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Abstract

Background—Improved mortality prediction for patients in intensive care units (ICU) remains 

an important challenge. Many severity scores have been proposed but validation studies have 

concluded that they are not adequately calibrated. Many flexible algorithms are available, yet none 

of these individually outperform all others regardless of context. In contrast, the Super Learner 

(SL), an ensemble machine learning technique that leverages on multiple learning algorithms to 

obtain better prediction performance, has been shown to perform at least as well as the optimal 

member of its library. It might provide an ideal opportunity to construct a novel severity score 

with an improved performance profile. The aim of the present study was to provide a new 

mortality prediction algorithm for ICU patients using an implementation of the Super Learner, and 

to assess its performance relative to prediction based on the SAPS II, APACHE II and SOFA 

scores.

Methods—We used the Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II) 

database (v26) including all patients admitted to an ICU at Boston’s Beth Israel Deaconess 
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Medical Center from 2001 to 2008. The calibration, discrimination and risk classification of 

predicted hospital mortality based on SAPS II, on APACHE II, on SOFA and on our Super 

Learned-based proposal were evaluated. Performance measures were calculated using cross-

validation to avoid making biased assessments. Our proposed score was then externally validated 

on a dataset of 200 randomly selected patients admitted at the ICU of Hôpital Européen Georges-

Pompidou in Paris, France between September 2013 and June 2014. The primary outcome was 

hospital mortality. The explanatory variables were the same as those included in the SAPS II 

score.

Results—24,508 patients were included, with median SAPS II 38 (IQR: 27–51), median SOFA 5 

(IQR: 2–8). A total of 3,002/24,508(12.2%) patients died in the hospital. The two versions of our 

Super Learner-based proposal yielded average predicted probabilities of death of 0.12 (IQR: 0.02–

0.16) and 0.13 (IQR: 0.01–0.19), whereas the corresponding values for the SOFA and SAPS II 

scores were, respectively, 0.12 (IQR: 0.05–0.15) and 0.30 (IQR: 0.08–0.48). The cross-validated 

area under the receiver operating characteristics curve (AUROC) for SAPS II and SOFA were 

0.78(95%CI: 0.77–0.78) and 0.71 (95%CI: 0.71–0.72), respectively. Our proposal reached an 

AUROC of 0.85 (95%CI: 0.84–0.85) when the explanatory variables were categorized as in SAPS 

II, and of 0.88 (95%CI: 0.87–0.89) when the same explanatory variables were included without 

any transformation. In addition, it exhibited better calibration properties than previous score 

systems. On the external validation dataset, the AUROC was 0.94 (95%CI: 0.90–0.98) and 

calibration properties were good.

Interpretation—As compared to conventional severity scores, our Super Learner-based 

proposal offers improved performance for predicting hospital mortality in ICU patients. A user-

friendly implementation is available online and should prove useful to clinicians seeking to 

validate our score.

Funding—Fulbright Foundation, Assistance Publique – Hôpitaux de Paris (RP); Doris Duke 

Clinical Scientist Development Award (MP) and NIH Grant # 2R01AI074345-06A1(MvdL).

Introduction

The burden of care for critically ill patients is massive. For instance, in the United States, it 

currently accounts for nearly 1% of the gross domestic product, and although less than 10% 

of hospital beds are found in intensive care units (ICU), ICU departments contribute to 22% 

of total hospital costs 1. In the United Kingdom, the total cost of intensive care is estimated 

to be £541 million per annum, which represents 0.6% of National Health Service 

expenditures2. During the period 2009–2012, the average hospital mortality rate for patients 

hospitalized in ICU was estimated to be 11–12% 3. Predicting mortality in patients 

hospitalized in ICU is crucial for assessing severity of illness and adjudicating the value of 

novel treatments, interventions and health care policies. In the past 30 years, considerable 

effort has been invested in modelling the risk of death in ICU patients. Several severity 

scores have been developed with the objective of predicting hospital mortality from baseline 

patient characteristics, defined as measurements obtained within the first 24 hours after ICU 

admission. The first scores proposed, APACHE 4(Acute Physiology and Chronic Health 

Evaluation), APACHE II5, and SAPS6 (Simplified Acute Physiology Score), relied upon 

subjective methods for variable selection, namely relying on a panel of experts to select and 
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assign weights to variables according to perceived relevance for mortality prediction. 

Further scores, such as the SAPS II7, were subsequently developed using statistical 

modelling techniques 89107. To this day, the SAPS II 7 and APACHE II 5 scores remain the 

most widely used in clinical practice. However, since first being published, they have been 

modified several times in order to improve their predictive performance 9,10. These scores 

are known to discriminate survivors and non-survivors well. However, several external 

validation studies performed in various countries have suggested that neither the most recent 

versions of SAPS nor of APACHE are adequately calibrated, which means that they fail to 

accurately predict the actual probability of death 11,12. Locally-customized variants of these 

scores have also been developed to incorporate regional variations. For instance, versions of 

the SAPS score have been specifically tailored to France, to Southern Europe and 

Mediterranean countries, and to Central and Western Europe 10,13,14. Despite these 

extensions of SAPS, predicted hospital mortality remains generally 

overestimated 11,12,15–17.

Most ICU severity scores rely on a logistic regression model. Such models impose stringent 

constraints on the relationship between explanatory variables and risk of death. For instance, 

main-term logistic regression typically relies on a linear and additive relationship between a 

pre-specified transformation of the mean outcome and its predictors. Given the complex 

processes underlying death in ICU patients, such an assumption might be unrealistic, and 

predictive power may be relatively low if an incorrect parametric model is utilized as 

opposed to a more flexible option. On the contrary, if the assumed parametric model is 

correct, it will generally provide the best prediction, at least in large samples. Hence, the 

poor calibration of current severity scores might be to a large extent a consequence of the 

misspecification of the underlying statistical model rather than to the choice of variables 

included in this model. We hypothesized that, by using a more flexible model, we could 

improve prediction performance without increasing the number of variables in the model. To 

the extent this hypothesis holds, it would offer a means to improve predictive performance 

given a limited set of commonly available predictors, as well as an attractive method for 

building new predictors using an expanded set of variables.

