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The ability to predict the mechanisms and the associated rate
constants of protein–ligand unbinding is of great practical impor-
tance in drug design. In this work we demonstrate how a recently
introduced metadynamics-based approach allows exploration of
the unbinding pathways, estimation of the rates, and determina-
tion of the rate-limiting steps in the paradigmatic case of the tryp-
sin–benzamidine system. Protein, ligand, and solvent are described
with full atomic resolution. Using metadynamics, multiple unbind-
ing trajectories that start with the ligand in the crystallographic
binding pose and end with the ligand in the fully solvated state
are generated. The unbinding rate koff is computed from the mean
residence time of the ligand. Using our previously computed binding
affinity we also obtain the binding rate kon. Both rates are in agree-
ment with reported experimental values. We uncover the complex
pathways of unbinding trajectories and describe the critical rate-
limiting steps with unprecedented detail. Our findings illuminate
the role played by the coupling between subtle protein backbone
fluctuations and the solvation by water molecules that enter the
binding pocket and assist in the breaking of the shielded hydrogen
bonds. We expect our approach to be useful in calculating rates for
general protein–ligand systems and a valid support for drug design.
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Understanding the thermodynamics and kinetics of protein–
ligand interactions is of paramount relevance in the early

stages of drug discovery (1–3). So far the major emphasis has been
placed on predicting the most likely binding pose as determined by
the highest binding affinity (4, 5). In contrast, it has not been
possible to predict the pathways for unbinding and the associated
rates. However, it is by now well-recognized that one of the most
pertinent factors for sustained drug efficacy and safety is not just
its affinity, but possibly even more so, the mean lifetime of the
protein–ligand complex (1–3). The latter property is strictly re-
lated to the time during which the ligand remains in the binding
site (1, 2), and is typically expressed by its inverse, the dissociation
rate koff (2). In principle koff should be amenable to calculations
through all-atom molecular dynamics (MD) simulations. These
simulations could give detailed and useful insights into the atomic
interactions at work during unbinding, especially in the ephemeral
but kinetically most relevant transition state ensemble (TSE) (6, 7).
Such information is of great value in designing modifications of the
ligand that might improve its pharmaceutical properties.
However, despite the potential of MD simulations no such

calculation has yet been reported. This is a consequence of the
limited timescales of MD simulations. Even with the most mod-
ern purpose-built supercomputers or massive distributed com-
puting, one can barely reach the timescale of milliseconds (3).
Unfortunately most of the reported ligand–protein dissociation
times far exceed this timescale (2). These timescales can be
reached either by transition path sampling methods (8, 9), quasi-
classical approximations (10), by the construction of Markov state
models (11, 12), or through carefully designed enhanced sampling
methods (8, 13–30) that make accessible the timescale of seconds
and beyond in a controlled and accurate way. The enhanced

sampling method we use in this work is based on metadynamics
(13–15), which has been widely and successfully applied to a variety
of systems including complex protein–ligand systems (25–30), and
has been rigorously proven to converge to the correct free-energy
surface (31, 32).
Recently, we have extended the scope of metadynamics by

showing that it can also be used to recover kinetic information (15).
Furthermore, we showed that by using an a posteriori statistical
analysis (33) one can also establish the reliability of the kinetics
thus generated. The use of metadynamics for obtaining kinetic
information is still in its infancy, however its usefulness has been
tested by us and other groups in a range of systems (15, 33–36).
In this work, we demonstrate that the scope of the method

reported in ref. 15 can be extended to study protein–ligand disso-
ciation pathways and to determine in an accurate way the ligand
unbinding rates. We reach well into the hundreds of milliseconds
regime and longer, maintaining at the same time full atomic reso-
lution for protein, ligand, and solvent. Specifically, we study the
unbinding of the inhibitor benzamidine from trypsin, a serine pro-
tease protein (27, 37, 38) using classical force fields (39, 40). Using
our acceleration method (15, 33) we are able to harness 21 in-
dependent successful unbinding trajectories in which the ligand goes
from the bound to the fully unbound state. We find that one of the
most distinctive features of the unbinding process is the role played
by the water molecules (41, 42). In particular, the solvent promotes
unbinding by assisting in the breakage of shielded hydrogen bonds
through the formation of water bridge interactions (41).
From the analysis of the unbinding trajectories we find that

