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Localized adverse events, including natural hazards, epidemiological
events, and human conflict, underscore the criticality of quantifying
and mapping current population. Building on the spatial interpola-
tion technique previously developed for high-resolution population
distribution data (LandScan Global and LandScan USA), we have
constructed an empirically informed spatial distribution of projected
population of the contiguous United States for 2030 and 2050,
depicting one of many possible population futures. Whereas most
current large-scale, spatially explicit population projections typically
rely on a population gravity model to determine areas of future
growth, our projection model departs from these by accounting for
multiple components that affect population distribution. Modeled
variables, which included land cover, slope, distances to larger cities,
andamovingaverageof currentpopulation,were locally adaptiveand
geographically varying. The resulting weighted surface was used to
determine which areas had the greatest likelihood for future popula-
tion change. Population projections of county level numbers were
developed using amodified version of theUS Census’s projectionmeth-
odology, with the US Census’s official projection as the benchmark.
Applications of our model include incorporating multiple various
scenario-driven events to produce a range of spatially explicit popula-
tion futures for suitability modeling, service area planning for govern-
mental agencies, consequence assessment, mitigation planning and
implementation, and assessment of spatially vulnerable populations.
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Impacts, adaptations, and vulnerability of population have come
into sharp focus in recent years, particularly in light of concerns

around global climate change (1). Whether through increased
susceptibility to vector-borne disease (2), food scarcity, or extreme
weather events, the general consensus is that large populations will
be affected by the impacts of climate change (3). Nearly every
climate change model predicts some magnitude of sea level rise
(4), and whereas a considerable segment of the world’s population
lives in close proximity to coastal areas (5–8), rising sea levels
increase the risk of storm surge, coastal flooding, and other storm-
related hazards (4, 9). The aforementioned scenarios require the
examination of tools and data that are necessary to quantify
populations at risk to these predicted adverse events, so that
appropriate countermeasures can be taken when attempting to
allocate potential resources. Spatially explicit gridded population
estimates have repeatedly proven their usefulness for planning
needs, including those of public health, the environment, disaster
mitigation, preparedness and assistance, and service area plan-
ning for local, regional, and national governments.
Originally pioneered by Semenov-Tian-Shansky (10) and pop-

ularized by Wright (11), dasymetric modeling is a key technique
for spatial disaggregation of population data. Unlike choropleth
maps, which assume a uniform distribution of population within
an arbitrary spatial unit, the dasymetric approach uses ancillary
data at a finer spatial resolution to distribute population from
source zones (i.e., census regions) to more precise target zones
(e.g., grid cells). Land use\land cover is the best indicator and
most prolific in this respect (12, 13), where land use or land

cover categories for each cell are weighted based on the likeli-
hood of population. Over time, refinement of the dasymetric
mapping technique has led to the development of intelligent
dasymetric models using multiple ancillary spatial data to refine
the allocated population distribution (14, 15). Developed at Oak
Ridge National Laboratory, LandScan USA (3 arc-seconds ∼ 90 m)
(13) and LandScan Global (30 arc-seconds ∼ 1 km) (12) use
intelligent dasymetric modeling to produce high-resolution raster
population distribution data. However, current distributions of
population are of limited use in long-term socioeconomic plan-
ning. Therefore, projecting future distributions is of the utmost
importance for urban development, critical infrastructure siting,
or assessing the impacts of climate change. In the context of
climate change modeling, as reported by the Intergovernmental
Panel on Climate Change, long-term demographic projections
have been an essential component of scientific analysis for future
greenhouse gas scenario generation (16).
Recent spatially explicit population projections have ranged in

