other Models.
The first step of formal validation is comparing the outputs of
your model and simulation to as many independent datasets as
possible. Validation against independent data is distinct from
model calibration (the process of finding the best-fit model and
simulation to available data), though both are key steps in any
modeling and simulation study. Calibration should be conducted
first, followed by comparison to any independent data not used to
tune your model or generate your simulation.

A wide range of potential data are available for calibration and
validation. These sources include data from a typical motion cap-
ture analysis like optical marker trajectories, ground reaction
forces, and electromyography (EMG) signals, along with data

collected from imaging or cadaver studies to help define musculo-
skeletal dynamics and geometry. Additional experimental modal-
ities, such as ultrasound to measure muscle fascicle and tendon
dynamics in vivo or instrumented knee replacements to measure
internal joint loads, also provide valuable data for calibration and
validation. In one common workflow, for example, experimental
kinematics and ground reaction force data are used to generate a
muscle-driven simulation of the observed motion. In this case, the
experimental kinematics and ground reaction force data are used
to calibrate the simulation. EMG data are reserved for
independent validation to help researchers determine whether the
muscle coordination predicted by the simulation is a good fit to
experimentally observed timing of muscle activity. Comparing
muscle–tendon dynamics to ultrasound data, or predicted joint
loads to data from instrumented joint replacements, is additional
potential data to aid validation in this example workflow.

We also recommend comparing the predictions of models and
simulations to previously validated and published studies, when
possible. For example, if you are creating a new simulation frame-
work for studying pathological gait, your framework (minus any
pathology-specific changes) should produce gait simulations of
normal walking that are a good match to the many walking simu-
lations available in the literature. Data you can compare include
joint angles and moments, ground reaction forces, muscle activa-
tions and forces (timing and/or magnitude), internal joint loads,
and muscle fiber and tendon velocities.

More details about using experimental and previously pub-
lished data for calibration and validation of each component of a
modeling and simulation framework, including how close a match
is expected, are described in Sec. 3.

2.5 Test the Robustness of the Study by Evaluating the
Sensitivity of Your Results to Model Parameters and Other
Modeling Choices. The next step in the validation process is evalu-
ating sensitivity, since validation by comparison to independent ex-
perimental data often leaves remaining uncertainty (e.g., one of the
model’s input parameters may have known experimental measure-
ment error that cannot be eliminated). Many quantities are impossi-
ble to adequately measure experimentally (otherwise, we would not
need a model!). As a modeler, your key responsibilities are to deter-
mine the range of possible outcomes (e.g., confidence intervals) and
how sensitive the outputs of interest (i.e., those used to test your hy-
pothesis) are to the input parameters and data—particularly those
with large known variability, uncertainty, or influence. Sensitivity
analysis can also help determine the level of modeling complexity
appropriate for your study by assessing whether your conclusions
are robust to a particular modeling simplification or assumption
(e.g., reducing the number of musculotendon actuators in your
model or ignoring muscle activation dynamics).

Several approaches to sensitivity analysis are available, from
simple to complex [19]. The direct approach is a differential anal-
ysis, which determines the analytic relationship between inputs
and outputs [20]. Although generally not practical for complex,
nonlinear models and simulations, differential analysis serves as
the foundation upon which other approaches to sensitivity analysis
are built. A straightforward and common approach to sensitivity
testing is the parametric study, where the researcher sweeps
through a range of input parameters, varying one parameter at a
time or multiple parameters in a factorial design, to determine
interaction effects. A parametric assessment can be sufficient
when possible input ranges and sensitivities are known in
advance; however, testing a large number of interactions quickly
becomes intractable.

Sampling methods for sensitivity analysis, such as Monte Carlo
analysis, are also common in biomechanics research (e.g.,
Refs. [21] and [22]). The researcher creates random samples of
the input parameters given specific probability distributions (e.g.,
Gaussian with an estimated mean and standard deviation (SD)
based on data from experiments). The corresponding distribution
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of the output is then estimated by performing repeated runs of the
simulation or analysis. Sensitivity factors are computed based on
the relationship between inputs and the output distribution (using
a correlation coefficient, for example). The Monte Carlo approach
requires many (often thousands) runs of a simulation and, thus,
can become computationally expensive. Various techniques are
available to improve sampling efficiency (e.g., Latin hypercube
sampling [23]). Modern methods for probabilistic analysis develop
an approximate relationship between input and output distributions
to substantially reduce the number of simulation iterations required
(e.g., using prior knowledge in a Bayesian inference approach [24]).
These methods must be validated against the “gold standard” Monte
Carlo approach, though initial tests in biomechanics look promising
[19]. These approximate methods can provide information about the
relative importance of various input parameters, but do not include
enough information to determine the direction of influence.

Several texts and review papers provide overviews of approaches
to sensitivity analysis for engineering applications [25,26], includ-
ing biomechanics [19]. A review of known sensitivities in common
modeling and simulation frameworks is provided in Sec. 3.

2.6 Document and Share Your Model and Simulation.
After careful validation through comparison to independent data
and sensitivity analysis, you will have gained confidence in the
ability of your model and simulation to answer the research ques-
tion you posed; however, the validation process does not end when
the last result is computed or figure is generated. An additional,
vital step is documenting your modeling and simulation methods,
results, and conclusions. In the documentation process, you should
clearly indicate how your findings answer your original research
question and how your validation process has adequately addressed
known sources of error and uncertainty. In most cases, some uncer-
tainty will remain, so you must also describe the known limitations
and detail how these limitations might impact your conclusions.

In addition to standard publications in journals, we believe that
sharing your models, simulation tools, and results with other
researchers and clinicians is essential for validation and helps
ensure your research has a broad impact. Allowing others to
review your models, simulations, and software can help identify
errors and improve your models and simulation tools. As others
apply your models and simulation tools to new research questions
and analyses, more information about both the strengths and limi-
tations of your model and simulation will be established. Finally,
sharing your simulation data helps expand the pool of available
independent data for future researchers to use in the validation

process, as shown in the feedback arrow from “Generate simu-
lation” to “Validate your results” in Fig. 2.

2.7 Generate Predictions and Hypotheses That Can Be
Tested in the Real World. The validation process can continue
beyond the life of a single modeling and simulation study by gener-
ating hypotheses that you or other researchers test with experimen-
tal data. In other words, do the high-level predictions and analyses
hold up to independent testing with clinical or experimental data?
For example, if a model suggests that plantarflexor muscle strength
is vital for maintaining adequate knee extension during stance in
children with cerebral palsy, does a plantarflexion strength-training
program improve patients’ gait? Does an assistive device to reduce
the metabolic cost of uphill walking, designed with a simulation,
work when you build the device and test it with human subjects?
Establishing more links like these between modeling and clinical or
experimental studies is essential for advancing the fields of biome-
chanics and rehabilitation research.

3 Best Practices for Verification and Validation of

Neuromusculoskeletal Models and Simulations

In this section, we review best practices for verification and val-
idation of each potential component of a study’s modeling and
simulation framework (Fig. 4). These best practices are based on a
review of the literature, standards employed by our research
group, and experience working with many researchers using com-
puter models to gain insights into human movement. Since the
validation process starts with the formulation of a research ques-
tion and study design, we begin each section by reviewing model-
ing choices and providing recommendations, such as adjusting the
level of modeling complexity to match that required by the study.

Generation of human and animal movement, and thus computer
modeling and simulation of these phenomena, is a complex, mul-
tistep process, as demonstrated in Fig. 4. Studies can include mod-
els or estimations of neural command, musculotendon dynamics,
musculoskeletal geometry, multibody dynamics, and contact and
other external forces. The dynamics equations describing these
components can be integrated forward in time to generate a simu-
lated movement, or a known motion can be used in an inverse
analysis to gain a greater understanding of the muscle coordina-
tion and forces involved in generating that motion. A study may
include all or only a small subset of the components shown in
Fig. 4. For example, many studies consider only multibody dy-
namics, using marker data from a motion capture experiment to
determine joint angles. Although this type of motion analysis is

Fig. 4 Elements of a musculoskeletal simulation. A model of the NMS system can include
computational models of muscle–tendon dynamics; geometry of bodies, joints, and muscles;
models or estimates of contact; and models or estimates of neural control. A multibody dy-
namics engine is used to integrate the model’s governing dynamic equations forward in time
or solve for underlying motion and forces in an inverse analysis.
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often not considered to be modeling, an underlying model—even
if the model is simply a set of bodies, each with six degrees of
freedom—is used to formulate equations of motion and calculate
accelerations, velocities, and positions over time. Since multibody
dynamics is part of nearly all modeling studies, this is where we
begin our review.

3.1 Multibody Dynamics. Multibody dynamics enables the
description and analysis of interconnected rigid and flexible
bodies that move relative to each other, in the presence of forces
generated internally and applied externally. Multibody dynamics
provides the mathematical formulation (model) of the physical
system—the equations of motion—that enables the modeler to
calculate accelerations, velocities, and positions over time. A mul-
tibody dynamics analysis comes in many forms. We may wish to
focus on only motion or kinematics, as in a typical inverse kine-
matics analysis, or study the motion resulting from forces applied
by muscles in a forward dynamic simulation. We can solve for
joint reactions to estimate the forces required by ligaments and
articulating surfaces in the knee joint to prevent separation and
interpenetration. Or, with an induced acceleration analysis,
we can determine how much a single force in the system (due to
gravity or a muscle, for example) accelerates each body in the
multibody system.

