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Global expectations for wastewater service infrastructure have
evolved over time, and the standard treatment methods used by
wastewater treatment plants (WWTPs) are facing issues related to
problem shifting due to the current emphasis on sustainability. A
transition in WWTPs toward reuse of wastewater-derived resources
is recognized as a promising solution for overcoming these ob-
stacles. However, it remains uncertain whether this approach
can reduce the environmental footprint of WWTPs. To test this
hypothesis, we conducted a net environmental benefit calculation
for several scenarios for more than 50 individual countries over
a 20-y time frame. For developed countries, the resource recovery
approach resulted in ∼154% net increase in the environmental
performance of WWTPs compared with the traditional substance
elimination approach, whereas this value decreased to ∼60% for
developing countries. Subsequently, we conducted a probabilistic
analysis integrating these estimates with national values and de-
termined that, if this transition was attempted for WWTPs in de-
veloped countries, it would have a ∼65% probability of attaining
net environmental benefits. However, this estimate decreased
greatly to ∼10% for developing countries, implying a substantial
risk of failure. These results suggest that implementation of this
transition for WWTPs should be studied carefully in different tem-
poral and spatial contexts. Developing countries should customize
their approach to realizing more sustainable WWTPs, rather than
attempting to simply replicate the successful models of developed
countries. Results derived from the model forecasting highlight
the role of bioenergy generation and reduced use of chemicals
in improving the sustainability of WWTPs in developing countries.

wastewater treatment | paradigm shift | resource recovery | sustainability
assessment | net environmental benefit

Wastewater treatment plants (WWTPs) are critical infra-
structure for modern urban societies and provide essen-

tial protection for both the aquatic environment and human
health. Long-standing practice in WWTPs involves eliminating
a variety of substances from the wastewater and producing waste-
activated sludge (WAS) that requires further disposal, typically
at a landfill (Fig. 1A). However, the traditional approach to
WWTPs, which emphasizes what must be removed from waste-
water, has resulted in problem shifting, such as energy reserve
depletion, production of WAS, and greenhouse gas (GHG) gen-
eration. WWTPs use increasing amounts of energy with more
stringent effluent standards. For example, treatment of organic-
rich wastewater in the United States currently consumes ∼15 GW/y
(1); about 4% of the electricity consumption in the United States
is used to transport and treat water (2), and in certain states the
proportion is greater (3). Without carbon sequestration, this energy
use would also result in ∼1.2 × 108 t/y CO2 emissions (4, 5). Bi-
ological nitrogen removal in WWTPs is a significant anthropogenic

source of N2O that accounts for ∼10% of total N2O emissions (6,
7), a powerful GHG with global warming potential ∼300 times
that of CO2 (8). Additionally, large volumes of WAS generated by
WWTPs can undergo uncontrolled biodegradation without proper
disposal, resulting in GHGs such as CH4 and N2O escaping to the
atmosphere (9). Hence, wastewater must be recognized as a valu-
able resource from which organics, nitrogen, and phosphorus can be
harvested to produce energy and raw materials (1, 10–12) (Fig. 1B).
Despite considerable interest in the planning, design, and imple-
mentation of this emerging approach (13–15), little attention has
been paid to whether conventional WWTPs can actually un-
dergo such a transition in a given time frame or geographic
context. Such an assessment, performed at an early stage of any
substantial change, can help identify promising approaches to
operation of WWTPs and direct efforts to make infrastructure
investments that are appropriate for future conditions.
Numerous studies have used environmental performance metrics