scale from metropolitan (17), state (18), national (19), to global
levels (20). However, due to computational intensity, most large-
scale spatially explicit projection models do not account for local
subtleties, rather they apply generalized trends across multiple
regions. Some existing spatial projection methodologies project
population counts as part of the spatially modeled scenario. For
instance, the California Urban Futures (CUF) model (21) uses
linear regression to estimate residential population numbers
that are then allocated to geographic units based on various
weights. Similarly, the Spatially Explicit Regional Growth Model
(SERGoM) projects changes in housing density resulting from
variables such as urban proximity and county level population
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growth rates (19), thus population change is accounted for within
these two models. However, all models intrinsically have the ca-
pacity to incorporate exogenously derived population estimates
(i.e., third party entity) and urbanization rates to allocate or
downscale projected population on top of an existing, current
population distribution developed by another organization (20).
Other spatial projection procedures are similar in that multiple
sources are used to independently validate the projected pop-
ulation counts (12, 13).
For the development of the spatial allocation procedure,

methodologies typically follow either a straightforward procedure
that reflects current trends and patterns or a more complex
procedure that integrates a multivariate statistical model (22, 23).
The former includes population trend extrapolations, prorates of
the current spatial population structure, and cellular automaton.
Trend extrapolation procedures look at the individual cell and
project population change by either the total population change
per cell or by the change in the share of growth per cell (23, 24).
Another procedure assumes new population will conform to the
current spatial structure of the population. In this particular case,
the same spatial structure of population at a specific point in time
is prorated to match anticipated population counts (20, 25, 26).
Cellular automata provide a general representation of urban
development by simulating the development of adjacent cells
through multiple iterations (27–29). Whereas ref. 27 uses cellular
automata to project both urban expansion and spatial population
growth, refs. 28, 29 merely attempt to model spatial expansion of
urban areas, using population as an explanatory response to the
observed changes rather than modeling population growth.
More complex procedures model change in the spatial structure

of population by incorporating multiple variables which seek to
understand the relationship between census counts and the asso-
ciated variables (22, 23). The most straightforward of these
methods uses a population gravity model, which is based on the
assumption that existing population attracts additional population.
The methodology used by the International Institute for Applied
Systems Analysis primarily uses this technique to project general-
ized global trends (30), and Jones and O’Neil (1) modify this
procedure by accounting for many geographical limitations, such
as distance-decay rates, border effects, influence of window size,
and adding in a suitability mask to prevent certain areas from being
developed. The methodologies used by the California Futures
Model (17, 21) and in the Florida 2060 report (18) incorporate
existing population as attractors for new growth as well as variables
such as land cover, infrastructure, zoning, and the financial housing
market to produce potential urban development surfaces, which
are in turn used to distribute new population. Similarly, the
SERGoM procedure (19) incorporates a myriad of physical and
socioeconomic variables to model growth, although this method
projects changes in housing density rather than population, be-
cause its primary purpose is for modeling and monitoring land use.
To date, most spatial projection methods have been founded

on projecting residential population (1, 17–19, 21), urban pop-
ulation (31), or purely urban growth (28, 29) at coarse reso-
lutions for national and global scales by applying generic,
regional growth patterns or varying climate change scenarios,
ignoring the underlying subtleties which influence spatial pop-
ulation growth (20, 23, 25, 30). Whereas metropolitan and state
level spatially explicit projection models do account for the local
subtleties and variation in population growth and historical land
use change trends, due to varying formats, varying spatial reso-
lutions, research gaps, and the impracticality of coordinating
with every state and local organization, agglomerating all of the
fine scale, localized, residential projections into one national
level projection distribution becomes a difficult task to orches-
trate. Even if this task were feasible, the resulting output would
be a residential projection, and although these models may be
appropriate for modeling the impacts of climate change at coarse
resolutions, the mobility of population means people are not
confined to their place of residence. Whereas existing models
that project residential population are beneficial to numerous

applications, planning for infrastructure needs, energy con-
sumption, and emergency response relies heavily upon ambient
population distributions, or a 24-h average of population, rather
than a static, residential population count (12, 13). For example,
given the safety and security concerns associated with nuclear
energy, planning the optimal site for future construction entails
identifying areas of low public interest, requiring the potential
site to have the smallest footprint in terms of encountering
population. Because an ambient population is essentially the
likelihood of population being at any place during a 24-h day and
it accounts for diurnal population movements, such as com-
muting to and from work or school, an ambient population
dataset is more suitable for this type of modeling. The concept of
ambient population has been discussed in greater detail else-
where; further information can be found in refs. 12, 13.
Therefore, to account for local factors which affect population