3.1.1 Modeling Choices. The first step in performing a multi-
body dynamics analysis is determining the underlying model that
will be used to guide the solution of kinematics and dynamics.
The model determines how bodies are permitted to move relative
to each other and, in the case of a dynamics analysis, the distribu-
tion of mass in the system (i.e., inertial properties). Every type of
motion analysis requires a model, but in many cases, the user of a
commercial motion analysis processing package is unaware of the
details of the underlying model and whether that model is appro-
priate for the motion under study. For example, some packages
impose no constraints on body motions, which means the model
can undergo nonphysiological motions like separation or impene-
tration of body segments [27,28]. We recommend performing both
inverse kinematics and dynamics analyses using a model that rep-
resents physiological joints and is scaled to the anthropometry of
the subject. Using a model of the underlying skeletal geometry
prevents nonphysiological motions and typically makes inverse
kinematics and dynamics computations more robust to noise [29].
More details about formulating and validating models of biologi-
cal joints are included in Sec. 3.2.

Given an underlying model, the next key decision is how to for-
mulate and solve the corresponding equations of motion. We rec-
ommend, when possible, using existing multibody dynamics codes
that have been designed and verified for engineering and scientific
use. ADAMS

2 and SIMBODY [16] are, respectively, commercial and
open source examples. Software that has originally been designed
for other purposes, such as gaming and computer animation (e.g.,
ODE

3, BULLET
4, and HAVOK

5), must be used cautiously and verified
independently, since these codes are designed to optimize speed
and appearance rather than physical accuracy.

One common approach to formulating the equations of motion
is to use Cartesian coordinates (as in ADAMS, ODE, and BULLET).
Each body segment has six degrees of freedom (i.e., its position
and orientation in space), and constraints are added where neces-
sary to model the limitations imposed on the motion by joints.
This formulation tends to be easier to implement in software, but
requires many nonlinear constraints that are usually solved with
approximate iterative methods to maintain tolerable execution
times. We recommend, instead, using an internal coordinate
approach [30], which provides an exact representation of idealized

joint motion. The resulting system of equations is small and
dense, and is generally solved with exact methods. The internal
coordinate approach is more difficult to implement, but several
existing dynamics packages such as SIMBODY [16], MOTIONGENESIS

(formerly AUTOLEV) [31], and SD/FAST [32] contain well-tested
implementations.

Once the equations of motion have been formulated, they are
solved over time to analyze or predict the motion of a physical
system. We recommend using error-controlled numerical methods
to ensure accuracy and careful state handling, as described by
Sherman et al. [16]. An important design consideration is the han-
dling of the model’s state, which is the set of unknowns or varia-
bles that fully describes the system at an instant in time. Tentative
state changes are required for error estimation, but can lead to
incorrect computations if the state is not handled correctly. Thus,
dynamic simulation software must be designed and verified to
ensure that tentative state changes persist and desist appropriately.

Additional considerations when choosing a dynamics engine,
such as the method for enforcing constraints, the handling of dis-
crete and continuous values, and the user interface for defining ac-
curacy, are included in publications on SIMBODY [16] and OPENSIM

[33]. The numerical methods employed by a dynamics engine are
also relevant to verification and validation, and are discussed in
Sec. 3.6.

3.1.2 Verifying Multibody Dynamics. Multibody dynamics
software can be verified in many ways [34]. We recommend ensur-
ing that the physical system adheres to the principles of conserva-
tion (including mass, momentum, and energy) across a wide range
of conditions. For example, a common verification task is ensur-
ing that constraints and ideal joints do no mechanical work. In a
forward dynamics simulation, all applied forces can be divided
into their constitutive power generators (ideal actuators), storage
components (e.g., potential energy due to gravity or elastic strain),
and dissipative components (e.g., friction or viscosity). In this
case, verification should confirm that system energy minus work
plus dissipated energy is conserved for each force and actuator,
and also for the multibody system as a whole.

We can also represent the same physical system using different
formulations, the comparison of which is another avenue for veri-
fication. For example, joints can be modeled with internal coordi-
nates or free joints with constraints. These formulations should
produce identical solutions (to within numerical tolerance). When
developing new multibody simulation software, we recommend
verifying that a modeled system in your code produces the same
results as the identical system modeled in existing code(s).

3.1.3 Validating and Evaluating Robustness of Multibody
Dynamics. Following verification, a multibody dynamics engine
can be used to calculate motions and forces for the system of
interest. The accuracy of your multibody dynamics solution is
limited by the quality of the input data you provide—typically
from motion capture and force plate recordings—and the quality
of the underlying model. Traditional marker-based motion capture
systems generally have system errors of 1–5 mm [35], which is
combined with soft tissue artifacts of up to 10 mm for human
movement [36]. Joint torques calculated from inverse dynamics
have been shown to be sensitive to both force plate recordings and
kinematics [37,38]. Thus, motion capture systems must be regu-
larly and carefully calibrated and you should clearly document all
steps of your experimental protocol (e.g., with written notes, pho-
tos, and videos). Errors in the underlying model can also create
discrepancies, particularly when models of the joints are not
included. Careful model selection and subject-specific scaling, as
discussed in Sec. 3.2.1, are essential for obtaining multibody
dynamics models that closely match to experimental measure-
ments. We illustrate practical validation of multibody dynamics
by returning to our case study on running. The case study was
introduced in Fig. 3 and in Fig. 5, we review the process the
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investigators used for validating multibody dynamics, the first
step of which was careful data collection and model scaling.

We recommend comparing calculated joint angles and moments
to those reported by previous studies, when possible. For example,
kinematics and kinetics for walking and running at multiple
speeds for healthy individuals are readily available in the litera-
ture (e.g., Refs. [12] and [39]) and new simulation results should
be within 2 SD of previously reported values. Researchers often
use a model to reproduce experimental kinematics from external
markers placed on a subject. We recommend, in this case, testing
that model marker locations fall within the measurement accuracy

(combing calibration accuracy [35] with skin movement [36] or
marker placement [40] errors) for each marker.

An additional approach to validation is comparing the accelera-
tion of the system center of mass (COM) to the net externally
applied force (i.e., does F¼ma?), as demonstrated in the case
study of Fig. 5. In many motion-capture assessments of inverse
dynamics, the size of the discrepancy between motion and forces
is neither calculated nor reported—a dangerous omission, since a
discrepancy nearly always exists [41]. In a motion capture experi-
ment, kinematic data (obtained from optical markers or inertial
measurement units) are measured independently from kinetic data

Fig. 5 Case study—dynamic consistency and residuals
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(obtained from force plates and sensors) and errors in either of
these data can lead to inconsistencies.

Dynamic inconsistencies should be calculated using the mod-
el’s equations of motion by comparing the net forces and
moments acting on the defined COM from the measured ground
reaction force to the product of the system’s mass matrix and
COM accelerations calculated from inverse kinematics. When for-
ward simulations are performed (e.g., in Computed Muscle Con-
trol [42]) or a force balance is calculated (e.g., in Static
Optimization [43]), residual or “hand of god” forces are typically
applied to achieve dynamic consistency between the motion and
the applied forces. In general, we recommend ensuring that resid-
ual forces and moments are small enough that they do not affect
the conclusions of the study (e.g., if a residual moment is contrib-
uting significantly to the accelerations of a variable of interest, the
residual must be reduced). In particular, we recommend force dis-
crepancies that are 5% or less (peak and RMS) than the magnitude
of the experimentally measured net external force and residual
moments that are less than 1% of COM height times the magni-
tude of the measured net external force.

The first key step in minimizing dynamic inconsistencies is
well-calibrated data collection and careful processing, along with
proper scaling of the model to the subject of interest, as described
above. If F¼ma discrepancies are still large, additional adjust-
ments can be made to the underlying model (e.g., changing iner-
tial parameters) or the kinematics (e.g., eliminating motions that
the model cannot achieve) to reduce or eliminate the dynamic
inconsistencies [6]. If the recommended agreement cannot be
achieved with reasonable adjustments to the model or kinematics,
the assumed model may be of insufficient quality to capture the
underlying system dynamics or to represent the observed experi-
mental data. For an example of this process, see the case study of
Fig. 5, where the investigators ensured that residual forces and
moments were reduced to the recommended thresholds, while
maintaining kinematics that were within measurement error.

3.2 Musculoskeletal Geometry. The next layer of detail that
many studies include is a model of muscle and skeletal geometry.
Musculoskeletal geometry includes properties of bodies, which
for the purposes of this paper are rigid with specified mass and in-
ertial properties. The definitions of joints, the connections
between bodies, are also part of musculoskeletal geometry. Joints
can range from generic mechanical connections, like pins and
gimbals, to more specialized relationships that define the coupled
motions and complex constraints common in biological joints.
Passive structures like ligaments and cartilage can be modeled
explicitly or with lumped passive joint properties. A final compo-
nent is the geometry of muscle–tendon units, including their
attachments to bones and wrapping over and through other struc-
tures, such as deep muscles and retinacula. Bone, muscle, and
joint geometry together determine muscle moment arms, which
map muscle forces to joint moments. We recommend choosing
anatomically based models of musculoskeletal geometry that rep-
resent physiological joint kinematics and muscle path geometry if
you are interested in studying internal joint loads or the accelera-
tions produced by muscles during movement.

3.2.1 Modeling Choices. Modelers must balance the need to
capture the features of the biological system and motion of inter-
est with the added computational cost and validation requirements
of increasing model complexity. We recommend, in general, that
you simplify musculoskeletal geometry where possible and focus
on accurately representing the muscles and joints under study. For
example, when studying a primarily lower extremity motion like
walking, you can typically simplify the upper extremity by lump-
ing body segments and muscles or actuating the upper extremity
with joint torques rather than muscles. Conversely, for primarily
upper extremity motions, the lower extremity can often be simpli-
fied, allowing more detail to be included for the muscles and
joints in the trunk, arms, and shoulders. Another common choice

is whether to use a planar or fully three-dimensional model.
Cycling, walking, and running are principally sagittal plane activ-
ities, so two-dimensional models can be appropriate for studying
gross motor coordination and energetics in these cases. Neverthe-
less, out-of-plane motions and muscle activity often play a role in
research questions related to pathological gait or the stability of
locomotion, and should be modeled in these situations. These mod-
eling choices are challenging and in cases where the appropriate
level of modeling complexity is unclear, we recommend careful
validation against independent data and sensitivity testing (e.g., to
determine how reducing the number of muscles in your model or
simplifying joint geometry affects the outputs of your simulation).