(EPMs), such as the carbon footprint and depletion of both re-
newable and nonrenewable resources, to evaluate human
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impacts on the environment (16–19). However, there is in-
creasing recognition that EPMs alone are insufficient. It is im-
portant to incorporate interactions between EPMs and aggregate
estimates of anthropogenic activity, because global environmental
challenges are complex and numerous issues (e.g., energy con-
servation, climate change, and resource scarcity) are inextricably
related (20–22). Left unaddressed, synergistic effects between
EPMs will result in high levels of uncertainty in environmental
impact and benefit assessments, complicating integrated analysis
of environmental sustainability.
Net environmental benefit (NEB)—the total gains from in-

tegration of resource capture and improved wastewater treat-
ment practices minus the adverse environmental effects of these
actions—was adopted in the present work to represent the ag-
gregate environmental effect of a transition in WWTP operation.
To consider temporal and spatial factors, NEBs were estimated
at the individual country level over a 20-y time frame and com-
pared between developed and developing countries. First, we
developed a data-driven approach for modeling potential inter-
actions among EPMs and used it to determine NEB scores. We
then used a probabilistic approach to better understand the dy-
namics and distributional effects of metric interactions on the
expected NEB values. Throughout this assessment, we incorpo-
rated what is known and can be anticipated with respect to the
sustainability of introducing multiple resource capture practices
in conventional WWTPs in various global contexts.

Results and Discussion
Interactions Between the Metrics: Trends over Time. In the NEB
model (Eq. 1), the weighting coefficients determine the strengths
of the metrics and affect the aggregate outcomes; thus, various
weighting sets are needed to draw robust conclusions. To this
end, a data-driven approach taking into account temporal and
geographic factors was developed for determining the metric
weights and their interactions. The weighting coefficients for all
metrics were assumed to satisfy a “linear weighted sum” rule
(Eq. 2), allowing all of the metrics to be dynamically weighted
against one another and used to quantify NEB ranges. The
results depicted in Fig. 2 are sampled totals for both developed
and developing countries; the weighting scores among the EPMs
varied geographically and temporally and exhibited mutually
reinforcing or offsetting effects in varying contexts, often with
nonlinear and unexpected effects. Interestingly, the weight of the
GHG emissions metric continuously declined during the study
period (developed countries: 0.15 → 0.05; developing countries:
0.16 → 0.06), revealing that the GHG emissions metric had
a lower value than the other EPMs considered. This trend
appears to contradict the recent substantial increases in global
GHG emissions (23), implying potential trade-offs between the
GHG emissions metric and other EPMs. For example, much
attention has been given to development of GHG mitigation
strategies such as generation of bioenergy as an alternative fuel,
which increased the weight of the bioenergy recovery metric over
the same time period (developed countries: 0.17 → 0.53; de-
veloping countries: 0.18 → 0.37).
The uncertainties contributed by weighting in the NEB model

were evaluated before the scenario analysis. Table 1 shows the
results of this evaluation in terms of Spearman’s rank-order cor-
relation coefficient (ROCC) and contribution to variance (CTV).
The weight for the bioenergy recovery metric contributed most
to the variance in NEB for both developed (37.3–49.6%) and
developing (35.2–48.8%) countries. The GHG emissions metric
contributed approximately one-third of the uncertainty in the
NEB for developing countries (35.6–49.3%), but slightly less for
developed countries (24.8–26.6%). Use of chemicals (<4%) and
sludge recycling (<1.8%) did not contribute substantially to the
overall uncertainty in NEB. For developed countries, the total
contribution of the environmental cost metrics to the variance in
NEB was 38.5–48.4%, whereas the contribution of the environ-
mental benefit metrics was 51.6–61.5%. For developing countries,
the contributions of the environmental cost and benefit metrics to
NEB variance were 44.3–60.2% and 39.8–55.7%, respectively.
Thus, the NEB for developed countries was substantially domi-
nated by environmental benefits rather than environmental costs,
which may explain why higher NEB scores were obtained for these
countries. SI Text (Fig. S1) presents tornado charts showing ad-
ditional results of the sensitivity analysis.
Handling uncertainty is a critical challenge in NEB calculations,

as it can supply vital information for judging the significance of
model-based results. However, dealing with uncertainty is not yet
a common practice in such assessments, particularly with respect
to weighting issues. We further note that uncertainties are case
dependent; the same model option can lead to different results in

Fig. 1. Frameworks for WWTPs: (A) conventional approach and (B) emerging
resource recovery approach.