change at the national level, we have deviated from the LandScan
USA (13) and LandScan Global (12) projects by incorporating
both population gravity and multivariate methods to construct
spatially explicit population projections for the 3,109 counties in
the contiguous United States for 2030 and 2050. This locally
adaptive, spatially explicit model projects an ambient population
distribution dataset for each target year based on a business as
usual scenario, and assumes no significant, disruptive changes to
our socioeconomic, political, legal, and physical environment.
The aim of this research is not only to produce a valid, functional
dataset, but also to demonstrate a method for estimating a na-
tional level, ambient population distribution for an extended
timeframe that, in future use, can be applied to specific scenario-
driven events. The novelty of our model is ingrained in the fact
that although the geographic scope pertains to the national level,
population projections, variables, and weights were adapted to
address local characteristics of the individual counties to create
a fine-resolution population distribution.

Materials and Methods
Population Projections. A simplified flow diagram of our methods is shown in
Fig. 1, where we first project population at the county level. Local variables
and weights which influence the spatial facet of population growth were
then combined to create a potential development coefficient, which is the
identification of lands most suitable for population growth. The projected
population was then allocated to its spatial location using the coefficients
calculated in the previous step. This projected population, in turn, is added
to the current population distribution to generate the projected population
distribution. Further details on the methods used for each step can be found
in the ensuing paragraphs.

As conducted by the US Census Bureau, projections of US population are
available at the state level through 2030 (32) and the national level through
2050 (33). However, our model requires these data at the county level to
control for spatial demographic variation when modeling US population
distributions for 2030 and 2050. The cohort-component method (34) was
used to calculate projected population counts for each county (See SI
Materials and Methods for further detail on cohort-component method):

Px+n = Px +
�
Bx,x+n −Dx,x+n

�
+
�
IMx,x+n −OMx,x+n

�
,

where the projected population Px+n is equivalent to current population Px
plus the net difference between births B and deaths D, and net migration
between in-migration IM and out-migration OM, projected to occur in a
given time interval x,x +n. The 2010 US Census population counts were used
as the base population count. These data were stratified by county, sex, and
5-y age cohorts (0–4, 5–9,. . .,90+). Data on 2009 birth and death rates were
available for each 5-y age–sex cohort from the National Center for Health
Statistics. Migration data come from the Internal Revenue Service (IRS) and
are for 2009–2010, the most recent year available. However, age- or sex-
specific migration rates were not available, so the same migration rate
was assumed for all age and sex groups. Using these data, we were able
to calculate age-specific fertility rates, survivability rates, migration rates,
and sex ratios, which were then used to project county populations every
5 y up to 2050. When our county projections were summed to a national
total and compared with the official US Census projections for 2030 and
2050, our modified method itself had a national overprojection of 9.8%
for 2030 and 14.7% for 2050. Therefore, county level figures were adjusted
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proportionately so the sum of all counties matched the total US Census
national projection (33). Although county-specific migration patterns by age
and sex were not available, we ultimately incorporated these specific rates
by adjusting the county projections to match the US Census Bureau’s pro-
jected state and national totals, which do account for age and sex domestic
and international migration patterns.

Variables and Weight Selection. For distributing the projected population to
its spatial location, based on recent literature, we used several variables to
create a potential development coefficient (i.e., identification of areas likely
to become populated) for the population distribution algorithm. Variables,
weights, and methodologies selected for implementation build on the
techniques used by LandScan and incorporate several aspects of population
gravity models used in other spatially explicit population projection models.
Fig. S1 provides a visual representation of the locally adaptive weighting
process for two counties; relative ranking of variables from greatest to least
significance can be found in Table S1. For the purpose of this research, all
analysis was conducted at a 1-arc-second (∼ 30 m) resolution and aggregated
to 3 arc-seconds for population allocation.