Given that the true relationship between risk of mortality in the ICU and explanatory 

variables is unknown, we expect that prediction can be improved by using an automated 

algorithm to estimate risk of death without requiring any specification about the shape of the 

underlying relationship. Such methods are often referred to as nonparametric. Some studies 

have evaluated the benefit of nonparametric approaches, namely based on neural networks 

or data-mining, to predict hospital mortality in ICU patients 18–23. These studies have 

unanimously concluded that nonparametric methods might perform at least as well, if not 

better, than standard logistic regression in predicting ICU mortality.

Recently, the Super Learner was developed as a nonparametric technique for constructing 

an optimal prediction algorithm from a given set of candidate algorithms provided by the 

user 2421. The Super Learner ranks the algorithms according to their prediction performance, 

and then builds the aggregate algorithm given by the optimal weighted combination of all 

candidate algorithms. Theoretical and numerical results have demonstrated that the Super 

Learner performs no worse than the unknown optimal choice in the provided library of 
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candidate algorithms, at least in large samples. It capitalizes on the richness of the library it 

builds upon and generally offers gains over any specific candidate algorithm in terms of 

flexibility to accurately fit the data.

The primary aim of this study, designated as the first stage of the Super ICU Learner 

Algorithm (SICULA) project, was to develop a scoring procedure for ICU patients based on 

the Super Learner using data from the Multiparameter Intelligent Monitoring in Intensive 

Care II (MIMIC-II) study 25–27, and to determine whether it results in improved mortality 

prediction relative to the SAPS II, the APACHE II and the SOFA scores. Although 

additional work remains to be done to validate the resulting prediction algorithm on a large 

external cohort and to incorporate additional predictor variables, an accessible, user-friendly 

web implementation of our scoring procedure has been made available. This implementation 

allows clinicians to utilize our score in their own practice, say as an aid in determining 

treatment allocation, provides an opportunity for clinician-researchers to validate our 

algorithm within the context of their own patient populations, and serves as an improved risk 

stratification tool for use in clinical research. This is in rather sharp contrast to other 

instances in which scores have been developed using complex machine learning methods 

but the resulting scores cannot be readily calculated by clinicians. Indeed, we could not 

identify a single example in which an implementation of a published scoring procedure was 

made publicly available on the web. In addition, we have made the corresponding R code 

available to other investigators in an online appendix.

Patients and Methods

Data Collection and Patients

The MIMIC-II study25–27 includes all patients admitted to an ICU at the Beth Israel 

Deaconess Medical Center (BIDMC) in Boston, MA since 2001. Patient recruitment is still 

ongoing. For the sake of the present study, only data from MIMIC-II version 26 (2001–

2008) on adult ICU patients (>15 years-old) were included.

Hospital Characteristics—The BIDMC is a 620-bed tertiary academic medical center 

and a Level I Trauma Center with 77 critical care beds. The ICUs at the BIDMC are closed, 

with continuous in-house supervision of patient care by an intensivist. These ICUs include 

medical (MICU), trauma-surgical (TSICU), coronary (CCU), cardiac surgery recovery 

(CSRU) and medico-surgical (MSICU) critical care units.

Patient Inclusion and Measures—All consecutive patients were included in the 

MIMIC-II database. The data acquisition process was not visible to staff and did not 

interfere with the clinical care of patients or methods of monitoring. Only patients with a 

single ICU admission per hospital stay were considered for the present analysis. Two 

categories of data were collected: clinical data, aggregated from ICU information systems 

and hospital archives, and high-resolution physiologic data (waveforms and time series of 

derived physiologic measurements), recorded on bedside monitors. Clinical data were 

obtained from the CareVue Clinical Information System (Models M2331A and M1215A, 

Philips Healthcare, Andover, Massachusetts) deployed in all study ICUs, and from hospital 

electronic archives. The data included time-stamped nurse-verified physiologic 
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measurements (e.g., hourly documentation of heart rate, arterial blood pressure, pulmonary 

artery pressure), nurses’ and respiratory therapists’ progress notes, continuous intravenous 

(IV) drip medications, fluid balances, patient demographics, interpretations of imaging 

studies, physician orders, discharge summaries, and ICD-9 codes. Comprehensive diagnostic 

laboratory results (e.g., blood chemistry, complete blood counts, arterial blood gases, 

microbiology results) were obtained from the patient’s entire hospital stay including periods 

outside the ICU. In the present study, we focused exclusively on outcome variables 

(specifically, ICU and hospital mortality) and variables included in the SAPS II7 and SOFA 

scores28.

Ethical Issues—This study was approved by the Institutional Review Boards of Beth 

Israel Deaconess Medical Center (Boston, MA) and the Massachusetts Institute of 

Technology (Cambridge, MA). Requirement for individual patient consent was waived 

because the study did not impact clinical care and all protected health information was de-

identified. De-identification was performed in compliance with Health Insurance Portability 

and Accountability Act (HIPAA) standards in order to facilitate public access to MIMIC-II. 

Deletion of protected health information (PHI) from structured data sources (e.g., database 

fields that provide patient name or date of birth) was straightforward. Additionally, PHI 

were removed from the discharge summaries and diagnostic reports as well as the 

approximately 700,000 free-text nursing and respiratory notes in MIMIC-II using an 

automated algorithm previously shown to out perform clinicians in detecting PHI 29.