Fig. 2. Time trends for weighting coefficients for all assessment metrics during the studied time period for (A) developed countries and (B) developing countries.
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varying studies. The present findings suggest that dynamically
quantifying the weighting coefficients for the assessment metrics
provides useful information for drawing robust conclusions and
reducing uncertainties in assessment outcomes.

Comparison of Approaches: Emerging vs. Conventional. Weighting
coefficients for all assessment metrics for the period 1991–2009
were used in the model (Eq. 1) to estimate the range of NEBs
using a Monte Carlo (MC) simulation. Four scenarios repre-
senting increasingly stringent effluent limits were modeled for
both the conventional and the resource recovery approach. In
Fig. 3, the distributions of the NEBs for each scenario in-
corporating the emerging WWTP approach in developed and
developing nations are compared with those for the control. The
5th, 25th, 50th (median), 75th, and 95th percentiles of the dis-
tributions obtained from 100,000 MC simulations are shown. All
four scenarios under the control had negative NEBs for the
metrics assessed, demonstrating that adding resource recovery is
critical to mitigating the adverse environmental consequences
caused by conventional WWTPs. The emerging approach con-
sidered herein may be superior to the control, as evidenced by an
improvement of ∼154% at each percentile for the developed
countries and an improvement of ∼60% for the developing
countries. Additionally, ∼65% of the MC simulations under the
emerging approach for WWTPs yielded positive NEBs for the
developed countries (Fig. 3), indicating likely improvement in
environmental performance. However, only ∼10% of the MC
simulations yielded positive NEBs for the developing countries.
Accordingly, whether the emerging approach will achieve a posi-
tive NEB for developing countries is not easily determined.
However, a change in WWTP operation has the potential to
provide net environmental gains rather than merely mitigating
existing environmental impacts. Therefore, we conducted fur-
ther analysis of the emerging approach in greater detail.

NEB Ranges for the Emerging Approach: Probabilistic Analysis. The
95% confidence intervals for the NEBs associated with all of the
scenarios under the emerging WWTP paradigm for the de-
veloped and developing countries are presented in Table S1.
Specifically, the normal distribution most closely fit the sample
outputs and the parameters for the distribution function, as
summarized in SI Text. Fig. 4 shows the probability distribution
functions (PDFs) and cumulative probability distribution curves
(CPDCs) for the NEB outcomes associated with the emerging
paradigm for developed and developing countries. Marked dif-
ferences between the mean values and shapes of the PDFs be-
tween the developed and developing countries were observed.
Specifically, scenario 2 was associated with better average per-
formance than scenario 1 (with 6% and 30% higher NEBs for
developed and developing countries, respectively), scenario 3
(with 350% and 70% higher NEBs for developed and developing
countries, respectively), or scenario 4 (with 284% and 84% higher
NEBs for developed and developing countries, respectively), al-
though the distributions significantly overlapped. Furthermore,

marked differences between the shapes of the PDFs between
scenario 1 and each of the other scenarios were observed for the
developed and developing countries, but only minor differences
were observed between the shapes of the PDFs among sce-
narios 2, 3, and 4. In other words, if the effluent limit were
strengthened to a moderate limit (scenario 2) from a lenient
limit (scenario 1), the differences in the discharge requirements

Table 1. Uncertainty analysis for NEBs associated with the resource recovery approach for WWTPs

Weighting coefficient

Developed countries Developing countries

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 1 Scenario 2 Scenario 3 Scenario 4