Bodies. The dimensions and inertial parameters of the rigid
bodies that compose a human or animal model have been meas-
ured in cadavers and via imaging in living subjects to create a
generic set of anthropometry (e.g., Refs. [44] and [45]) that is
then scaled to represent individual subjects. The anthropometry of
bodies can also be estimated on a subject-specific basis with dual-
energy X-ray absorptiometry scans, magnetic resonance imaging
(MRI), and 3D body scans (e.g., Refs. [46–48]). The dimensions
of a subject’s body segments can also be estimated from manual
measurement or from markers by finding the distance between
functional joint centers (e.g., Refs. [49] and [50]) or between
markers placed on anatomical landmarks.

We recommend, at minimum, obtaining marker-based or careful
manual measurements of segment lengths and using these meas-
urements to scale the dimensions and inertial properties of a
generic model to an individual subject. If feasible, imaging techni-
ques can provide valuable additional information in the scaling
process. We recommend subject-specific modeling through MRI,
measurements of bone alignment, or other means in cases where
body segment geometry is known to deviate substantially from
existing generic models [51].

Joints. In Sec. 3.1, we discussed how to map the description of
a joint’s motion to a system of dynamic equations. In this section,
we review how to define a joint’s motion based on experimental
measurements. In the musculoskeletal system, the motion permit-
ted by a particular joint depends on the geometry and properties
of the cartilage and bone at the articular surface, along with other
structures like menisci, the joint capsule, ligaments, and muscle
(e.g., the rotator cuff muscles of the shoulder). The effects of these
various structures can be represented in a joint model in several
ways, from simple to complex, including less or more anatomical
detail.

On the simple end of the joint modeling spectrum, skeletal
joints can be built from basic mechanical joints (e.g., a ball-and-
socket joint is a reasonable approximation of the hip), often with
passive elements or other constraints to limit the range of motion
and represent the net action of passive structures (e.g., to prevent
excessive hip extension beyond physiological ranges). Constraints
can also be used to represent coupled motion. For example, one
common model of the knee joint couples the translation of the
tibia with respect to the femur as a function of knee flexion angle
[52,53]. At the complex end of the spectrum, a joint can include
explicit contact and ligament models that constrain the joint to fol-
low physiological motion. This type of model allows more
detailed analysis of loads, but incorporates many parameters that
are potentially difficult to measure and must be calibrated and
validated. For many applications, an explicit contact and ligament
model at the joint is unnecessary. Models combining simple me-
chanical or custom biologically inspired joints with constraints
and lumped passive properties are typically sufficient to reproduce
gross motions like walking, reaching, running, cycling, etc. These
model formulations can also provide net internal joint moments
(e.g., Ref. [53]).

We recommend, as discussed above, using internal coordinate
formulations that permit motion in only the known degrees of
freedom, rather than models with many degrees of freedom and
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many constraints. Avoiding the use of constraints is particularly
important for models that include body segments whose masses
are small relative to the applied forces (as in the upper extremity,
for example). Incorporating constraints in such models is compu-
tationally expensive due to the numerical singularities approached
as segment masses approach zero.

Several types of experimental data are available to help formu-
late joint models. In cadaver experiments, the joint of interest can
be isolated and its kinematic and dynamic properties can be meas-
ured externally with a loading rig (e.g., Refs. [54–56]. High-
resolution imaging and bone pin data can also provide information
about the relative motion of bodies in the skeletal system [57,58],
as can less invasive—though less accurate—surface marker
motion. We recommend basing new joint models on high-quality
data from cadavers, bone-pins or high-resolution imaging, includ-
ing cinefluoroscopy [59] which provides high-speed, high-
resolution data of loaded joints.

When using existing joint models, we recommend that you
acquire motion capture data to help determine subject-specific
joint geometry (often called functional joint centers). Identifying
joint axes based on anatomical landmarks can be problematic,
since there is significant variability in marker placement between
and within examiners [40]. Ehrig et al. [49] and MacWilliams
[50] review methods for finding functional joint centers. In cases
of pathology, MRI data can also provide detailed subject-specific
information about joint center locations [51]. When choosing a
joint model, you must also ensure the model has been validated
for the entire range of motion you plan to study.

Muscle Geometry. The geometry of muscle–tendon units can
include detailed path information, or the modeler can simplify
muscle geometry with regression or other equations that directly
define moment arms as functions of joint angles. For muscles with
broad attachment sites (e.g., the gluteus medius), several muscle
segments may be required to capture the varying moment arms of
the muscle. Whether using moment arms or path geometry, a key
modeling choice is the number of muscles used in the model; you
should tune the model’s complexity to suit your research question.
Studying the contribution of the abdominal muscles to stability
during walking, for example, requires more detailed trunk muscu-
lature than studying the contributions of the ankle plantarflexor
muscles.

Muscle moment arms can be measured in cadavers directly
using tendon excursion experiments or using load experiments
(e.g., Refs. [60–62]). Muscle moment arms can also be estimated
experimentally using MRI, computerized tomography scans, or
the digitization of cadavers to determine a muscle’s line of action
and the perpendicular distance to the joint center of rotation (e.g.,
Refs. [61–63]). We recommend using moment arm data to cali-
brate and validate your musculoskeletal model, as discussed in
Sec. 3.2.3.

Detailed models of muscle geometry include muscle paths
defined by origin and insertion points, which are often combined
with via points and wrapping surfaces to represent constraints
from retinacula and to prevent muscles from passing through
bones or reaching other nonphysiological configurations. We rec-
ommend modeling detailed muscle path geometry to accurately
predict muscle–tendon dynamics and internal joint loads, although
this approach is more computationally expensive than using pre-
computed moment arms. Muscle geometry can be determined by
dissecting and digitizing muscles in cadavers (e.g., Refs. [64–66])
or can be estimated by segmenting MR images (e.g., Refs. [63]
and [67]). Origin and insertion points are typically defined as the
centroids of the muscle attachments in the cadaver or imaged sub-
ject, but via points and wrapping surfaces have been defined sev-
eral ways. For example, Horsmann et al. fit geometric shapes to
measured points on the surface of a cadaver [65]. We recommend
using wrapping surfaces and via points to achieve physiological
wrapping over bones and to match experimentally measured
moment arms (e.g., Refs. [7] and [68]).

Modeling Assumptions and Limitations. Many phenomena are
often ignored or simplified in models of musculoskeletal geome-
try. The geometry of a muscle is typically reduced to one or more
line segments. This simplification makes simulation computation-
ally tractable, but fails to represent the true underlying complexity
of muscle geometry. Further, multiple muscles can attach to a sin-
gle tendon (e.g., the triceps surae), but models typically assume
separate tendons exist for each muscle component. The deform-
ability of bodies is also ignored. Some parts of the human muscu-
loskeletal system are nearly always drastically simplified. For
example, there is currently no widely used and well-validated
detailed model of the foot and connective tissues (e.g., the ilioti-
bial band) are often ignored or simplified. When documenting
results, these limitations should be recognized and researchers
should discuss potential impacts on the study conclusions. These
assumptions are also important areas for future research to
improve current models.

3.2.2 Verifying Musculoskeletal Geometry. The key steps for
verification of skeletal models are described in Sec. 3.1.2. We rec-
ommend, in short, verifying that bodies and joints adhere to the
laws of physics. Given the complexity of human and animal mus-
culoskeletal geometry (e.g., joints may be complex and muscles
may include via points and wrapping surfaces), we recommend
using the effective torque method to calculate muscle moment
arms, as described by Sherman et al. [69]. To verify muscle geom-
etry code using the effective torque method, the model developer
applies a unit tension to the muscle of interest and uses the sys-
tem’s equations of motion to calculate the resulting (effective)
moment about the joint; the moment arm is the moment divided
by the unit muscle force. The moment arm computed using the
effective torque method should be verified against the moment
arm (r) calculated as the change in muscle–tendon length (d‘)
resulting from a change in the joint angle (dh), or r¼ d‘/dh. As
observed by Sherman et al. [69], this equation is a consequence of
the assumption that all related constraints are workless and is
commonly used to measure muscle moment arms experimentally
(known as the “tendon-joint” excursion method) [62].

3.2.3 Validating and Evaluating Robustness of Musculoskel-
etal Geometry. Each component of musculoskeletal geometry
should be validated, where possible, along with the musculoskel-
etal model as a whole.

Bodies. Anthropometry varies by age, sex, pathology, and
natural variation (e.g., Refs. [44,45,70,71]). Errors in model
dimensions and inertial parameters can affect joint angle and
moment calculations [72–74], which will result in errors in esti-
mated muscle forces. If performing a dynamic analysis, we recom-
mend comparing the whole-body COM acceleration computed
from kinematic data to the acceleration generated by measured
ground reaction forces. If there is a large discrepancy, one possi-
ble source of error is missing or poorly modeled body segments
(see Sec. 3.1.3 for more details).