From a purely quantitative standpoint, certain geographic areas may exhibit
all of the characteristics deemed highly suitable for development, such as gentle
to no slopeorwithin close proximity to current infrastructure.However, federal,
state, and/or local policies have created inequalities in the spatial distribution of
developable lands due to the frequent subjection of planning controls (27). To
prevent future population from being allocated to areas where policies,
planning, and/or common sense would likely prohibit development (28), the
2012 Homeland Security Infrastructure Program (HSIP) dataset (35) and Na-
tional Land Cover Data (NLCD) 2006 (36) were used to mask or exclude areas
such as national parks, cemeteries, and wetlands. A complete list of exclusion
areas, along with the corresponding data source, can be found in Table S2.

Slope and land cover, both quintessential dasymetric mapping variables,
were used as the foundation for the model. Slope was used in our model to
prevent development from occurring in impractical locations, and due to its
deterministic behavior when quantifying the development potential of an
individual site (12, 13, 21, 28). Digital Terrain Elevation Data Level 2 was used
to extract slope values that were found within the 2010 US Census Urban
Areas (37) and weighted with respect to the proportion it represented.
Along with slope, a land cover weighting scheme was devised using the
National Urban Change Indicator (NUCI) data* and NLCD 1992 (38). To de-
termine which land cover classes had the highest probability of becoming
developed within the local environment, a county level land cover change
analysis was conducted using NLCD 1992 as the baseline (“from class”) and
NUCI data as the resulting land cover class (“to class”). Because the most
recent year of the NUCI data was 2008, using the NLCD 1992 as the baseline
allowed us to collect a larger sample and explore historical county level land
cover change trends, rather than the small temporal window offered if we
had used the NCLD 2006 as our baseline. The prior land cover class of all
change pixels was recorded using NLCD 1992. The number of urban change

cells was then normalized to account for the total number of cells represented
by each land cover class per county. The land cover classes within a particular
county were then weighted based on their probability of urban change. To
calculate this probability for each county, we used the following formula:

PLCi =
Pn

k=1NUCILCi ,k

ALCit

,

NUCILCi =
�
1  if   LCi  Δ Urban
0  otherwise

,

where PLCi is the probability that land cover class i will change to urban k, and
ALCit is land cover class i for each geographic area A at the baseline time t.

For the suitability aspect, diverse techniques that strive to account for the
socio-cultural potential of an area to become developed were incorporated.
These techniques centered on gravity-based variables such as population and
infrastructure amenities. Current population not only represents present
distributions, but also acts as a proxy for existing amenities and represents an
underlying attractant which may not be quantifiable, known, or fully un-
derstood (1). To integrate certain intangible socio-cultural–economic drivers
of development within a local environment, a moving average of the cur-
rent population was included. Specifically, for each cell, the per-cell average
of the population in all cells within a 4-mile radius was calculated. The 4-mile
radius serves as the median distance of trips as recorded by the National
Household and Travel Survey 2009 (NHTS) (39). These cells were then ranked
and weighted based on their values. Furthermore, using the NHTS as
a measure of distance allowed us to factor in the mobility of people and
their willingness to travel to resources.

Similarly, cities from NAVTEQ. 2011 (35) with population ≥30,000,
≥50,000, and ≥100,000 were used as a positive predictive factor for future
population. For all cells, the distance to the nearest city in each of the three
city classifications was calculated. These distances were then classified into
12 categories at set percentages (10, 20, 30. . .90, 95, and 99%) of distances
for all nonzero trips in the NHTS (39). For example, the 30% threshold cor-
responds to a trip distance of 2 miles, meaning that at least 30% of nonzero
trips are 2 miles in length or shorter. Using this method, cities with a larger
population were also encompassed in the cities with a smaller population
threshold. To account for this overlap, weights given to larger cities were
increasingly smaller. In similar fashion, the distance from each cell to the
nearest NavtEq. 2011 interstate exit (35) was calculated and then classified
in the same method as the distance to cities. The rationale for including
highway exits is that new population and development tends to cluster and
conform to the existing highway structure as observed in a case study of the
Austin, TX metropolitan statistical area (40).