Prediction Algorithms

The primary outcome measure was hospital mortality. The data recorded within the first 24 

hours following ICU admission were extracted separately from the MIMICII2V26 database 

and used to compute two of the most widely used severity scores, namely the SAPS II7 and 

SOFA 28 scores. Individual mortality prediction for the SAPS II score was calculated as 

defined by its authors7:

In addition, we developed a new version of the SAPS II score, by fitting to our data a main-

term logistic regression model using the same explanatory variables as those used in the 

original SAPS II score7. The same procedure was used to build a new version of the 

APACHE II score 5. Finally, because the SOFA score 28 is sometimes used in clinical 

practice as a proxy for outcome prediction, it was also computed for all subjects. Mortality 

prediction based on the SOFA score was obtained by regressing hospital mortality on the 

SOFA score using a main-term logistic regression. These two algorithms for mortality 

prediction were compared to our Super Learner-based proposal.

Super Learner—The Super Learner (Appendix 1) has been proposed as a method for 

selecting via cross-validation the optimal regression algorithm among all weighted 

combinations of a set of candidate algorithms, henceforth referred to as the library24,30,31. 

To implement the Super Learner, a user must provide a customized collection of various 
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data-fitting algorithms, and must also specify a performance measure - in our case the 

squared difference between observed and predicted outcomes. The Super Learner then uses 

V-fold cross-validation to estimate the mean squared prediction error of each algorithm on 

data not used when building the prediction model, and then selects the convex combination 

of algorithms that provides the smallest squared prediction error on independent data.

Comparison of the 12 algorithms relied on 10-fold cross-validation. As illustrated in 

Appendix 1, the data were first split into 10 mutually exclusive and exhaustive blocks of 

approximately equal size. Each algorithm was fit on 9 blocks (the training set) and used to 

predict mortality for patients in the remaining block (the validation set). The mean squared 

error between predicted and observed outcomes was then calculated. This procedure was 

repeated exactly 10 times, with a different block used as validation set every time. Each 

observation therefore served exactly once in the validation set and was included in the 

training set for all other rounds. Performance measures were aggregated over all 10 

iterations, yielding a cross-validated estimate of the mean-squared error (CV-MSE) for each 

algorithm. A crucial aspect of this approach is that for each iteration not a single patient 

appears in both the training and validation sets. The potential for overfitting, wherein the fit 

of an algorithm is overly tailored to the available data at the expense of performance on 

future data, is thereby mitigated, as overfitting is more likely to occur when training and 

validation sets intersect. Candidate algorithms were ranked according to their CV-MSE and 

the algorithm with least CV-MSE was identified. This algorithm was then refitted using all 

available data, leading to a prediction rule referred to as the Discrete Super Learner. 

Subsequently, the prediction rule consisting of the CV-MSE- minimizing weighted convex 

combination of all candidate algorithms was also computed and refitted on all data. This is 

what we refer to as the Super Learner combination algorithm 31. Finally, the performance of 

the Super Learner combination algorithm was itself evaluated using an additional layer of 

cross validation: the entire procedure was run in turn on each 9/10th of the data, and 

performance measures described below were evaluated on the remaining validation set and 

averaged across the 10 validation sets.

Theoretical results suggest that, in order to optimize the performance of the resulting 

algorithm, the inputted library should include as many sensible algorithms as possible. In 

this study, the library size was limited to 12 algorithms (enumerated in Appendix 2) for 

computational reasons. Among these 12 algorithms, some were parametric, such as logistic 

regression or related methods classically used for ICU scoring systems, and some were non 

parametric, in the sense that they imposed only minimal constraints on the underlying data 

distribution. In the present study, we chose the library to include most of the parametric 

(including regression models with various combinations of main and interaction terms as 

well as splines, and fitted using maximum likelihood with or without penalization) and 

nonparametric algorithms previously evaluated for the prediction of mortality in critically ill 

patients in the literature. The main-term logistic regression is the parametric algorithm that 

has been used for constructing both the SAPS II and APACHE II scores. This algorithm was 

included in the SL library so that revised fits of the SAPS II score based on the current data 

also competed against other algorithms.
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The data used in fitting our prediction algorithm included the 17 variables used in the SAPS 

II score: 13 physiological variables (age, Glasgow coma scale, systolic blood pressure, heart 

rate, body temperature, PaO2/FiO2 ratio, urinary output, serum urea nitrogen level, white 

blood cells count, serum bicarbonate level, sodium level, potassium level and bilirubin 

level), type of admission (scheduled surgical, unscheduled surgical, or medical), and three 

underlying disease variables (acquired immunodeficiency syndrome, metastatic cancer, and 

hematologic malignancy derived from ICD-9 discharge codes). Two sets of predictions 

based on the Super Learner were produced: the first based on the 17 variables as they appear 

in the SAPS II score (SL1), and the second, on the original, untransformed variables (SL2).

Performance Measures

A key objective of this study was to compare the predictive performance of scores based on 

the Super Learner to that of the SAPS II and SOFA scores. This comparison hinged on a 

variety of measures of predictive performance, described below.

1. A mortality prediction algorithm is said to have adequate discrimination if it tends 

to assign higher severity scores to patients that died in the hospital compared to 

those that did not. We evaluated discrimination using the cross-validated area under 

the receiver-operating characteristic curve (AUROC), reported with corresponding 

95% confidence interval (95% CI). Discrimination can be graphically illustrated 

using the receiver-operating (ROC) curves. Additional tools for assessing 

discrimination include box plots of predicted probabilities of death for survivors 

and non-survivors, and corresponding discrimination slopes, defined as the 

difference between the mean predicted risks in survivors and non-survivors. All 

these are provided below.

2. A mortality prediction algorithm is said to be adequately calibrated if predicted and 

observed probabilities of death coincide rather well. We assessed calibration using 

the Cox calibration test12,32,33. Because of its numerous shortcomings, including 

poor performance in large samples, the more conventional Hosmer-Leme show 

statistic was avoided 34,35. Under perfect calibration, a prediction algorithm will 

satisfy the logistic regression equation ‘observed log-odds of death = α + β * 

predicted log-odds of death’ with α=0 and β=1. To implement the Cox calibration 

test, a logistic regression is performed to estimate α and β; these estimates suggest 

the degree of deviation from ideal calibration. The null hypothesis (α, β)=(0,1) is 

tested formally using a U-statistic36.