Joints. Joint properties (e.g., centers of rotation and laxity) vary
between individuals, particularly in the case of injury or pathology
(e.g., Ref. [75]), and can have a significant effect on joint angles,
moments, and internal loads (e.g., Ref. [76]), as well as muscle
moment arms (e.g., Ref. [51]). In a Monte Carlo–based study of
simulated maximum thumb tip forces, Valero-Cuevas et al. [22]
identified the kinematic description of the joint as being the most
influential parameter preventing the model from generating physi-
ological maximum forces. When developing a joint model, we
recommend ensuring that modeled kinematics are within measure-
ment error of high-resolution experimental data (e.g., from cine-
fluoroscopy or bone pin data). When using the model in a
simulation, the dynamic inconsistencies between the model, kine-
matic data, and force data should also be small as described in
Sec. 3.1.3. Poor joint modeling is a common source of error. Fur-
ther, we recommend comparing predictions of internal joint loads
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to estimates from instrumented joint replacements; several data-
sets are available for the hip and knee joints [77–80].

Muscle Geometry. Muscle geometry and moment arms vary
between individuals as well. For example, Murray et al. [66]
found that moment arms could vary by a factor of two, although
these differences could be accounted for by using a simple scaling
technique. Herzog and Read [81] also observed considerable dif-
ference in moment arm magnitudes but found that the variation of
moment arms with joint angles were generally similar between
subjects. Duda et al. [82] digitized femoral muscle attachment
sites for six cadavers and found that the SD of centroid locations
was 80% of the mean. Attachments can also vary with pathology,
such as bone deformities common in children with cerebral
palsy [67].

Given this variability and uncertainty, careful validation is an
important step in any study that includes muscle geometry. When
using a model of muscle geometry, we recommend comparing the
model’s moment arms to experimental data to ensure that magni-
tudes and trends are similar (ideally within 2 SD) throughout the
range of motion that you plan to study. You should also compare
modeled muscle paths to imaging data (e.g., from MRI). Further,
we recommend that you combine musculoskeletal geometry with
muscle–tendon dynamics and perform indirect validation by com-
paring simulated joint moments to experimentally measured val-
ues, again throughout the range of motion of interest. Validation
data can include maximum moments from dynamometer testing,
experimentally measured passive moments through a range of
motion, and inverse dynamics–based moments from motions like
walking, running, or reaching. In our research group, we aim to
achieve moments within 2 SD of experimental values, unless
known experimental uncertainty or documented modeling
assumptions can account for additional discrepancies. In cases
where agreement is not achieved, you must clearly document the
limitations of your model and take these limitations into account
when interpreting the results of your simulation. In the case study
of Fig. 6, we demonstrate the process of comparing the outputs of
a musculoskeletal model to experimental moment arms and
passive and active net joint moments.

Muscle–tendon kinematics, dynamics, and forces (and, thus, in-
ternal joint loads) are all sensitive to a model’s muscle geometry
and moment arms. We recommend performing a sensitivity analy-
sis when your research question depends on muscle geometry or
moment arms, such as when the question demands estimating
joint loads or muscle force magnitudes. Several investigators have
explored the sensitivity of predicted muscle forces and activations
to moment arms and muscle geometry. In general, the magnitude
of a muscle force is more sensitive to geometry, while timing of
muscle activity is fairly robust to changing muscle geometry
[83–86]. Correa et al. [86] studied muscle contributions to COM
and joint accelerations using models with different moment arms,
and found the predicted muscle function to be similar, though
force magnitude varied. Grouping muscles with similar paths was
found to have little effect on the timing or coordination of esti-
mated activity in a muscle-driven simulation of walking [87].
There is evidence that joint force predictions are sensitive to how
muscles are discretized into paths in a given model [88], but more
work is needed to understand this relationship.

3.3 Muscle–Tendon Dynamics. While the muscle geometry
described above can characterize the motion of the whole
muscle–tendon unit, a model of muscle–tendon dynamics is
required to estimate muscle activations, muscle forces, and the
interplay between muscle and tendon during motion. In this sec-
tion, we focus on the most widely used computational model of
muscle, the Hill-type model, which includes a contractile fiber,
series and parallel elastic elements, and activation dynamics.

3.3.1 Modeling Choices. Modeling muscle–tendon dynamics
adds significant complexity as well as many additional parameters

to calibrate and outputs to validate. In some cases, it is reasonable
to ignore or simplify muscle–tendon dynamics. Examples where
muscle–tendon dynamics can be ignored include studies where
only net joint moments or powers are required, or in purely kine-
matic studies of joints or whole muscle–tendon units. Inverse
dynamics with static optimization to resolve muscle forces fre-
quently ignores tendon compliance and enables estimation of
muscle forces and joint loads. We recommend including a full
computational model of muscle and tendon dynamics when your
research question depends on the interaction between muscle and
tendon during a motion or when elastic storage of energy in ten-
don is a known or likely contributor to the motion of interest (e.g.,
high-force motions like running). Further, recent work in predic-
tive simulation has shown that muscle–tendon dynamics are
required to achieve humanlike motion [89,90]. If computational
or other restrictions require making simplifications, we recom-
mend using sensitivity testing to determine the impact of omitting
complexity (e.g., modeling rigid versus compliant tendons) in
your model.

Muscle–Tendon Dynamics Input Parameters. Before valida-
tion, you must understand and calibrate the parameters of the
muscle–tendon dynamics model. Parameters for Hill-type muscle
models include the maximum isometric force of the muscle, deter-
mined by combining estimates of physiological cross sectional
area (PCSA) with muscle specific tension; pennation angle; the
force–length–velocity relationship; the passive muscle force–
length relationship; timing parameters for activation dynamics;
and the stiffness and slack length of the tendon. Architectural
parameters (e.g., pennation angle) are typically derived from
measurements in human cadavers, while the parameters that
define dynamic muscle force generation (e.g., the force–length–
velocity relationship) are typically derived from isolated muscle
experiments in animals. Additional data can also come from MR
images (to determine muscle volumes), laser diffraction (to deter-
mine sarcomere lengths), and ultrasound imaging (to determine
muscle fascicle lengths).

We recommend creating models with muscle–tendon dynamics
based on comprehensive muscle and tendon architecture data
from cadaver and MRI measurements of multiple subjects. Mod-
els using MRI-based estimates of muscle PCSAs (e.g., Ref. [91])
are preferred, since cadaver measurements are typically obtained
from older subjects whose PCSAs can be substantially smaller
than those of young, healthy subjects [92–94]. Many current mod-
els are built from the older Wickiewicz dataset [95], which was
obtained from a small number of cadavers without the aid of laser
diffraction to measure sarcomere lengths. The fiber lengths in this
study differ by 10–100% from the more recent Ward dataset [96].
The optimal fiber lengths in the dataset provided by Ward and col-
leagues are based on more subjects as well as measurements of
sarcomere lengths.

Hill-type muscle models rely on normalized curves for the
force–length, force–velocity, and passive properties of muscle
fibers based on experiments in rat, cat, and rabbit muscle, where
force output is measured for a range of lengths and activation
levels (see Ref. [97] for a review). We recommend using muscle
model curves that are a close match to available experimental data
(e.g., Ref. [98]).

Simplifying Muscle–Tendon Dynamics. It may be reasonable to
simplify muscle–tendon dynamics, depending on the research
question and outputs of interest. Some studies ignore the series
elastic element and assume the tendon is inextensible, which can
significantly decrease computation time [98]. Assuming a rigid
tendon is valid for analyzing muscles with short or very stiff ten-
dons (e.g., some of the upper extremity muscles and muscles
crossing the hip) or in slower motions with low forces in which
tendon stretch is minimal (e.g., walking [99]). The parameter
that affects the tendon modeling decision is the ratio of the mus-
cle optimal fiber length to the tendon slack length [64]. We
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recommend including tendon compliance in motions with large
forces like running or when analyzing elastic energy storage
in tendons, where compliance plays a crucial role. For example,
in an optimal control simulation of running, ignoring tendon
compliance reduced the maximum sprinting speed achieved
[100].

Additional simplifications include ignoring the force–length–
velocity relationship or activation dynamics, although we recom-
mend including these properties, in most cases. Excluding the
force–length–velocity relationship did not significantly change the
muscle forces during walking predicted by static optimization
[99], although many muscles have been shown to have a wide

Fig. 6 Case study—choosing and validating a musculoskeletal model
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operating range on their force–length and force–velocity curves
even during walking [9]. Ignoring activation dynamics also had a
small effect on static optimization solutions of walking [99],
although its exclusion reduced maximum simulated running speed
in a dynamic optimization study by Miller et al. [100]. Activation
dynamics must also be included when using experimental EMG
measurements as the neural control input [8,9].

Assumptions and Limitations. Several phenomena are ignored
in Hill-type muscle models. Experimental evidence exists for
variable-gearing pennate muscles [101], force enhancement [102],
short-range muscle stiffness [103], and variations in the force–
length curve at submaximal activation [104], but these phenomena
are not accounted for in typical Hill-type models. The mass of
muscles and effects of fatigue are also typically ignored, as is the
distribution of fast- and slow-twitch fibers within a muscle. Fiber
lengths and velocities are assumed to be constant throughout the
muscle, in contrast with recent imaging studies and finite element
models [105,106]. In addition, properties of tendon (e.g., plasticity
and creep) are typically omitted from musculotendon models.
These limitations should be acknowledged when documenting
your findings, and represent valuable areas for future work, com-
bining experiments with models and simulations.