ROCC CTV, % ROCC CTV, % ROCC CTV, % ROCC CTV, % ROCC CTV, % ROCC CTV, % ROCC CTV, % ROCC CTV, %

GHG emissions −0.62 24.8 −0.69 25.6 −0.70 26.3 −0.70 26.6 −0.71 38.3 −0.76 35.6 −0.75 39.4 −0.89 49.3
Energy consumption −0.46 13.7 −0.63 21.4 −0.64 22.0 −0.63 21.6 −0.20 3.0 −0.44 11.9 −0.34 8.1 −0.35 7.6
Chemical use 0.01 0.0 0.07 0.3 0.04 0.1 −0.01 0.0 −0.20 3.0 −0.02 0.0 −0.18 2.3 −0.23 3.3
Bioenergy recovery 0.76 37.3 0.96 49.6 0.96 49.5 0.95 49.0 0.68 35.2 0.89 48.8 0.82 47.1 0.80 39.8
Sludge recycling 0.06 0.2 0.10 0.5 0.10 0.5 0.12 0.8 0.09 0.6 0.15 1.4 0.16 1.8 0.00 0.0
Struvite capture 0.61 24.0 0.22 2.6 0.17 1.6 0.19 2.0 0.51 19.8 0.19 2.2 0.14 1.4 0.00 0.0

CTV, contribution to variance; ROCC, Spearman’s rank-order correlation coefficient.

Fig. 3. Ranges of potential NEB scores for all estimated scenarios for the
conventional (orange) and resource recovery (blue) WWTP approaches for (A)
developed and (B) developing countries. The center lines represent median
values, boxes represent 25th to 75th percentiles, and bars represent 5th to
95th percentiles of the distributions resulting from 100,000 MC simulations.
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would increase the variability and uncertainty in the results, but
would not greatly alter the general trends in the NEBs. However,
more stringent effluent limits (scenarios 3 and 4) had greater
influence on the NEBs. Overall, the results indicate that uncer-
tainties in the NEB will always exist under varying conditions.
Fig. 4 displays the ranges of NEBs and the corresponding

probabilities of realizing the desired performance. A “break-
even” score of zero at which the environmental benefits gained
from resource recovery practices (RRPs) just offset the envi-
ronmental costs of the WWTPs is indicated by the black vertical
line through the x axis. Following the black line to the curve for
each scenario for the developed countries yields the probability
that a positive NEB can be achieved by using the emerging ap-
proach; these probabilities were about 95%, 85%, 55%, and 25%
for scenarios 1, 2, 3, and 4, respectively. Similarly, the proba-
bilities of achieving positive NEBs for the developing countries
for the four scenarios were around 10%, 30%, 5%, and 0%,
respectively, implying that the emerging approach has on aver-
age only a 10% probability of yielding a positive NEB in devel-
oping countries. Such low probabilities of achieving a desirable
NEB indicate a considerable risk of failure of the emerging ap-
proach in developing countries. Furthermore, a markedly higher
probability of obtaining a satisfactory NEB was observed for
scenario 1 for developed countries, whereas scenario 2 had a
higher probability for developing countries. Comprehensively,
these results illustrate that effluent standards significantly affect the
NEB for implementing an emerging technology. Specifically, the
greatest benefits from resource recovery in developed countries
may be realized when less stringent discharge limits are being used
(scenario 1), balancing environmental impacts and benefits
through resource harvesting and basic wastewater treatment. In
contrast, greater benefits for developing countries may be achieved
through resource recovery at a somewhat more stringent discharge
limit (scenario 2). Although further research is needed to clarify
these interesting implications, they imply that multiple goals and

perspectives on sustainability should be kept in mind in addition
to protection of ecosystems and public health when evaluating
the relationship between new WWTP technologies and dis-
charge limits.