along the unbinding pathways the ligand rests for times ranging
from nanoseconds to milliseconds in a number of intermediate
structures. We calculate the rates for all possible transitions
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between these intermediates and construct a Markov model for
the unbinding process (11, 43, 44). The overall escape rate
computed from this Markov model is in good agreement with the
direct estimation of the mean unbinding time that comes from
the metadynamics runs. Reassured by this agreement we use the
Markov model to determine the dominant unbinding pathways
and rate-limiting steps. To this end, starting from the metady-
namics reactive trajectories, we perform a committor analysis
and determine the TSE (6). Using the recently computed value
of the binding affinity (27) we also estimate the binding rate
constant kon. Our calculated unbinding and binding rates com-
pare reasonably well with the known experimental measurement
(37), especially taking into account the margin of error in the
experiment and the inaccuracy of the force field used in the
simulations (42). Unprecedented structural features of the target
are also disclosed. In particular, we find that in its apo state trypsin
can exist in two forms. In the first form, loop Val207–Tyr224
(hereafter labeled loop L) oscillates around the crystallographic
state. In the other form, a small distortion of this loop is stabilized.
The mean lifetime of this distorted state is nearly 0.7 ms and
during this time the ligand cannot reach the binding site.
We believe that this metadynamics-based strategy is, to our

knowledge, the first direct approach for calculating koff from MD
simulations of unbinding. Previous studies have focused on the
calculation of kon and the magnitude of koff was only indirectly
obtained (12, 38). Our strategy should be easily applicable for
calculating unbinding pathways and rates for generic protein–
ligand systems, thus complementing and extending the role of
enhanced sampling-based simulations in drug discovery.

Methods
Metadynamics. Metadynamics is by now a well-established method whose
details can be found in many review papers; the interested reader is referred
to the growing literature (14, 22, 26, 27). Here we underline only some
features that are relevant to the present discussion and provide details in SI
Appendix. In metadynamics, one first identifies a small subset of the difficult
to sample but relevant degrees of freedom, called collective variables (CVs)
(22). A history-dependent biasing potential is then constructed on the fly as
a function of these CVs. By gradually enhancing the fluctuations in the CVs,
the system is discouraged from getting trapped in the low free-energy
basins of phase space. Thus, using metadynamics one can observe processes
that would be far beyond the timescales accessible to normal MD, while still
maintaining complete atomic resolution. Metadynamics fully takes into ac-
count the dynamical ever-fluctuating nature of the protein and the complex
role played by the molecular solvent. At the end of a metadynamics run, the
probability distribution of any observable can be either computed directly
(14, 32) or through a reweighting procedure (32, 45).

Unbiased Kinetics from Biased Metadynamics. Inspired by previouswork (16, 17),
we recently extended the scope of metadynamics and showed how to extract
unbiased rates from biased ones with minimal extra computational burden (15).
By kinetic information, we specifically mean pathways, the associated rates, and
rate-limiting steps. The key assumptions for our approach to work are (i) the
process being investigated is characterized by movements from one stable state
to another via dynamical bottlenecks that are rarely but quickly crossed, or in
other words, there exists a separation of timescales, and (ii) although there is no
need to know beforehand the nature or location of such bottlenecks, one
should have CVs that can distinguish between stable basins. Under these two
key assumptions, by making the bias deposition slower than the time spent in
dynamical bottlenecks, one can keep these bottlenecks bias-free throughout
the course of the metadynamics run. This preserves the unbiased sequence of
state-to-state transitions and allows one to access the acceleration of transition
rates achieved through biasing, by appealing to a generalized version of tran-
sition state theory (15, 46, 47). This acceleration is provided by the following
running average accumulated through the course of metadynamics (15–17):

α= Æe βVðs,tÞæ, [1]

where s is the collective variable being biased, β is the inverse temperature,
and Vðs,tÞ is the bias experienced at time t. The above expression is valid
even if there are multiple intermediate states and numerous alternative
reactive pathways (15, 33).