3.3.2 Verifying Muscle–Tendon Dynamics. Before performing
validation, we recommend the following set of verification tests
for muscle models. You should verify that the active and passive
fiber force–length, fiber force–velocity, and tendon force–length
curves are C2 continuous and that all force–length curves have no
negative stiffness regions (other than the descending limb of the
fiber force–length curve). These criteria prevent failure of numeri-
cal methods during simulation, such as encountering numerical
singularities, and prevent nonphysical phenomena (e.g., collagen
under strain does not exhibit negative stiffness). You should also
check for self-consistency between the action of the whole muscle
and that of the constitutive passive and active muscle components
(Fig. 7). Further, energy should be conserved in the muscle–
tendon unit (i.e., fiber work minus fiber strain potential energy
should always equal tendon work minus tendon strain potential
energy) during a wide range of conditions. To verify activation
dynamics, you can input a step excitation and ensure the activa-
tion signal has the characteristic first-order rise or fall time

(assuming a first-order activation dynamics model) and remains
between the muscle model’s minimum and maximum activation
values.

3.3.3 Validating and Evaluating the Robustness of Muscle–
Tendon Dynamics. Validation of muscle–tendon dynamics can be
accomplished through several means. First, when creating a new
computational muscle model, we recommend comparing muscle
forces predicted by a simulation to independent, experimentally
measured forces and dynamics (i.e., length and velocity profiles)
from isolated muscle experiments for a range of activation condi-
tions (e.g., Refs. [98] and [107]). Millard et al. [98] reported mean
absolute force errors of 9% for maximal activation tests and 16%
for submaximal activation tests. A similar or better match for new
models is desirable.

When using an existing muscle model to study a new subject
or a new type of motion, we recommend combining the muscle–
tendon dynamics model with a model of musculoskeletal geome-
try to transform calculated muscle forces into joint moments, then
comparing simulated moments to experimental and inverse
dynamics moments as described in Sec. 3.2.3 and illustrated in the
case study of Fig. 6. Ultrasound data can also provide information
to help validate muscle fascicle and tendon lengths and velocities
for muscle–tendon units during motion (e.g., Ref. [108]).

Muscle–tendon dynamics predictions depend on the error,
uncertainty, variability, and sensitivity of each parameter that
defines the computational muscle–tendon model, as described
below. When determining sensitivity of muscle– tendon models,
defining the output of interest is essential. For example, single-
muscle experiments are generally more sensitive to muscle model
parameters than whole-body walking simulations, where forces
are generated to track a specified trajectory or meet walking goals
[109]. Timing of muscle activity is also generally more robust
than predicted force magnitude, at least for walking and running
simulations [83,110]. Little is known about the sensitivity of joint
reaction forces to muscle–tendon model parameters, though joint
forces are known to be sensitive to the distribution of muscle
forces (e.g., Ref. [111]).

Maximum Isometric Force. The maximum isometric force of a
muscle, derived from measurements of specific tension and
PCSA, is a key parameter of computational muscle–tendon

Fig. 7 Verification test to ensure power from active and passive muscle fiber and tendon is
equal to whole muscle actuator power. We generated a simulation with a constant muscle ex-
citation of 0.6 (u), an initial block position of 0 m (x), and an initial block speed of 1 m/s ( _x ). We
terminated the simulation after 0.5 s (t). The stacked area graph shows the summed power in
the active muscle fiber (blue), passive muscle fiber (red), and tendon (green); the total muscle
power is equal to the summation of these constituent powers (dashed black line).
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models. Specific tension has been estimated in several experi-
ments for humans and animals [112,113] by determining the ratio
between maximum measured muscle tension and a known PCSA,
but a large range of values (11–47 N/cm2) has been reported.

PCSA can be estimated by measuring muscle mass in cadavers
or measuring muscle volumes with MRI. In adults, PCSA typi-
cally scales uniformly with the product of height and mass in the
lower extremity [91] and with overall muscle volume in the upper
extremity [114]. In many past studies where muscle PCSAs were
based on cadaver data, the specific tension parameter was selected
to inflate muscle strengths. Using MRI-based PCSAs with known
size relationships should avoid the need to artificially increase the
specific tension parameter to inflate muscle strengths. The relative
distribution of muscle strengths can change as a function of age
in the upper extremity [115] and lower extremity [116], though
linear scaling laws hold among individuals of similar age.
MRI-derived volumes will allow development of improved
age-matched musculoskeletal models. More work is needed to
understand how muscle volumes and strengths are affected by
pathology.

The predicted patterns of muscle force and activation for many
simulations are not especially sensitive to the maximum isometric
force [109,110,117], particularly when timing rather than magni-
tude is the most important simulation output [84] and the relative
strength distribution between muscles matches experimental
measurements. We recommend avoiding nonuniform muscle
strength scaling, unless isometric force values are based on
subject-specific experimental data.

Pennation Angle. Pennation angle is estimated by measuring
muscle fiber orientation with a goniometer in dissected cadaver
specimens or in vivo with ultrasound. The pennation angle of a
muscle can vary within a muscle and throughout a motion. For
example, the gastrocnemius pennation angle varies 20–30 deg dur-
ing running [108]. Within the muscle, the SD of the pennation
angle in gluteal and soleus muscles is large, nearly equal to the
measured value [96]. Fortunately, muscle force solutions seem to
be less sensitive to pennation angle than other muscle model
parameters [117]. Further, in ultrasound experiments, tendon
strain computations were not strongly sensitive to pennation angle
[108]. More work is needed to understand how pennation angle
affects predictions of muscle fiber and tendon lengths, velocities,
and strains during motion.

Optimal Fiber Length. The optimal fiber length parameter is
estimated by measuring fiber lengths in dissected cadaver
muscles and, in more recent studies, by combining these fiber
length measurements with laser diffraction–based sarcomere
length estimates. Optimal fiber lengths must be carefully exam-
ined in the calibration and validation process. Optimal fiber
length varies by subject and within regions of each muscle [96]
and muscle force predictions have been shown to be sensitive to
the optimal fiber length during gait [109,117–119], and likely
most other motions.

F–L–V Properties and Passive Stiffness of Muscles. The
animal-based data that help define normative force–length and
force–velocity curves are assumed to scale well to human
muscles, though direct validation of this assumption is difficult.
Imaging and finite element models indicate that not all fibers
within a muscle operate at the same length or velocity for a
motion [105,106], which could have the effect of making whole-
muscle force–length and force–velocity curves broader than the
single-fiber curves.

Activation Dynamics. Activation dynamics are typically mod-
eled as a first-order differential equation that relates the rate of
change of muscle activation to the current muscle excitation.
Single-muscle and walking simulations are not particularly sensi-
tive to changes in the activation/deactivation time constants
[109].

Tendon Properties. The key properties of tendon that must be
measured for use in simulation are its stiffness and slack length.
Butler et al. [120] reported Young’s moduli of 362 MPa and
613 MPa for human cadaver gracilis and semitendinosus tendons;
however, the physical properties of cadaver tissue can be affected
by storage method, donor age, and other factors. Maganaris and
Paul [121] measured human gastrocnemius tendon stiffness
in vivo using real-time ultrasound imaging, and reported a
Young’s modulus of 1.16 6 0.15 GPa. These results agree with
analogous in vivo measurements of the (less highly stressed)
human tibialis anterior tendon [122], suggesting that tendon mate-
rial properties are independent of function.

Tendon slack length cannot be easily measured in cadaver or
imaging experiments. Researchers have typically measured fiber
lengths and joint positions in cadaver experiments. Then, when
building a model, slack lengths are set such that the fiber lengths
in the model match the measured fiber lengths at the given posi-
tion (e.g., Ref. [7]). It has also been shown that, of all the muscu-
lotendon model parameters, tendon slack length has the largest
effect on predictions of muscle forces [85,109,118,119]. Changing
the tendon slack length alters where muscles operate on the
force–length curve, affects the joint angle where peak force is
generated, and changes the range over which a muscle can gener-
ate force. Muscles with a high ratio of tendon slack length to opti-
mal fiber length (e.g., greater than three) are most sensitive (e.g.,
gastrocnemius and rectus femoris) [64]. We recommend testing
the sensitivity of your research question to tendon properties, par-
ticularly when your results depend on muscles whose tendon slack
length is large relative to the muscle fiber length. An example sen-
sitivity analysis for tendon compliance is shown in the case study
of Fig. 8.

3.3.4 Energetic or Metabolic Modeling. Muscle activation is
the primary driver of metabolic energy consumption during
motion and is often a good surrogate for energetic cost. However,
computational models of muscle energetics have the potential to
provide more information about efficiency and energy use for the
whole body and individual muscles during a range of motions.
Several energetic models are available [123–126], which use mus-
cle activation along with muscle length, muscle velocity, excita-
tion and/or fast- and slow-twitch fiber composition to estimate the
combined mechanical work done and heat released by muscles.
These models are based on experiments with isolated fiber
bundles from mouse and frog muscles. These models predict
whole-body metabolic cost for walking and running with reasona-
ble accuracy, but predictions are sensitive to the metabolic model,
corresponding muscle model, and neural controller [90,127]. This
is an important area for future work as interest in metabolic
energy and efficiency grows in the community (e.g., in pathology
or for designing assistive devices).

3.4 Contact and Other External Forces. In many simula-
tions, experimentally measured contact forces and torques are
applied to the model. These measurements can occur either before
the simulation (e.g., ground reaction forces collected in a laboratory
[11]) or during the simulation (e.g., in haptic feedback applications
[128], where the simulation trajectory is not known a priori). In
both cases, the quality of the contact force signal is limited only by
the quality of the measurements; however, both strategies require
experimental equipment and expertise. Contact models are useful
when experimental data would be difficult or impossible to collect,
such as when modeling internal joint loading [129].