NEB Forecasting for the Emerging Approach to Wastewater Treatment.
Based on the verified model (SI Text), updated weights for all
assessment metrics for 2020 were simulated and substituted into
the NEB model (Eq. 1), and the future NEB outcomes for the
emerging approach to WWTPs were then calculated (Fig. 5). As
predicted, all four scenarios for the approach produced increases
in the NEB. However, the NEBs for developed countries (0.20–
0.45) under the emerging approach were markedly higher than
those for developing countries (0.00–0.20). Additionally, Fig. 6
displays the balance between the environmental costs and ben-
efits for each scenario under the emerging WWTP approach.
The bioenergy recovery metric had greater weight than the other
EPMs, suggesting that incorporation of bioenergy recovery into
WWTPs is critical to obtaining a favorable NEB. This analysis
also indicates that developing countries should reduce the use of
chemicals in WWTPs to improve sustainability.

Implications of This Work. Many urban areas will need to optimize
their wastewater service infrastructure over the next 10–15 y, and
an approach incorporating reuse of wastewater-derived resources
is a promising option. We developed a detailed approach for
weighting the dynamic components of environmental impact
and benefit assessments, highlighting the significance of various
EPMs and their interactions for WWTPs. The results revealed
that, overall, the environmental sustainability of WWTPs can
be increased through adoption of resource recovery. Despite
increasingly positive expectations for reaping multiple wastewa-
ter-derived resources, substantial uncertainty still exists in the ef-
fectiveness of RRPs when used on an industrial scale. For example,
recapture of wastewater-derived phosphorus to industry seems

Fig. 4. PDFs (Left) and CPDCs (Right) for NEBs associated with the resource recovery approach for all estimated scenarios for (A) developed countries and (B)
developing countries. The 95% confidence interval for scenario 1 is represented by black vertical lines in the PDF charts.
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a clear solution for closing the phosphorus cycle. However, it
may be desirable in future research to investigate the potential
contribution of wastewater-recovered phosphorus in the an-
thropogenic phosphorus cycle using different assumptions for
the potential value of phosphorus in economic markets. Antici-
pated changes in WWTP operations should be considered very
carefully, taking into account the temporal and geographic
context, because the benefits will vary substantially due to
complex interactions among environmental issues. These results
also imply that developing nations should pursue customized
approaches toward greater environmental sustainability for
WWTPs, rather than simply replicating the successful models of
developed countries. Additionally, the forward-looking modeling
results suggest two specific management strategies, i.e., en-
hanced capture of wastewater-derived bioenergy and reduced
use of chemicals, to improve the sustainability of WWTPs in
developing countries.
Our results also show that there are substantial interactions

between technical approaches and effluent standards in the
wastewater sector, although further research is still needed. These
two areas are often considered separately and optimized to gen-
erate maximum benefits for each aspect without taking into
account interactions between them. Our findings imply that
a disconnected management strategy can significantly affect
the sustainability of this emerging approach. Hence, technological
breakthroughs and best practices alone cannot ensure a sustain-
able future. Multidisciplinary research in technology develop-
ment, environmental and ecological impacts, societal adaptation,
economic markets, and policy frameworks is needed to reap the
greatest benefits in the wastewater service infrastructure through
integration of wastewater-derived resources capture.

Methods
Approaches and Scenarios for WWTPs. Based on currently available technol-
ogies (24), an emerging approach was selected that integrates multiple
wastewater-derived RRPs into WWTP operation (Fig. 1B). Briefly, CH4 gas is
harvested in a WAS digester and then burned to produce electricity, struvite
(NH4MgPO4·6H2O) is reaped from the supernatant of the digester for use as
a slow-release fertilizer, and dewatered digested sludge is recycled through
composting on agricultural fields. A traditional approach that does not in-
volve RRPs served as a control for the comparative evaluation (Fig. 1A).