Roads were also used as an attractiveness variable for potential growth
because they offer an avenue for development and access to resources.
Using NAVTEQ. 2011 (35), roads were buffered by five concentric rings,
each with a radius of 30 m. Weights, which were inversely related to the
distance to the roadway, were then applied to the roadway buffers. This
weighting scheme was applied to mimic sprawl, which is primarily charac-
terized by commercial strip development and low-density development along

Fig. 1. Logic diagram of the locally adaptive, spa-
tially explicit population projection model.

*MDA Information Systems Inc. (2012) NUCI: National Urban Change Indicator. Arc-Map
User’s Guide and Exploitation Environment Documentation: Version 2.
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roadways outside cities and suburbs, and has been the dominant trend in US
population growth in recent history (19, 40).

Lastly, city limits from NAVTEQ. 2011 were selected from the HSIP dataset
(35) and used as a binary variable; that is, cells were either within city limits
or not. Given that everything else is equal, areas within city limits are the-
oretically more likely to become developed than if they were outside city
limits. The potential development coefficient was finalized by summing all
of the weighted variable grids and multiplying by the mask–exclusion areas.
The development coefficient grid was then aggregated to 3 arc-seconds for
allocating population.

Population Allocation. It is unlikely that projected new population will de-
velop and occupy only the periphery of urban areas in a uniform manner.
Therefore, our projection model had to account for both the proportion of
additional people that went into the current urban areas (infill) as well as that
which was at the edge of or beyond current urban areas (sprawl). To calculate
these different rates of spatial allocation,we classified projected newpopulation
as either infill or sprawl based on current county level patterns of urban pop-
ulation to urban land area. Here, we used “infill” as an all-inconclusive term
combining infill development and urban redevelopment, similar to the CUF
model (21).

As seen in Fig. S2, the percentage of population residing within a county’s
US Census Urban Area is strongly correlated (Pearson’s r = 0.572, P < 0.0001)
with the percentage of that county’s urban area (37). To determine what
percentage of new population would be distributed as infill, we calculated
a logarithmic function, set at a threshold to capture 95% of the counties (n =
2,954). In this way, we have the scenario of maximum new urban land to be
developed without straying from the reality of the current demographic
situation. The logarithmic formula used to calculate county-specific spatial
allocation rates is as follows, where x represents the percentage of urban
area per county and y the infill rate:

y =
ln
� x
0:0055

�
5:16

:

For example, holding constant the current ratio of urban population to urban
area, a predominately urban county, such as Mecklenburg County, NC, will
have an infill rate of 97%, whereas a predominately rural county, such as
Floyd County, IA, will only have 7% of projected population growth classified
as infill. Respectively, the counties will have 3% and 93% of population
growth classified as sprawl.

Gross urban density (GUD) was used to constrain sprawl growth (18),
making the assumption that spatially, population growth for each county
would occur at the current density of people per unit of urban area. GUD
was calculated by taking the 2010 urban population per county and dividing
it by the 2010 US Census Urban Areas (37), resulting in a ratio of people per
urban cell, per county. The number of cells needed to accommodate the
projected growth was calculated by taking the projected population growth
for each county and dividing it by the county’s GUD. For counties that
contained no urban area as defined by the US Census, LandScan USA 2010
Night and Day were averaged and used to calculate the number of cells
occupied by population. The population for each nonurban county was then
divided by the number of occupied cells, producing a ratio of the average
number of people per cell. Population growth for these counties was then
divided by this ratio, resulting in the number of cells needed to accommo-
date growth in counties with no urban area. Coupling GUD with infill and
sprawl allocation rates essentially embeds a pycnophylactic smoothing pro-
cess within the model to prevent drastic fluctuations in the distribution of
population (i.e., population cliffs).