3.4.1 Modeling Choices. We recommend choosing the contact
model of least complexity and greatest computational efficiency
that captures the phenomena of interest. In its simplest and most
efficient form, contact can be idealized as a set of one or more
kinematic constraints; alternatively, the modeler can employ a
rigid or elastic contact model. Kinematic constraints represent
interactions between infinitely stiff bodies, and are satisfied to
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within numerical tolerance by arbitrarily large contact forces.
Ideal constraints such as those representing pin and slider joints
do not exist in reality; however, computationally efficient algo-
rithms exist for simulating the resulting differential-algebraic
equations (DAEs). Thus, the constraint-based approach is useful
when you don’t need information about detailed interactions, as is
the case when studying muscle coordination in cycling, for exam-
ple [130]. Constraint-based contact models can also reproduce
ground reaction forces in walking and running when kinematics
are known. In the case study of Fig. 9, we illustrate the process of
validating a constraint-based contact model when performing an
induced acceleration analysis.

An elastic foundation model represents an array of independent
linear or nonlinear springs that generate force as a function of pen-
etration depth of one surface into another. Such compliant contact
models are convenient and can produce accurate results when

properly tuned, but they can be computationally expensive when
the interacting materials are stiff. Rigid contact models address
this limitation by approximating the behavior of compliant mod-
els, treating impacts as instantaneous events and simulating per-
sistent interaction using constraints. Although rigid contact
models can be more efficient than their compliant counterparts,
they are less realistic—in some cases, even nonphysical [131].

Assumptions and Limitations. As modeling and simulation of
humans in interaction with external devices (e.g., prostheses or
exoskeletons) become more common, additional models and ex-
perimental data are needed to understand and validate the com-
plex contact that occurs at the device-soft tissue interface. More
work is also needed to develop foot–ground contact models that
are suitably fast for predictive simulation while still predicting
contact forces that are in good agreement with experiments.

Fig. 8 Case study—tendon compliance sensitivity analysis
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3.4.2 Verifying Contact Models. To verify the simulation of
contact, we recommend checking that impacts are always energet-
ically neutral or dissipative, normal forces are always repulsive,
sliding friction is always dissipative, and other physical laws
(such as those of Newton and Coulomb) are respected.

3.4.3 Validating Contact Models. Validation tasks are guided
by the research question and application. If studying the upper
extremity, for example, the simulation of foot–ground contact is
likely irrelevant. In other cases where ground contact plays a sig-
nificant role in the motion of interest (e.g., studying the triceps

Fig. 9 Case study—constraint-based contact modeling
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surae using predictive simulations of running), we recommend
validating the foot–ground contact model against experimentally
measured ground reaction forces to be certain that appropriate
stiffness and damping parameters or an appropriate constraint
type (e.g., see the case study of Fig. 9) have been selected. Simi-
larly, data collected from instrumented knee joint replacements
can be used to tune or validate contact parameters for studying
internal joint forces. Finally, if using a rigid contact model, we
recommend validating its performance against the behavior of the
compliant model it has been designed to approximate.

3.5 Neural Control. Neural control coordinates the muscle
forces that drive motion and is arguably the most challenging
component in Fig. 4 to model. Neural commands originate in the
brain to execute planned motions, and combine with feedback
from the peripheral nervous system (e.g., stretch feedback from
muscle spindles). Thus, neural control of movement arises from a
complex interaction of neural commands descending from the
brain and reflex responses and sensory information delivered to
the central nervous system from a vast set of sensors located in
muscles, tendons, joints, and skin.

3.5.1 Modeling Choices. In some cases, a model of neural
control is not required, since many biomechanics studies depend
only on joint angles and net moments. Other studies use

experimental input from EMG to estimate the neural command
and drive motion or muscle dynamics. EMG-driven simulations
do not generally produce a forward simulation that generates a
coordinated movement unless additional, corrective forces are
applied to maintain the desired trajectory. It is also difficult to ac-
quire EMG for some muscles in the body. Nevertheless, the
EMG-driven approach has been successfully used to understand
muscle–tendon dynamics in walking and running (e.g., Refs. [8]
and [9]) and to simulate various upper and lower extremity
motions (e.g., Refs. [132] and [133]).

Modeling of neural control generally comes in two forms. The
first, tracking control, is applicable when the dynamics of a
motion are known (e.g., from a motion capture experiment) and
the controller is responsible only for solving the muscle redun-
dancy problem to resolve a net joint moment into a constituent
moment from each muscle. The second form of neural control
modeling, predictive simulation, is applicable when the motion is
neither known nor assumed and the controller must represent the
goals of a task to be performed (e.g., maximize jump height or
minimize cost of transport) and optimize control signals to find
the motion trajectory along with the moments or forces required
to obtain that motion.

For both types of neural control modeling, an effort-based cost
function is often used. When simulating walking and running, the
specific muscle-based cost function chosen (e.g., energy

Fig. 10 Case study—comparing simulated muscle activations to EMG
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expended, activation squared, and activation cubed) does not have
a large effect on the overall muscle coordination strategy
[90,134], though it affects predicted internal joint loads [111] and
estimated cost of transport [90]. While the commonly used effort-
based objectives show good results in many applications, their
suitability in pathological or maximum performance motions
(e.g., sprinting or jumping) may be less appropriate. For example,
in individuals with osteoarthritis, muscle coordination might be
tuned to minimize a combination of effort and joint loads. Track-
ing simulations have also been shown to overpredict the cost of
transport due to co-contraction when precisely matching measured
motions [90]. In these situations, validation against experimen-
tally measured muscle activity and internal joint load measure-
ments (from instrumented joint replacements) is important.

The majority of current studies that include a neural control
model are concerned only with solving the muscle redundancy
problem to track experimentally measured motion. An effort-
based objective (e.g., minimizing the sum of squared muscle acti-
vations) is used to solve for a set of muscle excitations or forces
that track measured motions within a specified tolerance. Muscle
forces can be resolved at each time step during the motion of
interest (i.e., using static optimization) or over the entire motion
trajectory (i.e., using dynamic optimization). The effort minimiza-
tion approach, whether in a static or dynamic optimization, has
been used to understand muscle coordination in a range of
motions, including walking, running, cycling, and reaching (see
Ref. [135] for a review). In walking, static and dynamic optimiza-
tion yield similar predictions of muscle and joint forces [99].

There is also growing interest in using predictive simulation to
synthesize motions de novo. In predictive simulation approaches,
a high-level motion task is specified and control signals or con-
troller parameters are determined to achieve this task. This
approach has been successfully used to simulate maximum-
performance activities like a maximum-height jump and a stand-
ing long jump [136–138]. In these situations, the high-level task is
relatively easy to specify. An explicit structure for the underlying
controller can be assumed or a parameterized set of control signals
can be used as design variables. Applying predictive simulation to
locomotion is more challenging than tracking-based approaches
and is also computationally expensive, but several recent studies
show promise [89,139].

One proposed approach to understanding and simplifying neu-
ral control is the application of muscle synergies. In this growing
area of research, muscle activity is decomposed using principal
component analysis or related approaches to find groups of
muscles that are activated together during movement, modulated
by a single scaling parameter [140,141]. There is evidence that a
consistent set of muscle synergies is used between tasks such as
postural perturbations in a range of directions [142] or cycling at a
range of speeds [143], and that the number/complexity of syner-
gies is reduced in pathologies that affect the motor control system,
such as poststroke [144]. Controversy remains, however, about
whether synergies are truly representative of the underlying physi-
ology or are merely a consequence of experimental data
processing.

Assumptions and Limitations. Modeling neural control is a
grand challenge. Fundamental questions about the nature of motor
control remain unanswered, and as a result open questions remain
about the form a model for neural control should take. How
should we parameterize the neural control system in a model to
capture the motions of interest with minimal complexity? What
are the roles of reflexes and feedback? Can synergies help param-
eterize a neural control model? Initial results on the role of syner-
gies or a central pattern generator (e.g., Ref. [145]) in driving
motion show promise in helping to develop a simple model for
the neural control of locomotion, but compelling evidence is still
required to determine whether and how synergies should be incor-
porated into a model of physiological motor control. Much also
remains to be learned about our internal “cost function” for

various motion tasks (e.g., walking, running, and reaching). Out-
standing questions include (1) how cost functions differ between
individuals or with age and pathology; (2) whether the neural con-
trol system performs a real-time optimization when external or in-
ternal conditions change unexpectedly; and (3) if the human is
optimizing in real time, what signals are the neural controller
using to update and optimize the given cost function. More
research is needed where experiments and simulations are com-
bined for a wide range of motions to develop and validate better
models of neural control.

3.5.2 Verifying Neural Control. Verification of neural control
models is challenging because few laws or benchmark problems
exist to characterize the underlying neural system. For tracking
approaches, it is common to compare predicted muscle activa-
tions to a comparable optimal control solution to verify that
coordination is similar when searching for local, rather than
global, minimum effort (e.g., Ref. [99]). Investigators have also
added noise to the input data to ensure tracking is robust [146].
For predictive simulation, the solution approach can be applied
to simple models (e.g., a passive leg swing or simple maximal
effort task) where the solution (i.e., the underlying control signal)
is known. In the case of muscle synergies, verification should
additionally confirm the eigendecomposition has been performed
correctly (e.g., by reducing dimensionality, reconstituting the ma-
trix, and checking the error relative to the original matrix) and
that the error decreases as the number of synergy groups
increases.

3.5.3 Validating and Evaluating the Robustness of Neural
Control. Validation depends heavily on whether and how neural
control is modeled in your study. In the case where experimental
EMG data are used to estimate neural control, the same EMG data
cannot be used for independent validation. In this case, we recom-
mend comparing the resulting joint kinematics (if not prescribed)
and net joint moments from the EMG-driven simulation to experi-
mental kinematics and net joint moments from inverse dynamics
(see Fig. 6 for an example of joint moment comparison). Even
with careful model calibration and EMG processing, it is gener-
ally unreasonable to expect that the EMG-driven moments will be
an exact match to the inverse dynamics–based moments. For
example, EMG is often unavailable for small or deep muscles. In
our group, we check for similar timing of moment peaks and
strive for simulated EMG-driven moments within 2 SD of inverse
dynamics moments, unless known and documented modeling
assumptions can account for additional differences (see the case
study of Fig. 6 for an example of this process).