As previously reported, WWTPs have varied performance at different
treatment levels with varying effects on the natural environment (25, 26). To
this end, the WWTPs (Table S2) considered under the improved and conven-
tional approaches were each hypothesized to treat municipal wastewater to
several different sets of effluent standards for comparative investigation of
the potential environmental impacts and benefits of the resource recovery
approach for WWTPs. Three increasingly stringent discharge limits from Chi-
nese discharge regulations (class 2, class 1B, and class 1A) (27) were selected as
representative of developing countries; in addition, a set of more stringent
effluent limits representative of developed countries was also included
according to a previous literature (26). Briefly, class 2 limits effluent chemical
oxygen demand (COD) to <100 mg/L, NH3-N to <25 mg N/L, and total phos-
phorus (TP) to <3 mg P/L, but no limit is imposed on total nitrogen (TN); this
is referred to as scenario 1. Class 1B limits the effluent COD to <60 mg/L, TN

to <20 mg N/L, NH3-N to <8 mg N/L, and TP to <1 mg P/L, and is referred to as
scenario 2. Class 1A limits the effluent COD to <50 mg/L, TN to <15 mg N/L,
NH3-N to <5 mg N/L, and TP to <0.5 mg P/L and is referred to as scenario 3. The
most stringent set limits the effluent COD to <30mg/L, TN to <3 mg N/L, NH3-N
to <1 mg N/L, and TP to <0.3 mg P/L and is referred to as scenario 4.

NEB Method for Assessing WWTPs.We used a tailored approach (28) involving
three simplified indicators as environmental cost metrics: energy consumption
(NFener), GHG emissions (NFgree), and chemical use (NFchem). Three additional
indices, bioenergy recovery performance (PFbioe), recycling capacity of sludge
on agricultural fields (PFslud), and struvite capture potential (PFstru), were used
to evaluate the benefits generated by the RRPs. Consequently, the NEB for
scenario a is the total environmental benefits gained by the incorporation
of RRPs minus the total environmental costs of implementation (Eq. 1):

NEBðaÞ=
Xn

i

wi × PFiðaÞ−
Xm

j

wj ×NFjðaÞ, [1]

where PF(a) is the environmental benefit for scenario a, NF(a) is the envi-
ronmental cost for scenario a, w is a weighting coefficient quantifying the
relative importance of each EPM, the subscript i specifies the environmental
gain metric, and the subscript j specifies the environmental cost metric. A
detailed description of the calculations for PF and NF can be found in SI Text.
Moreover, Table S3 presents the calculated values for each metric for each
scenario (scenarios 1, 2, 3, and 4).

Algorithm for Determining Metric Interactions. Following quantitative as-
sessment of each environmental cost and gain metric for all scenarios, inter-
actions between the metrics were determined before the NEB scores were
quantified. A data-driven method for quantifying the interactions among
metrics in a broader context was developed and expressed using weighting
coefficients and linked to the NEB algorithm. The weighting coefficients for all
indices were assumed to satisfy the following “linear weighted sum” rule:

Xn

i

wi +
Xm

j

wj = 1: [2]

Thus, the assessment metrics can be weighted against each other in a given
context and then used in Eq. 1 to determine the NEB scores.

The algorithm for generating the weighting coefficient (w) of assessment
metric i or j is as follows:

wiðjÞ =
wÆabsoluteæ

iðjÞPn
i w

Æabsoluteæ
i +

Pm
j w

Æabsoluteæ
j

, [3]

where n and m are the number of environmental gain and cost metrics,
respectively, and the operator w<absolute>

iðjÞ converts the data subjected to the
Fig. 5. Predicted NEBs for 2020 associated with the resource recovery WWTP
approach for all estimated scenarios for developed and developing countries.

Fig. 6. Deterministic balance of environmental costs and benefits under the
resource recovery approach for all estimated scenarios for (A) developed and
(B) developing countries.
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assessment metric [D<target>
iðjÞ ] to a dimensionless score using the corre-

sponding baseline data [D<baseline>
iðjÞ ].

The operator w<absolute>
iðjÞ is defined as follows:

wÆabsoluteæ
iðjÞ =

DÆtargetæ
iðjÞ

DÆbaselineæ
iðjÞ

: [4]

A greater value of w indicates that the corresponding metric is more im-
portant in aggregation of an NEB score.