This potential development grid was then separated into urban and
nonurban areas. Infill population was distributed to existing urban areas,
whereas sprawl populationwas distributed to nonurban areas, constrained to
the number of cells determined by the current GUD. The infill and sprawl
coefficient surfaces were weighted with their respective population of the
total projected county growth to create a county level likelihood coefficient
as follows:

PCCounty   =  
Total populationCountyPn

1 Wi,j
,

where PC is the population coefficient, n is the number of cells describing
the area, and W is the weight of the individual cell i,j. Subsequently, pop-
ulation for a given area, whether infill or sprawl, allocated to each weighted
cell by the calculated likelihood (population coefficient) of being populated
as shown below (13):

PopulationCell i,j = PCCounty ×Wi,j :

For counties that were projected to lose population, the entire population
total for each county was distributed using LandScan USA 2010 Night and Day
average population distribution as the coefficient grid. Once the population
was distributed for each scenario, infill, sprawl, and population loss grids were
mosaicked to create a continuous surface of population growth and decline.
This grid was then aggregated to a spatial resolution of 30 arc-seconds and
added to LandScan Global 2010 for the area covering the contiguous United
States, resulting in the projected population distribution for 2030. This process
was repeated to achieve the projected population distribution for 2050.

Results
The final output of this model was a gridded, 30 arc-second,
ambient population distribution of the contiguous United States
for both the years 2030 and 2050, depicting one of many possible
projected population futures. Using LandScan Global 2010 as the
baseline population distribution, for the years 2030 and 2050, only
the population change that was projected to occur throughout our
study period was distributed. For 2010, the population of the
contiguous United States was 306,675,006, with projected pop-
ulations of 371,029,047 for 2030 and 436,126,074 for 2050 (Fig. S3
displays the entire projected distribution for 2050; Fig. S4 provides
more detail with a 3D visualization of the San Francisco Bay area).
To address the validity of our results, we used two separate

validation procedures for the population projections and the
model’s spatial distribution algorithm. Due to shifts and annex-
ations affecting county boundaries during the time period 2000–
2010, 5 counties were withheld from analysis, leaving 3,104
counties for validation. To validate the accuracy of the cohort-
component population projection, we projected county level
population to 2010 using the 2000 US Census as our baseline.
We scaled our projections to the 2010 US Census national
projection. We then compared our projections with the 2010 US
Census. To remove any bias between the actual census and the
projections, we scaled the 2010 US Census county population
counts to the projected national total. This left us with an ob-
served population and predicted population, both scaled to
a common number. We calculated the error as a percentage of
the US Census projection (Fig. S5). On average, our county level
projections were overestimated by 3.72% with an SE of 0.27%
and an SD of 14.93%.
Error associated with our population projections can be clas-

sified into two categories. The first category deals with erratic
population trends. These cases can be attributed to anomalies
such as natural disasters and economic downturns, as well as
other socioeconomic processes that tend to be sporadic and
unpredictable. St. Bernard Parish, LA, Orleans Parish, LA, and
Monroe County, FL all have large overestimations of population
(Fig. S5). The two Louisiana parishes experienced drastic
decreases in population because of a mass exodus due to the
catastrophic effects of Hurricane Katrina. These parishes have
yet to rebound to prehurricane population counts. Similarly,
Monroe County, FL experienced a large magnitude of pop-
ulation loss due to increased cost of living, dwindling job market,
and a seasonal economy.
The second category of error is associated with a large relative

change in population as opposed to a small absolute change. The
large error exhibited for counties that are projected to have a large
relative change in population can be traced back to limitations
associated with the cohort-component method. Historical varia-
tion is not strongly accounted for in the cohort-component
method, and therefore the future population of slower-growing
areas will be overestimated and faster-growing areas will be
underestimated. Historical variation in population growth trends
can be similarly compared with fractals. Depending on the tem-
poral resolution of interest, a county will display a general pattern
of growth or decline over a span of several years. However, if
the temporal focus is narrowed, it becomes apparent that these
general patterns are the aggregation of more subtle trends which
fluctuate from high to low or vice versa, even within the smallest
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timeframe. Depending on the current position of oscillation in the
cycle of population growth–decline, extrapolating from this sample
can cause an increase in error when projecting population counts.
Cases such as this become more pronounced in counties that have
smaller initial population counts. For example, if county A has
a population of 1,000 and was projected to have a population of
1,800, the absolute change is small (800); however, relative to the
total population of the county, there is population change of 80%.
Instances such as this can be seen with Terrell County, TX, Greely
County, KS, and San Juan County, CO (Fig. S5).
For spatial validation of our model, we compared the re-