3. Summary reclassification measures, including the Continuous Net Reclassification 

Index (cNRI) and the Integrated Discrimination Improvement (IDI), are relative 

metrics which have been devised to overcome the limitations of usual 

discrimination and calibration measures 37,38,39. The cNRI comparing severity 

score A to score B is defined as twice the difference between the proportion of non-

survivors and of survivors, respectively, deemed more severe according to score A 

rather than score B. The IDI comparing severity score A to score B is the average 

difference in score A between survivors and non-survivors minus the average 

difference in score B between survivors and non-survivors. Positive values of the 
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cNRI and IDI indicate that score A has better discriminative ability than score B, 

whereas negative values indicate the opposite. We computed the reclassification 

tables and associated summary measures to compare each Super Learner proposal 

to the original SAPS II score and each of the revised fits of the SAPS II and 

APACHE II scores.

Baseline variables and outcomes are summarized in Table 1. Median (inter-quartile range) 

and count (percentage) are reported for continuous and binary variables, respectively. All 

analyses were performed using statistical software R version 2.15.2 for Mac OS X (The R 

Foundation for Statistical Computing, Vienna, Austria; specific packages: cvAUC40, Super 

Learner41 and ROCR42).

The SICULA prediction algorithm

We refer to the Super Learner-based prediction algorithm using untransformed variables 

(SL2) as SICULA, an acronym for Super ICU Learning Algorithm. An implementation of 

the SICULA in JavaScript and R has been made available via a user-friendly web interface 

(http://webapps.biostat.berkeley.edu:8080/sicula/). Using this web application, clinicians 

and researchers can obtain the predicted probability of hospital mortality in ICU patients 

based on SICULA by inputting patient characteristics.

External Validation

An external validation of the predictive performance of the SICULA was performed using 

the same metrics but a completely independent dataset. The data used for external validation 

are those from 200 patients hospitalized between September 1st 2013 and June 30th 2014 

and randomly selected from the internal anonymous database of patients from the medical, 

surgical and trauma ICU at Hôpital Européen Georges Pompidou, a tertiary academic 

medical center and Level I Trauma Center in Paris, France.

Role of the funding sources

The funding sources had no role in the collection, analysis, or interpretation of the data. All 

authors had full access to all of the data. The corresponding author had final responsibility to 

submit for publication.

Results

Patients

A total of 24,508 patients were included in this study. Their baseline characteristics are 

summarized in Table 1. Median age was 65 (IQR=51–77). The majority of patients were 

male (56.5%). The main reasons for ICU admission (derived from ICD-9 discharge codes) 

were surgery or trauma: emergency surgery in 10,803 patients (44.1%), trauma in 7,703 

(31.4%), and elective surgery in 3,549 patients (14.5%). Only 2,453 patients (10.0%) were 

admitted for medical reasons. The patients were hospitalized in different intensive care 

units: CSRU (8600, 35.1%), MICU (7488, 30.5%), CCU (5285, 21.6%), MSICU (2686, 

10.9%) and TSICU (949, 3.9%). The median SAPS II at admission was 38 (27–51), while 

the median SOFA score was 5 [2–8]. Median hospital length of stay was of 8 (4–14) days. A 
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total of 1,978 deaths occurred in ICU (8.1%, 95%CI: 7.7–8.4), and 1,024 additional deaths 

were observed after ICU discharge, resulting in an estimated hospital mortality of 12.2% 

(95%CI: 11.8–12.7).

Discrimination

The ROC curves for hospital mortality prediction are provided in Figure 1. The cross-

validated AUROC (cv-AUROC) was 0.71 (95%CI: 0.70–0.72) for the SOFA score, and 0.78 

(95%CI: 0.77–0.78) for the SAPS II score. When refitting the SAPS II score on our data, the 

cv-AUROC reached 0.83 (95%CI: 0.82–0.83); this is similar to the results obtained with the 

revised fit of the APACHE II, which led to an AUROC of 0.82 (95%CI: 0.81–0.83). The 

two Super Learner (SL1 and SL2) prediction models substantially outperformed the SAPS 

II and the SOFA score. The cv-AUROC was 0.85 (95%CI: 0.84–0.85) for SL1, and 0.88 

(95%CI: 0.87–0.89) for SL2, revealing a clear advantage of the Super Learner-based 

prediction algorithms over both the SOFA and SAPS II scores.

Discrimination was also evaluated by comparing differences between the predicted 

probabilities of death among the survivors and the non-survivors using each prediction 

algorithm (Appendix 3). The discrimination slope equalled 0.09 for the SOFA score, 0.26 

for the SAPS II score,0.21 for SL1, and 0.26 forSL2.

Calibration

The average predicted probability of death based on Super Learner 1 was 0.12 (IQR: 0.02–

0.16); it was 0.13 (IQR: 0.01–0.19) when Super Learner 2 was used instead (Table 2). It was 

similar when using the SOFA score (0.12, IQR: 0.05–0.15), the refitted version of the SAPS 

II score (0.12, IQR: 0.03–0.16) and the APACHE II score (0.12, IQR: 0.03–0.16). The 

average probability of death was severely overestimated by the original version of the SAPS 

II score (0.30, IQR: 0.08–0.48). For each model, histograms of the predicted probabilities of 

death by survivorship status are provided in Figure 2. Calibration plots are provided in 

Appendix 3. These plots suggest a lack of fit for the SAPS II score, although the calibration 

properties were markedly improved by refitting the SAPS II score. The prediction based on 

the SOFA and the APACHE II scores exhibited excellent calibration properties. For the 

Super Learner-based predictions, the estimates of α and β were close to the null values. The 

calibration plots provided in Appendix 3 suggest that SL1 is the only method that provides 

accurate predictions for the entire range of death probability. Indeed, for other algorithms, 

the predicted probabilities fall close to the ideal calibration line for low probabilities of 

death but move away from this line as death probabilities increase. For SL1, the predicted 

probabilities stay close to the ideal calibration line whatever the death probability.