In a successive work we proposed a way to assess the reliability of the two
assumptions above (33). This relies on the fact that the escape times from
a long-lived metastable state obey a time-homogeneous Poisson statistics
(48). A statistical analysis based on the Kolmogorov–Smirnov (KS) test can
quantitatively assess how precisely our assumptions have been met (33).

CVs from Preliminary Free-Energy Surface Exploration. The identification of
appropriate CVs is a challenging problem that in recent years has witnessed
much progress (49, 50). For the problem at hand there exists a practical way
to build CVs, namely path-based CVs (51, 52). These are extremely powerful
and versatile when one wants to study transitions between two states A and
B. For protein–ligand unbinding these states would be the docked pose and
the fully solvated unbound state.

In the path CV formalism one defines a reference path that takes the
system from A to B, and a distance s defining the position of the system along
the chosen starting path. However, such a variable might not be discriminating
enough, and several possible pathways can collapse into one (53). By biasing
together the values of s and a second CV that lifts the degeneracy in s (SI
Appendix), metadynamics naturally generates an ensemble of pathways.

As a first step toward the construction of the path we have to characterize
the space in which it is defined. Specifically, this requires identifying the
relevant protein–ligand interactions. These can be found through a pre-
liminary funnel metadynamics run (27, 54) using for instance a protein–ligand
distance as CV. At this stage we do not need to obtain a converged free-
energy surface (FES) (32); however, funnel metadynamics allows us to explore
a range of relevant intermediate states in a limited computer time by facili-
tating repeated binding and unbinding. The residues that are found to play
a role in the unbinding trajectory thus generated are included in the list of
interactions used to build the path CV.

If performing metadynamics using the trial path leads to visiting inter-
mediates that exhibit stable interactions not included in the original list,
these are added to it and the process iterated until no further relevant
interaction is found. For trypsin–benzamidine just one iteration was nec-
essary to obtain good CVs.

Calculation of koff .With CVs optimized as described in the previous section, we
then calculate koff . This simply amounts to performing several independent
infrequently biased metadynamics runs starting in the bound X-ray pose
[Protein Data Bank (PDB) ID code 3atl] and stopping when the ligand is
unbound and fully solvated. We analyze the distribution of unbinding times
using the approach of ref. 33 and make sure that it passes the KS test (SI
Appendix). From this analysis we get a direct estimate of koff . See SI Ap-
pendix for more details on the metadynamics parameters including the
details of infrequent biasing.

Further Analysis of the Unbinding Mechanisms Through Construction of a Markov
Model.Over the last few years,Markov statemodeling has proven to be a useful
tool in the analysis of data generated from MD simulations (11, 12, 43, 44).
Inspired by this approach, we build a kinetic equation for transitions between
various intermediate states in the unbinding of benzamidine from trypsin. We
stress that this step is not needed if all one seeks is the magnitude of koff that
can be directly obtained from the simpler protocol described in the previous
section. This second step needs to be taken when one seeks detailed insight
into the roles of the different intermediate states observed in the metady-
namics runs and to determine the dynamical bottlenecks.

As in all Markov state models, also in our analysis the most delicate step is
the enumeration of intermediates. Here we are assisted by themetadynamics
runs which directly provide an estimate of where the system spends most of
its time (13, 32). Our criterion was to include only those states in which
during the full unbinding runs the system typically spends a much longer
time than the interval between successive bias depositions. These states can
be identified with the main free-energy basins even if a converged FES is
neither achieved nor required in our calculations. These states are described
in detail in the following sections.

We then do a second set of metadynamics runs with infrequent bias
deposition starting in each of these states. These are done with absorbing
boundary conditions (48), in which the simulation is stopped as soon as that
state is exited for the first time. Around 25 such runs were performed
starting from each of the identified stable states.