lationship between the quantity of NUCI change observed per
county and the quantity of change in urban area per county as
defined by the US Census between the years 2000 and 2010. The
Spearman’s rho correlation coefficient for the two variables
revealed a statistically significant positive correlation (r = 0.363,
P = 0.000). There were additional attempts to validate the pro-
jected spatial distribution of population, such as back-casting
population using LandScan 2000 as our baseline, projecting that
baseline to 2010, and then comparing our modeled output with
LandScan 2010. However, this proved to be a flawed and biased
validation method due to technological advancements and con-
tinual improvements in the quality, accuracy, and validity of model
inputs for the LandScan algorithm. As such, using LandScan 2000
as our baseline would be erroneous from the beginning because
the data were limited to the technology available at that time. For
example, light detection and ranging (LiDAR) building footprints
were not widely available at this time and were not used as input to
LandScan 2000. However, introducing LiDAR data into the model
in subsequent versions of LandScan allowed a finer geographic
detail to be captured with regard to the spatial distribution of
population. Data such as LiDAR, as well as technological advance-
ments, have greatly increased the spatial accuracy of LandScan.
Thus, comparing between versions of LandScan introduces sig-
nificant bias, especially in terms of an ambient population.
Nonetheless, urban area and built-up infrastructure, both directly
accounted for within our model, are indicative of ambient pop-
ulation and diurnal population movements. Given the relationship
between NUCI change and urban change per county, as well as
the emphasis we placed upon these inputs in the spatial projection
model, we feel it is a suitable basis for validation of the model.

Discussion
The ambient nature of the resulting distribution takes into ac-
count the breadth of human activity space, not just residential
areas. Most national censuses are concerned with residential
population, which is based primarily on where people reside
rather than where they work or travel. Although our population
projections are derived from residential population counts, our
distribution is ambient because of the variables and weights
selected for allocation. The moving average of population was
ambient in the fact that the weights were derived from averaging
LandScan USA Day with LandScan USA Night. Furthermore,
whereas other variables, such as slope, are indicative of where
any future development may or may not occur, others serve
a more ambiguous purpose. These variables not only represent
the spatial potential for residential growth but also commercial
expansion. The distinction between ambient and residential
population is important because an ambient distribution is
a preferable format for emergency response purposes. In the
event of a crisis, the entire population will not be within their
place of residence. Unless specifically a residential area, the
census would indicate zero population. Therefore, an ambient
distribution gives a more likely representation of population
throughout a 24-h timeframe (12).
Projecting an ambient population distribution from census

counts is challenging. Because our population projections were
based on residential population counts aggregated to the county
level, we do not directly incorporate metropolitan county-to-
county same-day migration. However, the ratio of population to
urban area and built-up infrastructure, both directly accounted

for within our model, are indicative of ambient population and
diurnal population movements. Furthermore, LandScan USA
does account for cross-county commuting. Using this dataset as
our baseline, along with the moving average of population for
LandScan USA Day, places even greater emphasis on an ambi-
ent distribution. Additionally, aggregating residential projections
to the county level allows for more flexibility than projecting
population at finer geographies. However, temporal population
dynamics are extremely complex processes that require the de-
velopment of high-resolution temporal models that can capture
and predict the social and cultural intricacies of a population and
their movement patterns (12, 13). Thus, further research is re-
quired to directly account for future temporal dynamics.
Uncertainty is intrinsic in all population projections, particularly