Super Learner Library

The performance of the 12 candidate algorithms, the Discrete Super Learner and the Super 

Learner combination algorithms, as evaluated by CV-MSE and CV-AUROC, are presented 

in Figure 3. As suggested by theory, when using either categorized variables (SL1) or 

untransformed variables (SL2), the Super Learner combination algorithm achieved the same 

performance as the best of all 12 candidates, with an average CV-MSE of 0.084 (SE=0.001) 

and an average AUROC of 0.85 (95%CI: 0.84–0.85) for SL1 (best single algorithm: 
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Bayesian Additive Regression Trees, with CV-MSE=0.084 and AUROC=0.84 (95%CI: 

0.84, 0.85)). For the SL2, the average CV-MSE was of 0.076 (SE=0.001) and the average 

AUROC of 0.88 (95%CI: 0.87–0.89) (best single algorithm: Random Forests, with CV-

MSE=0.076 and AUROC=0.88 (95%CI: 0.87–0.89)). In both cases (SL1 and SL2), the 

Super Learner outperformed the main term logistic regression used to develop the SAPS II 

or the APACHE II score (main term logistic regression: CV-MSE= 0.087 (SE=0.001) and 

AUROC=0.83 (95%CI: 0.82– 0.83)).

Reclassification Tables

The reclassification tables involving the SAPS II score in its original and its actualized 

versions, the revised APACHE II score, and the SL1 and SL2 scores are provided in Table 

2. When compared to the classification provided by the original SAPS II, the actualized 

SAPS II or the revised APACHE II score, the Super Learner-based scores resulted in a 

downgrade of a large majority of patients to a lower risk stratum. This was especially the 

case for patients with a predicted probability of death above 0.5.

We computed the cNRI and the IDI considering each Super Learner proposal (score A) as 

the updated model and the original SAPS II, the new SAPS II and the new APACHE II 

scores (score B) as the initial model. In this case, positive values of the cNRI and IDI would 

indicate that score A has better discriminative ability than score B, whereas negative values 

indicate the opposite. Results are summarized in Table 3. As compared to the original SAPS 

II, both the cNRI were significantly different from zero for SL1. For SL2, the cNRI was 

significantly different from zero, while the IDI was close to zero. When compared to the 

classification provided by the actualized SAPS II, the cNRI and IDI were significantly 

different from zero for both SL1 and SL2. When compared to the actualized APACHE II 

score, the cNRI and IDI were also significantly different from zero for both SL1 and SL2. 

When compared to either the revised SAPS II or APACHE II scores, both Super Learner 

proposals resulted in a large proportion of patients reclassified, especially from higher 

predicted probability strata to lower ones.

External Validation

A set of 200 patients hospitalized between September 2013 and June 2014 and randomly 

selected from the internal database of the medical, surgical and trauma ICU at Hôpital 

Européen Georges Pompidou, a tertiary academic medical center and a Level I Trauma 

Center in Paris, France, was used for external validation of the SICULA. The main reasons 

for ICU admission were emergency surgery in 129 patients (64.1%), elective surgery in 12 

patients (6%) and medical in 59 patients (29.5%). The median SAPS II at ICU admission 

was 40 (18–56). Forty-two patients (21%) died during their ICU stay. The ROC curve for 

SICULA-based hospital mortality prediction is provided in Appendix 4. The corresponding 

AUROC was 0.94 (95%CI: 0.90–0.98). The estimated values of α and β were of −0.43 and 

1.88 respectively (U statistic = −0.01, p=0.48), indicating good calibration properties.
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Discussion

The goal of the present study was to assess whether an ensemble machine learning technique 

(i.e., a composite algorithm built upon an ensemble of multiple learning algorithms to obtain 

better prediction performance), the so-called Super Learner, would offer any gain in 

predicting hospital mortality in critically ill patients. Our main result is that the scores we 

have developed based on the Super Learner improve the prediction of hospital mortality in 

our sample and in an external validation sample, both in terms of discrimination and 

calibration, as compared to the SAPS II or the APACHE II scoring systems. The Super 

Learner severity score (SL2 or SICULA) is based on untransformed versions of the variables 

used in SAPS II and APACHE II, and is available online through a web application. An 

illustration of mortality prediction scores obtained from the SAPS II, APACHE II and 

SICULA algorithms for three different patient profiles is provided in Table 4.

Acknowledging that the assumptions underlying the use of common parametric methods, 

such as logistic regression, are generally unrealistic in this context, various authors have 

advocated the use of nonparametric techniques for predicting ICU mortality. More than 15 

years ago, Dybowski et al. evaluated neural networks for this purpose18 and reported a 

significantly improved AUROC as compared to standard logistic regression including 

second order interactions. However, in a similar setting, Clermont et al. later found that 

logistic regression and neural networks performed similarly for ICU mortality prediction19. 