In tracking simulations, muscle activations can be determined
without using EMG data. In this case, we recommend comparing
predicted muscle activity to measured EMG from your own
experiments and/or previous studies. Since EMG is difficult to
normalize and is subject to measurement error [147], you gener-
ally cannot compare EMG signals directly to predicted muscle
activations from a simulation. Instead, you should determine
whether onset/offset timing in experiments and simulations are in
good agreement, after accounting for electromechanical delays
between EMG and activation or force [148]. The case study of
Fig. 10 demonstrates the application of these principles to the
study of running. Further, simulations should reproduce salient
features of muscle coordination established in experimental stud-
ies (e.g., the vasti should show early stance phase activation in
walking). If you test and simulate multiple conditions (e.g., walk-
ing with and without a carried load), your simulation should pre-
dict similar trends between EMG and simulated muscle activation
(e.g., increased vasti activity [149]).

If simulation results do not match experimental EMG data,
researchers will sometimes constrain muscles to be on or off at
specified times in the simulation. In this case, the EMG data for
these muscles become calibration data rather than validation data.
Many tracking simulations also apply extra forces or moments
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(e.g., reserve actuation in OPENSIM terminology [6]) to account for
the action of ignored passive structures or for insufficient muscle
force-generating capacity. If your model includes reserve actua-
tors, we recommend checking that these reserve moments are
small relative to the total net joint moment. In our group, we aim
for reserve joint torques (peak and RMS) smaller than 5% of net
joint moments. In addition to comparing against EMG, we recom-
mend comparing new predictions to existing simulations (i.e., val-
idation against an independent implementation). Data from
instrumented joint replacements, such as the Grand Challenge to
Predict Knee Loads dataset [78], also provide an indirect set of
independent validation data.

Predictive simulations allow for a larger set of independent
validation data, since muscle activations and motions are typi-
cally resolved independently of EMG and motion capture data.
We recommend making the following comparisons. First, onset
and offset of muscle activity, as for tracking simulations, should
be compared to experimental EMG. Kinematics, kinetics, and
ground reaction forces should also be compared to experiments.
Simulations should be within 2 SD of experimental data if they
are claimed to replicate human motion. In the case where a pre-
dictive simulation is designed to simulate a new motion that has
not or cannot be measured, you should at least determine
whether your framework is able to reproduce similar, known
motions (e.g., a predictive simulation framework to design devi-
ces to aid human jumping should produce a humanlike unassisted
jump). As predictive simulation frameworks become more so-
phisticated and are able to synthesize a range of motions beyond
just normal, unassisted walking, even more data for independent
validation will become available. For example, previous

experimental studies have characterized how metabolic cost and
muscle coordination change with speed and load. Researchers
can now determine whether their predictive models show similar
adaptations.

3.6 Numerical Methods for Simulation and Analysis.
Often overlooked are the numerical methods used to solve for the
unknowns in a simulation. For example, the multibody dynamics
code generally forms a set of coupled DAEs, and numerical inte-
gration is required to find a solution (i.e., a trajectory of time-
dependent states) that satisfies the system of DAEs. All numerical
integrators are approximate, and their accuracy (how many digits
of the solution are significant) or error tolerance (the absolute or
relative difference with respect to the “true” answer) are parame-
ters of the numerical integration algorithm. If the accuracy is too
low, the solution may no longer be faithful to the modeled dynam-
ics; if too high, the computation time will become prohibitive.

In musculoskeletal models, we are primarily concerned with
inaccuracies in the model’s state (e.g., joint angles and speeds,
and muscle fiber lengths and activations). Errors in the state can
result in erroneous forces, which lead to noisy acceleration esti-
mates, poor numerical performance, and untrustworthy future
states. For example, consider the case where one muscle in a
model has a short optimal fiber length, say 5 mm. If the integration
accuracy is 0.001, then each state variable is accurate to approxi-
mately three significant figures, or about 1 mm if lengths are
stored in meters. In this case, an error of 0.001 m amounts to 20%
of the muscle’s fiber length, which is sufficient to cause the mus-
cle to switch from generating no passive forces to high passive
forces, or from having a small force-generating capacity based on

Table 1 Summary of tests, dependencies, and validation best practices when building a musculoskeletal model or adapting a
model to a new use. The first column lists tests to perform when building or adapting a musculoskeletal model. Each test should
be performed throughout the range of motion for which the model will be analyzed. The second column lists the model parameters,
experimental inputs, and antecedent output variables (the latter, in bold) being tested. Errors in each test can also stem from errors
in each of the parameters and inputs listed in the second column (i.e., errors will propagate). Variables or inputs in italics are those
to which an output is particularly sensitive. The third column lists best practices for validating the results of each test. These are
recommended guidelines—if they cannot be achieved, the researcher should provide justification and perform sensitivity analyses
to ensure that conclusions drawn from analysis of the model are robust given the errors or inaccuracies. The final column refers to
sections of the article that provide more detail.

Musculoskeletal model test Parameters and inputs tested Validation best practices Sec.

Model kinematics: compute model
kinematics through each joint’s range of
motion

Joint definitions (e.g., joint location,
orientation, and type); body segment lengths

Joint ranges of motion match experimental
data. Modeled joints reproduce experimental
motion from bone pin, cadaver, or imaging
data to within measurement error.

3.1, 3.2

Muscle moment arms: compute muscle
moment arms throughout the model’s range
of motion

Muscle geometry (attachment and via
points, wrapping surfaces); mode

kinematics

Moment arms are within 2 SD of
experimental data measured by tendon
excursion or MRI.

3.2

Forces from muscle–tendon dynamics model
and constituent components, including
active and passive muscle fiber force, ten-

don force and strain, muscle fiber lengths

and velocities: use computational muscle–-
tendon dynamics model to replicate isolated
muscle experiment

Muscle–tendon dynamics model and its
parameters, including maximum isometric
force, pennation angle, optimal fiber length,
passive muscle stiffness, force–length–
velocity relationships, tendon stiffness, and
tendon slack length

Difference between predicted and
experimental muscle forces are within 10%
of measured muscle force.

3.3

Passive joint moments: calculate the net
moment generated by muscles and other
modeled forces (e.g., ligaments) throughout
joint range of motion when muscles have
zero activation

Model kinematics; muscle moment arms;
muscle geometry; muscle–tendon dynam-

ics model and its parameters, including pas-
sive force–length curve, tendon slack length,
tendon stiffness, and maximum isometric
force.

Passive moment curves are within 2 SD of
experimental data.

3.2

Maximum net joint moments: calculate the
net moment generated by muscles and other
modeled forces (e.g., ligaments) throughout
joint range of motion when agonist muscles
have maximum activation input and all other
muscles have zero activation

Model kinematics; muscle moment arms;
muscle geometry; muscle–tendon dynam-

ics model and all related parameters

Maximum moment curves are within 2 SD
of experimental data. Joint moments
generated by the model during submaximal
activation should also be tested (see
Table 3).

3.2
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its force–length relationship to a capacity near its maximum. This
behavior can cause the numerical solution to become unstable
(i.e., chatter) and fail. We recommend choosing an accuracy corre-
sponding to the largest change in a state variable that would result
in an insignificant change in state derivatives.

Other commonly employed methods for determining unknowns
in a model or simulation are root-solving and optimization algo-
rithms. These methods are iterative and generally use derivatives
of an objective function to steer the approach toward a solution.
Optimization and root-solving methods are sensitive to several
factors: derivative precision, function noise, and the convergence
criteria used to terminate the search. Derivatives are often calcu-
lated numerically by perturbing the objective function, with
smaller perturbations yielding higher-precision estimates of the
derivative. However, if there is noise or imprecision in the evalua-
tion of the objective function, then seemingly high-precision
derivatives from these small perturbations will predominantly be
a measure of the local noise and, thus, will be grossly inaccurate.
For these algorithms to proceed efficiently and reliably, the pertur-
bation size must be large enough to capture functional behavior
and not merely noise. We recommend choosing a perturbation size
that is substantially (e.g., an order of magnitude) larger than the
known or estimated accuracy of the objective function [150]. A con-
vergence criterion is used to assess how close the optimization or
root-finding algorithm is to a final solution and specifies when the
algorithm will terminate. We recommend verifying that the required
convergence has been achieved for any such computation by examin-
ing the plot of objective function value versus iteration number.

3.7 Summary of Best Practices for Verification and
Validation. In Secs. 3.1 to 3.6, we reviewed the current state of
the art for selecting a modeling and simulation framework, and

for verifying and validating its many possible outputs. The major-
ity of modeling and simulation research falls into three categories:
(1) building or adapting a musculoskeletal model for a particular
application; (2) generating an inverse dynamic simulation based
on measured experimental kinematics and/or kinetics; and (3)
generating a forward dynamic simulation given a controller or
estimated control signals. We, therefore, also provide in Tables 1,
2, and 3 a synopsis of the typical tests or outputs, dependencies,
and validation best practices for each of these research categories.
These tables can be used to guide the development of new models
and simulations. The guidelines they contain will continue to
evolve as we create new tools for modeling and simulation and
new techniques and datasets for verification and validation.

4 Verification and Validation Challenges

The resources and best practices for verification and validation
of models and simulations must continue to improve as the field
progresses. We have identified several key challenges for verifica-
tion and validation.