From these metadynamics runs, again making use of Eq. 1 we calculate
mean lifetime of each state along with respective KS tests (SI Appendix). We
then build a matrix of state-to-state transition rates by taking into account
the mean lifetimes and the number of transitions from one state into another
as described for instance in ref. 55. Solving for the slowest eigenvalue of this
matrix gives an alternative estimate of koff and an analysis based on the
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eigenvalues provides the rate-limiting steps and fluxes through them (56, 57)
(SI Appendix).

One of the main features of infrequent metadynamics is that corresponding
to these rate-limiting steps, the segments of trajectories that cross the barrier
between successive bias depositions are representatives of the unbiased
transition path ensemble. On this set of transition paths, we perform detailed
committor analysis (SI Appendix) and identify the respective TSEs (6, 8).

Results
Unbinding and Binding Rates from Infrequent Metadynamics. The
metadynamics runs start with the ligand in the docked pose and
end in the fully unbound state. Using 21 such independent
simulations we find a koff of 9.1 ± 2.5 s−1 with a very good metric
on the KS test (SI Appendix). The koff values are in agreement
with the reported experimental value of 600 ± 300 s−1 (37), es-
pecially taking into account the conservative error of 2 kcal/mol
in force fields and other factors detailed in Discussion (39, 40,
58). In SI Appendix we show that around 12 independent meta-
dynamics runs are sufficient to obtain a reliable estimate of koff .
We then indirectly compute the binding rate kon by using the

ΔG value previously computed with funnel metadynamics
at equilibrium concentration of 1 M. To calculate kon we use
the relation kon = 1=C0koff e−βΔG, where C0 = 1=1; 660 Å

−3
is

the standard concentration. We thus obtain kon = 1:18± 1×
107M−1s−1, in excellent agreement with the experimental value of
kon = 2:9× 107M−1s−1.

Kinetically Relevant States. From our metadynamics trajectories,
we find that there are several kinetically relevant stable states
during the unbinding of benzamidine from trypsin (Fig. 1). These
include the X-ray binding pose (A), another bound state (B) in
which the ligand is slightly rotated with respect to A, a pre-
solvated state (P) in which the ligand’s diamino group points
toward the solvent, and two solvated unbound states (S1 and S2)
which differ in the arrangement of the loop L (Fig. 2). In S1 the
protein is in its undistorted crystallographic pose and is available
for further binding. In S2 the loop L is distorted and the protein
is temporarily inactive.
Our statistical analyses and the agreement of the results ob-

tained using multiple metadynamics protocols, comprising more
than 115 independent metadynamics simulations, reassure us that

likely there are no other kinetically relevant stable states lying on
the dominant ligand unbinding pathways. We now describe the
nature of the stabilizing interactions and mean lifetimes for the
various states (Figs. 1 and 2). See SI Appendix for detailed sta-
tistical analyses of all lifetimes including associated errors.

State A. This is the bound state reported by funnel metadynamics
and various other previous studies, in good agreement with X-ray
structures (see figure 1 of ref. 27 and SI Appendix for the details
of relevant interactions in A). We find a mean lifetime of 42 ms
for this state, reflecting its stability.

State B. This state has an average lifetime of 5 μs and is slightly
rotated with respect to the X-ray pose. However, the overall
interactions established in pose A are conserved (SI Appendix). It
is relevant to note that precisely the same pose was found in our
previous metadynamics simulations where a different CV setting
was used. Because the choice of CVs might bias the results, this
finding lends confidence that the presence of state B is not an
artifact of the CV choice. The basin B is around 4–5 kcal/mol
higher in free energy than basin A, as estimated by taking the
ratio of the respective mean lifetimes. This is higher than the
value of 1–2 kcal/mol previously reported by funnel metady-
namics. However, those calculations were performed with the
rmsd fluctuations in the protein backbone constrained to preserve
the shape of the ligand binding site. This constraint was functional
for the accurate estimate of the binding energy of the A pose,
which was the main objective of that calculation (27), whereas it
slightly affected the free-energy estimate of state B.