Conflicting results were reported for other nonparametric techniques as well. For instance, 

Ribas et al. demonstrated that use of support vector machines 20 resulted in increased 

prediction accuracy relative to the APACHE II score 5 and various shrinkage methods 

(including the Lasso and ridge regression). Again, these results were tempered when Kim et 

al. reported that no clear benefit was derived from using neural networks and support vector 

machines in their sample as compared to APACHE III21. Rather, in the latter study, optimal 

performance was achieved using a decision tree. Similar results have previously been 

reported using the MIMIC-II dataset. Indeed, a Bayesian ensemble learning algorithm has 

recently been evaluated during an ICU mortality prediction modelling exercise as part of the 

PhysioNet/Computing in Cardiology Challenge and has shown substantial improvement in 

prediction performance as compared to the SAPS score 43. During the same challenge, 

different authors achieved improved mortality prediction using a method based on support 

vector machines 44. Such contradictory results on the relative performance of different 

prediction tools under score the fact that no single algorithm invariably outperforms all 

others. In any given setting, according to the outcome of interest, the set of explanatory 

variables available and the underlying population to which it will be applied, the best 

predictive model might be achieved by a parametric or any of a variety of nonparametric 

methods. For example, in a situation where some knowledge about the true shape of the 

relationship between the outcome and the explanatory variables is available, a parametric 

model reflecting this knowledge is likely to outperform any nonparametric technique. The 

crucial advantage of the Super Learner is that it can include as many candidate algorithms as 

inputted by investigators, including algorithms reflecting available scientific knowledge, and 

in fact borrows strength from diversity in its library. Indeed, established theory indicates that 

in large samples the Super Learner performs at least as well as the (unknown) optimal 
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choice among the library of candidate algorithms31. This is illustrated here in Figure 3, 

showing that SL1 achieves similar performance as BART, the best candidate when using 

transformed variables, while SL2 achieves similar performance as random forest, which 

outperformed all other candidates when using untransformed variables. Hence, the Super 

Learner offers a much more flexible alternative to other nonparametric methods.

Our results illustrate that a variety of measures must be considered when evaluating the 

predictive performance of a given severity score. Although the discrepancy between average 

predicted probability of death and actual observed in-sample mortality rate was substantial 

for the original SAPS II score, it was very small and nearly identical for each of SL1, SL2, 

the SOFA score and the refitted version of the SAPS II and APACHE II scores. This does 

not however imply that the latter are equally good mortality scores. Indeed, prediction may 

very well be accurate on average yet still poor at the individual level. Moreover, the accurate 

average mortality prediction seen with the refitted SAPS II and APACHE II scores might 

reflect a certain level of overfitting. It is important then to consider a broader assessment of 

these scores’ performance, namely by carefully studying their discrimination and calibration 

properties. On one hand, the first SOFA score exhibited very good calibration, yet had very 

poor discrimination, as reflected by the large overlap in predicted probabilities of death 

between survivors and non-survivors. On the other hand, the SAPS II score enjoyed high 

discrimination, but was inadequately calibrated in our sample. These results are consistent 

with previous studies that evaluated the calibration of the SAPS II score15. The Super 

Learner offered an appealing tradeoff with good calibration properties and far better 

discrimination than either the SAPS II and SOFA scores. A disclaimer should nonetheless 

accompany a criticism of the SOFA score on this basis: in reality, this score was not initially 

developed for mortality prediction. However, many intensivists use the SOFA score as a 

surrogate for organ failure quantification and follow-up to assess patients’ response to ICU 

care, and thereby adjust their own perception of likely patient outcomes. For this reason, we 

chose to assess the performance of SOFA for ICU mortality prediction. Given the similarity 

in calibration of the two Super Learner-based scores (SL1 and SL2), we recommend using 

the Super Learner with untransformed explanatory variables (SL2) in view of its greater 

discrimination. When considering risk reclassification, the two Super Learner prediction 

algorithms had similar cNRI, but SL2 clearly had a better IDI. It should be emphasized that, 

when considering the IDI, the SL1 seemed to perform worse that the SAPS II score. 

Nonetheless, the IDI must be used carefully since it suffers from similar drawbacks as the 

AUROC: it summarizes prediction characteristics uniformly over all possible classification 

thresholds even though many of these are unacceptable and would never be considered in 

practice45. We externally validated the performance of the SICULA using a small dataset 

obtained from a French ICU. Discrimination performance was excellent. Calibration results 

were slightly worse than those obtained internally. However, this is mitigated by the fact 

that the validation sample substantially differed from the training sample, with more 

severely ill patients, very few patients hospitalized for coronary care, and thus a consistently 

higher hospital mortality rate. It is likely that refitting the SICULA using a wider spectrum 

of ICU patients would improve its external validity -this is one of the primary goals of the 

second phase of the SICULA project.

Pirracchio et al. Page 12

Lancet Respir Med. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Our study has some limitations. First, we used the SAPS II and the APACHE II scores as 

references despite the availability of more recent algorithms. This was partly due to the fact 

that some of the predictors included in the most recent version of these scores were not 

directly available in the MIMIC-II database. Nonetheless, these scores (e.g., SAPS 3 and 

APACHE III) have been reported to face the same drawbacks as SAPS II12,15,46. Moreover, 

those scores remain the most widely used scores in practice 47. Second, our sample comes 

from a single hospital. Nevertheless, this issue may be alleviated by the fact that patients in 

our sample come from five different ICUs, injecting a certain level of heterogeneity in our 

patient pool. This case-mix heterogeneity may in turn represent a limitation when 

considering the score for a very specific subpopulation of patients. Moreover, overfitting 

was mitigated by the use of cross-validation48. The patients included in the MIMIC-II cohort 

seem representative of the overall ICU patient population, as reflected by a hospital 

mortality rate in the MIMIC-II cohort that is similar to the one reported for ICU patients 

during the same time period 3. Consequently, our score can be reasonably expected to 

exhibit, in other samples, performance characteristics similar to those reported here, at least 

in samples drawn from similar patient populations. However, it should be mentioned that by 

discarding patients with multiple ICU admissions during the same ICU stay, we might have 

shrunk the study population toward a less severely ill one. The second phase of the SICULA 

project will include patients with multiple ICU stays. In addition, information concerning do 

not resuscitate orders or restricted treatments was missing in our dataset and should ideally 

be taken into account in future work. Third, the large representation in our sample of CCU 

or CSRU patients, who often have lower severity scores than medical or surgical ICU 

patients, may have limited our score’s applicability to more critically ill patients. Further 

scrutiny however revealed that the average SAPS II score in our sample is comparable to 

that reported in similar studies 15,46. Of note, results concerning the discrimination and 

calibration of the SICULA by ICU type (i.e. MICU, CSRU, CCU, MSICU and TSICU) 

showed no substantial difference in prediction performance between units (Appendix 5). 