To estimate the weight sets wi(j) in Eq. 4 taking into account temporal
and geographic factors, historical national data [i.e., energy consumption,
MkWh/cap·y (million kilowatts per capita per year); CO2 emissions, t CO2-eq/
cap·y (tons of carbon dioxide equivalents per capita per year); chemical imports,
$1,000/cap·y (one thousand dollar per capita per year); bioenergy production
using wastes as feedstock, kWh/cap·y (kilowatts per capita per year); municipal
waste generation, t/cap·y (tons per capita per year); phosphate exploitation,
t/cap·y] for 1990–2010 were extracted from multiple global databases. Cus-
tomized data for more than 50 individual countries were acquired and grouped
according to whether the country was considered developed (Australia, Aus-
tria, Belgium, Canada, Denmark, Finland, France, Greece, Hungary, Iceland,
Ireland, Israel, Italy, Japan, Luxembourg, The Netherlands, Norway, Poland,
Portugal, South Korea, Spain, Sweden, Switzerland, Turkey, United Kingdom,
and United States) or developing (Algeria, Argentina, Barbados, Benin, Brazil,
Cameroon, Chile, China, Columbia, Egypt, Fiji, Gabon, India, Iran, Iraq,
Malaysia, Mali, Mexico, Morocco, Oman, Saint Lucia, South Africa, Thailand,
Yemen, Zambia, and Zimbabwe). Data for 1990 were used as the baseline
data for model calculations, and data for 2010 were used for model verifi-
cation. A detailed description of all data sources can be found in SI Text.

Prediction of Metric Interactions. To obtain updated weighting coefficients
for each estimated category and to forecast the expected NEB scores, an
analytical tool for time series, the autoregressive integrated moving average
(ARIMA) (p, d, q) model (29, 30), was used to fit the calculated sets of
weighting coefficients (wi or wj) for the studied time period of 1991–2009
and to forecast updated values for the weights, as follows:

ϕðBÞð1−BÞ2Xt = θðBÞZt , fZtg∼WN
�
0, σ2

�
, [5]

where the parameters p, d, and q are nonnegative integers that represent
the order of the autoregressive, integrated, and moving average parts of
the model, respectively; ϕ and θ are polynomials of the degree p and q,
respectively; and Zt are error terms that are generally assumed to be

independent, identically distributed variables sampled from a normal dis-
tribution with a zero mean.

The backshift operator B in Eq. 5 can be further expressed as the second-
order difference as follows:

Xt″ = Xt′−Xt−1′ : [6]

Additionally, the functions ϕ(B) and θ(B) can be written as follows:

ϕðBÞ= 1−
Xp

k=1

φkB
k , [7]

θðBÞ= 1+
Xq

k=1

ψkB
k , [8]

where φk and ψk are the parameters for the autoregressive and moving
average parts of the ARIMA (p, d, q) model, respectively. Model validation
was also conducted to evaluate the generated models using observed data
for 2010 (Fig. S2).

Probabilistic Analysis Method. The weights for the assessment metrics were
input as PDFs to quantitatively represent the inherent variability and uncertainty
of each metric weight. Fitted distributions were used based on the datasets
estimated as described in Interactions Between the Metrics: Trends over Time
(detailed information on the fitted distributions is provided in Table S4).
Uncertainties in the metric weights, depicted by the PDFs and CPDCs, were si-
multaneously propagated through the model using 100,000 MC simulations
with IBM SPSS Statistics 21.0 software (SPSS). To assess the distributional in-
fluence of each assessment metric on the uncertainties in the NEBs, CTVs (31)
were then calculated. The ROCCs for eachmetric weight in the NEB results were
determined for the set of MC iterations, and the CTV was calculated as follows:

CTViðjÞð%Þ=
ROCC2

iðjÞPn
i ROCC2

i +
Pm

j ROCC2
j

× 100: [9]

We also tested the sensitivity of the final NEB results to the metric weights by
pulsing and subtracting a SD of the input from the MC modeling.
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