at smaller geographic units. A general rule is the smaller the
geographic unit, the greater the difficulty in developing accurate
population forecasts. In turn, this uncertainty is exacerbated the
further the projection from the base year, explaining our relatively
large SD among county level projections. Conventional techniques
for addressing uncertainty revolve around constructing a range of
projection scenarios (e.g., high, medium, and low) by applying
different assumptions using the specific projection method (34).
However, this technique does not fully quantify the uncertainty
and, because we were projecting population based on business as
usual, we only provided one particular scenario, most closely re-
sembling a medium projection. Due to the limitations of the data
and the assumptions that were made, several factors may have
contributed to overestimations or underestimations in our pop-
ulation projections. For example, our migration rates were derived
from IRS data, implicating only the people who filed tax returns in
2009–2010 were included in our calculation of migration rates.
However, we scaled our projections to match the official projec-
tions released by the US Census Bureau, which do account for
domestic and international migration, because using tax returns
may not fully capture age- and sex-specific migration trends as they
exclude certain socioeconomic sectors of the population. Similarly,
we modeled spatial population growth assuming no significant
disruptions to our socioeconomic, political, legal, and physical
environment. Based on this premise, we assume population growth
trends as well as gross urban density will remain constant. How-
ever, the ease and functionality of this model permits it to be
adaptable, allowing for calibration and the incorporation of new
data with relative ease. Looking forward, we anticipate adapting
this model to various scenario-driven events where hypothetical
policy alterations may either constrain or increase gross urban
density and population growth, similar to ref. 17.
In our model, we define sprawl solely as population growth

outside US Census-defined urban areas; it should be noted that the
literature on sprawl is much more extensive and comprehensive as
illustrated by the varying degrees of designation in refs. 19, 41–43).
Because our objective, for this modeled scenario, was to model
spatial population change given the current demographic landscape,
we could reasonably assume that new urban population for each
county would parallel present patterns. Although we factored in
separate allocation rates and potential change surfaces for infill and
sprawl, even within the same metropolitan area, there are subtle,
finer detailed subprocesses of growth and decline that create a more
dynamic illustration of spatial population change than the previous
dichotomy of declining city centers or suburban growth (44). Be-
cause we cannot predict which areas within a metropolis are going
to decay or be revitalized (44), or accurately simulate the timing,
location, and nature of major infrastructure investments, such as
a major corporate relocation or the construction of new roadways
(45), we can only base coefficients on the current investment of
infrastructure amenities. However, our model can accommodate
a variety of potential development scenarios by tailoring the inputs
to simulate unique climatic-driven events across multiple scales. By
manipulating GUD to mimic either a more conservative or liberal
sprawl pattern, modifying spatial allocation rates (sprawl and infill)
to represent changing values and sentiment on the socioeconomic,
cultural, and political landscape, or tailoring the land cover weights
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to signify the implementation of policies that would incentivize land
protection or redevelopment, such as urban renewal, allow for
a broader range of future population scenarios to be modeled as
opposed to current routine.
Lastly, one of the most challenging issues we addressed was

population loss. Although some models suggested using the inverse
of the coefficients from the potential growth surface for declining
areas (1), we instead reallocated the total population for the
counties with projected population loss so that all cells absorbed
some magnitude of the population loss. Although trends in recent
decades have shown the occurrence of population loss oscillating
between rural areas and the urban core, a new US Census report
has shown population to be increasing in many downtowns (46).
However, at the national scale, these trends vary significantly
throughout both space and time (44, 47). Thus, population loss will
continue to be problematic to model without data of greater geo-
graphic detail on the spatial location of decline.

Conclusion
Changes in climate-induced disaster patterns, epidemiological
events, and human conflict, as well as infrastructure planning,
underscore the criticality of quantifying and mapping current
population. Moreover, spatial distribution of future population
allows for improved adaptation and mitigation strategies. In

contrast with current large-scale, spatially explicit population
projections that typically rely on a population gravity model to
determine areas of future growth, our projection model accounts
for multiple components that affect population distribution. This
model was used to simulate population growth using a range of
both theoretical and empirical growth constraints with the pur-
pose of producing one of many conceivable spatially explicit
population projection scenarios for the years 2030 and 2050.
Through broadening the applications of the intelligent dasy-
metric modeling approach, we developed a locally adaptive and
geographically varying population allocation model that accounts
for multiple socioeconomic factors, with the ability to accom-
modate multiple scenario-driven population futures. Acknowl-
edging future population distribution is a complex interaction of
climate change, land cover change, and migration; future re-
search should systematically approach incorporating all three
dimensions into the modeling framework.
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