State P. The third stable state P has the much shorter mean
lifetime of 49 ns. The most important feature of this state is that
the ligand is rotated pointing the diamino group toward the
solvent (Fig. 1). However, in this pose the ligand cannot yet leave
the binding pocket. Given its important position on the un-
binding pathways, we describe it in detail here. The phenyl ring
of benzamidine is sandwiched between the Cα atoms of Cys191
and Trp211 where it can engage in hydrophobic contacts, whereas
the polar diamino group is close to the triad formed by polar
residues such as Gly212–Ser213–Gly214. As described in the next

Fig. 1. States relevant for the unbinding of trypsin–benzamidine complex.
The specific interactions that stabilize these states are indicated. Also in-
dicated are the water molecules that play defining roles. See text for further
details and mean lifetimes.

Fig. 2. Trypsin in its apo state can exist in substates S1 (green) and S2 (red).
The key difference between these two states is in the loop L. In S1 the loop is
as in the X-ray pose and the protein is available for binding. In S2 the loop
has undergone a distortion initiated primarily by glycine–serine residues
(S213 and G214) that engage in hydrogen bond interaction with other res-
idues (D216 and Q217). In this state, the protein is temporarily unavailable
for binding. See text for further details and mean lifetimes.
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section, States S1 and S2, this triad plays an important role in
deciding which unbinding pathway is adopted. In state P, the li-
gand engages in hydrogen bonds, water bridges, or both, with one
or more of the residues from this triad. At variance with the poses
A and B, here the ligand can rotate, changing the interacting
partners within the triad residues. We have also calculated the
mean lifetime of pose P with 25 independent unbiased MD runs
starting in P, which gave an average lifetime of 29 ns, in excellent
agreement with the metadynamics value.

States S1 and S2. When the ligand is in the unbound and fully
solvated state, the protein is found in two substates, which we call
S1 and S2 (Figs. 2 and 3). In the first, the loop L is similar to its
X-ray structure, whereas in the other it is conformationally dis-
torted. The motion from S1 to S2 renders the protein temporarily
inactive. To the best of our knowledge the distorted pose S2 has
not been previously reported. It has a lifetime of around 0.7 ms.
We checked that this state is not an artifact of the choice of CVs
by doing metadynamics using different CVs, as well as two long
unbiased MD runs (SI Appendix). Specifically, in each of these
MD simulations the distorted pose lasted for at least 1.5 μs while
still not showing any sign of recovery to the X-ray pose. Ana-
lyzing the protein motion, we note that S2 can form because in
the presolvated state P, the triad 214–216 can undergo fast
fluctuations involving switching of stabilizing hydrogen bond
interactions. Often these interactions are temporarily stabilized
by the formation of a small alpha loop (Fig. 2). This results in a
partial collapse of the binding pocket that makes ligand reentry
difficult, as we have explicitly observed in some funnel metady-
namics runs where the system reached state S2 (SI Appendix).
This happens because in the S2 state the ligand cannot form
interactions with the triad 214–216. Interestingly, previous free-
binding simulations with distributed computing resources have
also found that during binding the system always goes through
a state involving interaction with residues of this triad (38). Note
that not taking this distortion into account has a very small effect
on koff and kon given the small lifetime of S2.

Dominant Unbinding Pathways and Rate-Limiting Steps. To identify
the dominant pathways during unbinding, we performed a flux
analysis (56, 57) on the state-to-state transition matrix built from
metadynamics simulations on the various stable states (Fig. 3).
Solving for the dominant eigenvalue of this matrix gives a koff
of 7.3 s−1, in excellent agreement with the full unbinding metady-

namics simulations. Looking at Fig. 3 one can note that the state P
is a mandatory stage during all of the unbinding pathways. As can
be seen from the calculated flux (SI Appendix) (56, 57), we find that
around 84% of the time the system prefers to unbind by going di-
rectly from A to B before going to P, whereas around 16% of the
time it goes straight from A to P. Our matrix also shows that the two
elementary steps, A to P and A to B, are the slowest steps in the
whole unbinding process. We now describe the atomistic details
of these rate-limiting steps along with the typical transition state
structures (Fig. 4).