Fourth, some variables needed to compute the SAPS II (e.g., elective surgery, underlying 

disease variables or main reason for ICU admission) were not directly available in the 

dataset and had to be extrapolated from other data. Finally, a key assumption made was that 

the poor calibration associated with current severity scores derives from the use of 

insufficiently flexible statistical models rather than an inappropriate selection of variables 

included in the model. For this reason and for the sake of providing a fair comparison of our 

novel score with the SAPS II score, we included the same explanatory variables as used in 

SAPS II. Expanding the set of explanatory variables used could potentially result in a score 

with even better predictive performance. In the future, expanding the number of explanatory 

variables will probably further improve the predictive performance of the score. However, 

this will probably strengthen further the need for nonparametric approaches and ensemble 

learning algorithms such as the Super Learner. Indeed, parametric models are known to be 

less and less adequate as the number of predictors increases49. Moreover, when increasing 

the number of predictors, a sensible trade-off between complexity and performance is even 

more crucial in order for the score to still be applicable in practice.

We conclude from this first stage of the SICULA project that, in this population, the 

prediction of hospital mortality based on the SICULA prediction algorithm achieves 
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significantly improved performance, both in terms of calibration and discrimination, as 

compared to conventional severity scores. The SICULA prediction algorithm is a promising 

alternative that could prove valuable both in clinical practice and for research purposes. 

Externally validating results of this study in different populations, particularly outside of the 

United States, providing periodic updates of the SICULA fit, and assessing the potential 

benefit of including additional variables in the score remain important future challenges that 

will be tackled in the second stage of the SICULA project. Of course, before we can 

unequivocally recommend widespread use of our algorithm, it will be important to confirm 

our findings in this second phase. Nevertheless, we believe the currently available web 

implementation of SICULA (Appendix 6) should prove useful to both clinicians and other 

investigators in critical care medicine.
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Appendix 1. Super Learner Algorithm

From van der Laan & Rose, Targeted Learning 2011 (with permission) 50.

Appendix 2. Algorithms included in the Super Learner Library

Linear Models and derivatives:

• Logistic regression: standard logistic regression, including only main terms for 

each covariate and including interaction terms 43 (SL.glm);

• Stepwise regression: logistic regression using a variable selection procedure based 

on the Akaike Information Criteria 44 (SL.stepAIC);

• Generalized additive model 44: additive model including smoothing functions of 

the predictors, the functions being choosed in order to optimize the outcome 

prediction (SL.gam);

• Generalized linear model with penalized maximum likelihood 45 : regression 

models where the coefficients are constrained so that the sum of their absolute 

values falls below some constant chosen by cross-validation, thereby achieving 

variable selection while shrinking some regression coefficients toward zero 

(SL.glmnet);

• Multivariate adaptive polynomial spline regression 45: adaptive regression 

procedure using piecewise linear splines to model the response (SL.polymars);

• Bayesian generalized linear model 46 : approach to linear regression in which the 

statistical analysis is undertaken within the context of Bayesian inference 

(SL.bayesglm);

• Generalized boosted regression model 50: machine learning method for regression 

problems which produces a prediction model in the form of an ensemble of weak 

prediction models (SL.gbm);

Trees and Networks:
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• Neural Networks 48: machine learning algorithm inspired by animal’s neuronal 

network which is capable of pattern recognition (SL.nnet);

• Classification trees: generally speaking, trees are methods that partition the 

covariate space into disjoint pieces and then classify the observations according to 

which partition element they fall in. Bagging, pruning, random forests and BART 

are particular implementations of this general principle

– Bagging classification trees 49: a set a trees is created from several 

subsamples drawn with replacement (SL.ipredbagg);

– Pruned Recursive Partitioning and Regression Trees 51: pruning is a backing 

technique that avoids data overfiiting (SL.rpartPrune);

– Random Forest 47 : a set a trees is created from several bootstrap samples 

(SL.randomForest);

– Bayesian Additive Regression Trees 52: BART is a sum of trees model 

where the growth of a tree is constrained by priors and then uses an iterative 

Markov-chain Monte Carlo algorithm to back fit the model (SL.bart);

Appendix 3. Calibration plots (left, with the corresponding U statistic) and 

discrimination plots (right, with corresponding discrimination slope)

The plots indicate a lack of fit for the SAPS II score. The estimated values of α and β were 

of −1.51 and 0.72 respectively (U statistic = 0.25, p<0.0001). The calibration properties 

were markedly improved by refitting the SAPS II score: α <0.0001 and β=1 (U<0.0001, 

p=1.00). The prediction based on the SOFA and the APACHE II scores exhibited excellent 

calibration properties, as reflected by α <0.0001 and β=1 (U<0.0001, p=1.00). For the Super 

Learner-based predictions, though the estimates of α and β were close to the null values, the 

large sample size nonetheless resulted in U-statistics significantly different from zero: SL1: 

0.14 and 1.04, respectively (U=0.0007, p=0.0001); SL2: 0.24 and 1.25, respectively 

(U=0.006, p<0.0001).