4.1 Creating Gold Standard Datasets and Benchmark
Problems. Gold standard datasets include comprehensive, high-
fidelity experimental data collected using techniques inaccessible
to many researchers (e.g., forces from instrumented joint replace-
ments or motion from bone pin markers). These data should be
made publicly available so others can use them to verify and vali-
date both existing and new models. The Grand Challenge to Pre-
dict Knee Loads [78] is one example of a publicly available gold
standard dataset. In addition to a comprehensive set of anthropo-
metric and motion data, the Grand Challenge also includes a clear,
validation-focused problem: predicting internal knee joint loads in

Table 2 Summary of dependencies and validation best practices for common outputs from an inverse simulation, assuming the
model under study has already been validated. The first column lists typical simulation outputs. The second column lists the model
parameters, experimental inputs, and antecedent output variables (the latter, in bold) upon which each output depends. Errors in
each output can also stem from errors in each of the dependencies listed in the second column (i.e., errors will propagate) and
from errors in the model (see Table 1). Variables or inputs in italics are those to which an output is particularly sensitive. The third
column lists best practices for validation. These are recommended guidelines—if they cannot be achieved, the researcher should
provide justification and perform sensitivity analyses to ensure that conclusions are robust given the errors or inaccuracies. The
final column refers to sections of the article that provide more detail.

Inverse simulation output Dependencies Validation best practices Sec.

Kinematics of joints, bodies, and points of

interest

Joint definitions; body segment lengths;
sensor/motion capture marker placement;
measurement noise; motion data processing

Difference between experimental and model
sensors/markers is within measurement
error. Kinematics are within 2 SD of
published data for similar motion.

3.2, 3.1

Kinetics of joints and bodies, including net
joint moments and residual forces and
moments

Kinematics; body segment inertial parame-
ters; joint definitions; measured forces and
moments, including points of application,
measurement noise, and data processing

Residual forces are< 5% of the magnitude
of net external force (peak and RMS). Resid-
ual moments are< 1% COM height times
the magnitude of the net external force (peak
and RMS). Net joint moments are within 2
SD of published data for similar motion.

3.1

Muscle–tendon unit path lengths and

lengthening speeds

Kinematics; muscle geometry (attachment
and via points, wrapping surfaces); joint
definitions.

Compare muscle paths and kinematics to
imaging data (e.g., MRI).

3.2

Muscle forces and/or activations Tracking requirements (e.g., kinematics and
joint moments); optimization criterion (e.g.,
minimize sum of squared activations);
muscle moment arms; muscle force-
generating capacity as a function of path

lengths and speeds; joint definitions (e.g.,
degrees of freedom and other passive
structures modeled)

On and off timings of muscle activity are
within electromechanical (EMG-to-force)
delay (�100 ms) of experimental EMG.
Muscle activity and EMG curves are
qualitatively similar. Net joint moments
from muscles and other modeled structures
account for 95% of tracked joint
moments. Indirect: joint reaction force
criteria are satisfied (see below).

3.3

Joint reaction forces Kinematics; kinetics; muscle forces; joint
definitions; segment inertial properties;
muscle geometry

Forces are within 2 SD of experimental joint
forces (e.g., instrumented implants) for
similar motion.

3.2, 3.3, 3.1.3
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a blinded manner. We need additional experimental datasets for
validation and similar Grand Challenges to engage the field.
For example, comprehensive datasets from animal models could
provide full musculoskeletal geometry data and experimentally
measured internal muscle and joint forces during motion.
Comprehensive human datasets could include traditional motion
capture data for a range of activities, along with internal muscle–
tendon dynamics from ultrasound (e.g., Ref. [108]) and sarcomere
lengths from recently developed optical microendoscopy techni-
ques [151]. Accompanying these datasets should be a clear set of
problems, such as predicting internal joint and muscle forces in
the animal models or predicting changes in neural control for dif-
ferent activities (e.g., walking with and without an assistive
device) in humans. Modeling and simulation will benefit from a
clear set of benchmark problems to help establish baselines
against which to compare both new and existing models and
simulation tools.

4.2 Sharing Models, Data, and Simulation Tools. A related
challenge for the field is further incentivizing and providing
resources for sharing published models, data, and simulation tools
with the wider research community. Sharing, although time inten-
sive and not directly publishable, benefits the field by allowing
others to reproduce, extend, and continue to verify and validate
research products. Sharing can also benefit individual researchers

by increasing awareness and subsequent citations of publications.
Funding agencies have also increasingly pushed for open access
to the results of sponsored research. We hope that the incentives
and resources for sharing will continue to grow in the future, for
example, by encouraging open access as part of grant applications
and journal publications. Contribution to and use of open source
software should also be encouraged as a way of disseminating
new tools that can immediately be used and extended by others.

4.3 Developing Tools to Help Automate Verification and
Validation. Verification tests are an integral part of current soft-
ware packages for modeling and simulation. These test suites
should continue to grow with the field, as new benchmark problems
and gold standard datasets are made available and new modeling
and simulation approaches are developed. The field also needs
more tools to aid the model validation process, such as modern
algorithms for efficient sensitivity testing (compatible with and/or
embedded in NMS modeling packages) and automated tools to
compare simulation results to established standards for kinematics,
kinetics, and muscle activity and dynamics.

4.4 Learning and Teaching Others What’s Inside the
“Black Box”. Knowledge of the physics and biology of the mus-
culoskeletal system and its movement, as well as how existing
tools transcribe real world systems into computational models, is

Table 3 Summary of dependencies and validation best practices for common outputs from a forward simulation, assuming the
model under study has already been validated. The first column lists typical simulation outputs. The second column lists the model
parameters, experimental inputs, and antecedent output variables (the latter, in bold) upon which each output depends. Errors in
each output can also stem from errors in each of the dependencies in the second column (i.e., errors will propagate) and from
errors in the model (see Table 1). Variables or inputs in italics are those to which an output is particularly sensitive. For a forward
simulation, outputs additionally depend on the initial or current state of the model, which could include, for example, the coordi-
nate positions and velocities and current muscle activations and fiber lengths. The third column lists best practices for validation.
These are recommended guidelines—if they cannot be achieved, the researcher should provide justification and perform sensitiv-
ity analyses to ensure that conclusions are robust given the errors or inaccuracies. The final column refers to sections of the article
that provide more detail.

Forward simulation output Dependencies Validation best practices Sec.

Muscle activation Controller model or input controls
(e.g., experimental EMG); activation
dynamics model

On and off timings of muscle activation
agree with experimental EMG. Muscle
activation and EMG curves are qualitatively
similar.

3.5

Muscle–tendon forces and their
constituent components, including
active and passive muscle fiber

force, tendon force and strain,

muscle fiber lengths and velocities

Muscle activation; initial/current ki-
nematic state of the muscle;
muscle–tendon dynamics model and
its parameters, including maximum
isometric force, pennation angle,
optimal fiber length, passive muscle
stiffness, force–length–velocity rela-
tionships, tendon stiffness, tendon
slack length

Muscle fiber lengths and velocities and
tendon strain are within 2 SD of imaging
data for similar motions. No unreasonably
long or short muscle fibers or rapid changes
in fiber lengths for motions such as walking.

3.3

Contact forces and moments Initial/current model state and either
constraint type (e.g., weld or rolling
without slipping) or compliant con-
tact model parameters (e.g., geome-
try, stiffness, dissipation, friction)

Contact forces and moments are within 2 SD
of experimental data (e.g., ground contact
forces and moments) for similar motion.

3.4

Kinetics of joints and bodies Muscle–tendon forces; contact
forces; initial/current model state;
joint definitions; segment lengths and
inertial parameters; muscle geometry

Joint moments are within 2 SD of published
or independent experimental data for similar
motion. If controller has a tracking
objective, net joint moments from muscles
and other modeled structures account for
95% of tracked joint moments.

3.1

Kinematics of joints, bodies, and

points of interest

Kinetics; initial/current state; joint
definitions; body segment lengths

Kinematics are within 2 SD of published or
independent experimental data for similar
motion. If controller has a tracking
objective, difference between experimental
and model sensors/markers is within
measurement error.

3.1
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the foundation for verification and validation. The verification and
validation process demands an intimate knowledge of the capabil-
ities and limitations of models and simulations. Members of the
community must continue to expand their knowledge as new mod-
els, simulation techniques, and experimental modalities are devel-
oped. We also encourage the community to create and share
teaching materials (e.g., hands-on tutorials and videos) for audien-
ces from clinicians who are new to NMS modeling to advanced
users and software developers.

4.5 Performing Excellent Research With Modeling and
Simulation. Excellent research demonstrates the value of model-
ing and simulation by generating hypotheses and making predic-
tions that impact real-world challenges. The set of available tools
and datasets for building models, generating simulations, and vali-
dating predictions is rapidly growing. These advances are paving
the way for modeling and simulation to be used as tools for plan-
ning musculoskeletal surgery, designing training programs to
reduce sports injuries, and prototyping powered prosthesis that aid
locomotion. As a field, we must continue to identify and solve
pressing real-world challenges where modeling and simulation are
used to uncover phenomena not accessible via observation or
experiment alone.

5 Conclusions

Musculoskeletal models and dynamic simulations of movement
provide powerful tools to study neuromuscular coordination, ana-
lyze athletic performance, and estimate internal loading of the
musculoskeletal system. Simulations can also be used to identify
the sources of pathological movement and establish a scientific
basis for treatment planning. It is our responsibility as developers
and users of these tools to ensure that our software has been thor-
oughly tested, our models and simulations accurately represent
the essential physical phenomena, and that the conclusions we
draw from these simulations are trustworthy. The guidelines pro-
vided here serve as a framework for achieving these goals.
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