A to P. The exit from A to the presolvated pose P has a highly
concerted and atomistically well-defined nature, assisted by sol-
vent water molecules (Fig. 4). Specifically, one water molecule
comes into the binding site from the outside, first breaking the
direct hydrogen bonds between the carboxyl group of Asp189
and the benzamidine tail, and then screening the interaction
between these two groups. This water bridge detaches the ligand
from Asp189, allowing a higher number of contacts of the dia-
mino group with the surrounding water molecules. Note how in
the first intermediate subsequent to state A (Fig. 4), at the time
of entry of the first water, the benzamidine tail can still engage in
direct interaction with the triad 212–214. The ligand then rotates
in the binding site in the direction of the triad, thus exposing its
charged tail toward the solvent. Whereas Asp189 still forms
hydrogen bonds with the water molecule, the ligand now forms a
hydrogen bond or water-mediated interactions with one or more
of the residues in the triad 212–214.

A to B. This transition also involves a rotation of the ligand but is
less pronounced and is in a direction opposite to that needed to
go from A to P. A key role is played by not one but two water
molecules entering from the solvent and by the orientation of
the triad 212–214 (Fig. 4). Specifically, one water approaches the
ligand in close proximity of Asp189 again mediating the in-
teraction between the nitrogen atoms of the benzamidine dia-
mino group and the carboxyl group of Asp189. In contrast with
the A to P transition, here after the first water enters the binding
pocket, the triad 212–214 is oriented such that it cannot engage
in direct interaction with the benzamidine tail. This is the first
intermediate subsequent to state A (Fig. 4). An additional water
molecule now moves toward an inner position in the binding site
where it can engage hydrogen bond interactions with the car-
bonyls of residues such as Val223 and Tyr224. The diamino

Fig. 3. State-to-state transition rates for trypsin–benzamidine unbinding. All rates are in s−1. The respective mean lifetimes for ligand binding states are also shown.

Tiwary et al. PNAS | Published online January 20, 2015 | E389

CH
EM

IS
TR

Y
BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

PN
A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424461112/-/DCSupplemental/pnas.1424461112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424461112/-/DCSupplemental/pnas.1424461112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424461112/-/DCSupplemental/pnas.1424461112.sapp.pdf


group of the ligand follows this second water rotating its position
in the binding pocket away from the triad and leading to the final
B pose. In this state, the ligand still forms hydrogen bonds with
Asp189 via a direct or water-mediated interaction and with resi-
dues including Val223 and Tyr224 through the second water
molecule. The presence of water molecules at similar position in
different X-ray structures of trypsin (PDB ID codes 1s0q and
3atl) had previously suggested a functional role of these waters
that we are now able to explain.
Irrespective of how the state P is reached, the final unbinding

involves breaking of the hydrogen bond between the ligand’s tail
and the triad (Figs. 1 and 4).

TSEs for Rate-Limiting Steps. To investigate further the nature of
transition for the two rate-limiting steps, we analyzed the reactive
trajectories from metadynamics corresponding to these steps (SI
Appendix). We performed multiple short unbiased MD runs from
different points along these trajectories, and through these we
identified configurations which have a nearly 1/2 probability of
going back into either A and P, or A and B, depending on the
respective step being investigated. These configurations represent
the true dynamical bottlenecks for the unbinding. Further details
of these unbiased runs can be found in SI Appendix. We now
describe the ligand and protein interactions formed in these
transition states (Fig. 4).
The crucial and common feature is a partial solvation of the

ligand’s tail or of specific residues in the protein, and partial
breakage of shielded hydrogen bonds through water molecules
coming from the bulk. For the A to P event, the typical TSE
member as shown in Fig. 4 involves a water bridge formed be-
tween one of the nitrogen atoms of the benzamidine diamino
group and oxygen atoms in Asp189. The same nitrogen atom is also
interacting with one of triad 212–214 members. The other nitrogen
atom of the diamino group is now partially solvent exposed, and the
ligand is almost rotated outward of the binding pocket, but not yet
fully. For the A to B event, the typical TSEmember as shown in Fig.
4 involves a role played by two water molecules that previously were
in the bulk solvent. Similar to the TSE for A to P, a water bridge

is formed between one of the nitrogen atoms of the benzamidine
diamino group and an oxygen atom in Asp189. However, the sec-
ond nitrogen atom of the diamino group is now rotated inward and
has started to engage in water bridge interaction with residues such
as Val223 and Tyr224. In the TSE, the orientation of the ligand is
closer to state B than to the docked pose (SI Appendix).

Discussion
In this work we have demonstrated the possibility of studying
detailed unbinding kinetics of protein–ligand systems with all-
atom molecular dynamics using a metadynamics-based strategy.
We obtained multiple full unbinding trajectories for the trypsin–
benzamidine complex starting in the X-ray pose and directly com-
puted the unbinding rate koff . Our total simulated metadynamics
time of 5μs, after taking into account the scaling factor of Eq. 1,
corresponds to nearly 3 s of real-time evolution. We then enu-
merated the stable states found in the metadynamics runs and built
a Markov model for transitions between these states. Through these
we could describe the ensemble of unbinding pathways through
the multiple intermediates and identify the rate-limiting steps. In
combination with our previous work on funnel metadynamics that
gave us accurate binding affinity (27), we could also calculate the
binding rate kon. The validity of the rates at every step of the cal-
culation was demonstrated using rigorous statistical analyses.
The calculated koff in this work is slower than the experi-

mental measurement. This deviation is well within the error
expected from the accuracy of current force fields. For in-
stance, one reason for the koff being slower could be the lack of
polarization in the force field (42). It is clear from our simu-
lation that the rate-limiting step involves solvation of the ligand
by external water molecules. Previous studies using polarizable
force fields have suggested that polarization enhances the sol-
vation of benzamidine in water and at the same time weakens
the attraction between benzamidine and trypsin (42). Thus, our
nonpolarizable force field (39, 40) which does not include these
effects leads to a slower dissociation. Another shortcoming of
the force field, which however could act in the direction of
faster dissociation, is the diffusivity of three-site transferrable

Fig. 4. Typical mechanism of going from state A to P (Top) and A to B (Bottom). For each, typical TSE members as determined by committor analysis are also shown.
Relevant residues and water molecules are also indicated. Note that the biological water in state A is removed in the pre-TS state for path 1 (Top) to highlight the
role of water molecule coming from solvent. See main text for summary of key interactions, and SI Appendix for more details of the TSE and committor analysis.
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intermolecular potential water which is slightly faster than ex-
periment (59). However, we expect that the effect of polari-
zation in the protein–ligand interaction would dominate the
effect due to diffusivity, especially because the binding pocket is
fairly well exposed to the solvent. Our indirectly calculated kon
is very close to reported experimental value but that close an
agreement is most likely fortuitous due to cancellation of errors
in koff and ΔG.
The unbinding kinetics of protein–ligand systems is a problem

of immense practical interest, for calculating which no rigorous
computational protocol has been available so far. Perhaps even
more importantly than calculating the magnitude of koff , our pro-
tocol allows calculation of unbinding pathways, TSEs, and the

residues that play a role in the dominant pathways. We hope
this work will motivate the experimental community to inves-
tigate whether the unbinding is actually sensitive to mutations
in these residues that we have identified or if it is just a force-
field artifact. We expect that the metadynamics-based method
proposed in this paper will open up new horizons in inves-
tigating mechanisms and computing rate constants for protein–
ligand systems, having a great impact on drug design and lead
optimization processes.
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