1. SAPS II (U=0.25, p<0.0001; discrimination slope=0.26)

2. SOFA (U<0.0001, p=0.9999; discrimination slope=0.09)
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3. New fit of the SAPS II score (U<0.0001, p=0.9999; discrimination slope=0.20)

4. New fit of the APACHE II score (U<0.0001, p=0.9999; discrimination slope=0.18)

5. Super Learner 1 (U=0.0007, p<0.0001; discrimination slope=0.21)
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6. Super Learner 2 (U=0.006, p<0.0001; discrimination slope=0.26)

Appendix 4. External Validation of the SICULA

A. Discrimination
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B. Calibration

Appendix 5. Results by ICU

A. Calibration Plots
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B. Discrimination Plots
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Appendix 6. Use of the web app and clinical illustration

The use of the web app requires entering patients’ characteristics. For continuous variables, 

average normal values are proposed by default, but can be readily entered by users. Missing 

values are allowed. After inputting data in all relevant fields, the SICULA mortality 

prediction score can be obtained by clicking on ‘Analyse.’ In any given web session, the 

first prediction requested may only appear after several minutes, since initialization of the 

system requires significant computational efforts.
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Research in Context

As part of this project, a systematic review of the literature was conducted in Pubmed and 

Google Scholar using the following keywords: ICU, mortality prediction, severity scores, 

machine learning, Super Learner, nonparametric. No restriction was applied. All 

appropriate and reliable articles were selected based on a careful reading and served as 

background for our research. Our search revealed that there have been several attempts to 

use machine learning techniques in the context of ICU mortality prediction, though to the 

best of our knowledge none of the reported efforts seem to have utilized ensemble 

learning techniques. More importantly, the resulting scores are neither commonly used 

nor even widely available to clinicians and researchers. The most common severity 

scores currently in practice date back to the early 1980s and are based on classical 

logistic regression models.

Our results demonstrate that flexible modelling approaches may yield significant 

improvement in ICU mortality prediction. This suggests that instead of relying on any 

single parametric or nonparametric modelling technique, an ensemble machine learning 

approach should be used to model outcomes as complex as ICU mortality.

Clinicians should be aware that prediction based on classical parametric approaches 

could be misleading. As pertains to ICU mortality prediction, the SICULA algorithm 

derived in this work is a promising alternative that could prove valuable both in clinical 

practice and for research purposes.
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Figure 1. Receiver-Operating Characteristics curves
Super Learner 1: Super Learner with categorized variables; Super Learner 2: Super Learner 

with non-transformed variables. These results were obtained using 10-fold cross-validation. 

We also implemented 50-fold cross-validation and found no material change in the 

estimated performance of the SICULA algorithm (cvAUC for the SICULA: 0.91 [0.90–

0.92]).
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Figure 2. Distribution of the predicted probability of death in the survivors and the non-
survivors
Upper panel: SAPS II on the left, SOFA on the right; Medium panel: new fit of the SAPS II 

on the left, new fit of the APACHE II on the right; Lower panel: on the left, Super Learner 

using categorized variables (Super Learner 1), on the right Super Learner with non-

transformed variables (Super Learner 2).
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Figure 3. Cross-validated mean-squared error for the Super Learner and the 12 candidate 
algorithms included in the library
Upper panel concerns the Super Learner with categorized variables (Super Learner 1): Mean 

Squared Error (MSE) associated with each candidate algorithm (top figure) – Receiver 

Operating Curves (ROC) for each candidate algorithm (bottom figure); Lower panel 

concerns the Super Learner with non-transformed variables (Super Learner 2): Mean 

Squared Error (MSE) associated with each candidate algorithm (top figure) – Receiver 

Operating Curves (ROC) for each candidate algorithm (bottom figure).

Pirracchio et al. Page 27

Lancet Respir Med. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Pirracchio et al. Page 28

Table 1
Baseline characteristics and Outcome measures

Continuous variables are presented as Median [InterQuartile Range]; Binary or categorical variables as Count 

(%).

Overall population (n=24,508) Dead at Hospital Discharge 
(n=3,002)

Alive at Hospital Discharge 
(n=21,506)

Age 65 [51–77] 74 [59–83] 64 [50–76]

Gender (female) 13,838 (56.5%) 1,607 (53.5%) 12231 (56.9%)

First SAPS 13 [10–17] 18 [14–22] 13 [9–17]

First SAPS II 38 [27–51] 53 [43–64] 36 [27–49]

First SOFA 5 [2–8] 8 [5–12] 5 [2–8]

Origin

 Medical 2,453 (10%) 240 (8%) 2,213 (10.3%)

 Trauma 7,703 (31.4%) 1,055 (35.1%) 6,648 (30.9%)

 Emergency Surgery 10,803 (44.1%) 1,583 (52.7%) 9,220 (42.9%)

 Scheduled Surgery 3,549 (14.5%) 124 (4.1%) 3,425 (15.9%)

Site

 MICU 7,488 (30.6%) 1,265 (42.1%) 6,223 (28.9%)

 MSICU 2,686 (11%) 347 (11.6%) 2,339 (10.9%)

 CCU 5,285 (21.6%) 633 (21.1%) 4,652 (21.6%)

 CSRU 8,100 (33.1%) 664 (22.1%) 7,436 (34.6%)

 TSICU 949 (3.9%) 93 (3.1%) 856 (4%)

HR (bpm) 87 [75–100] 92 [78–109] 86 [75–99]

MAP (mmHg) 81 [70–94] 78 [65–94] 82 [71–94]

RR (cpm) 14 [12–20] 18 [14–23] 14 [12–18]

Na (mmol/l) 139 [136–141] 138 [135–141] 139 [136–141]

K (mmol/l) 4.2 [3.8–4.6] 4.2 [3.8–4.8] 4.2 [3.8–4.6]

HCO3 (mmol/l) 26 [22–28] 24 [20–28] 26 [23–28]

WBC (103/mm3) 10.3 [7.5–14.4] 11.6 [7.9–16.9] 10.2 [7.4–14.1]

P/F ratio 281 [130–447] 174 [90–352] 312 [145–461]

Ht (%) 34.7 [30.4–39] 33.8 [29.8–38] 34.8 [30.5–39.1]

Urea (mmol/l) 20 [14–31] 28 [18–46] 19 [13–29]

Bilirubine (mg/dl) 0.6 [0.4–1] 0.7 [0.4–1.5] 0.6 [0.4–0.9]

Hospital LOS (days) 8 [4–14] 9 [4–17] 8 [4–14]

ICU death (%) 1,978 (8.1%) 1,978 (65.9% -

Hospital death (%) 3,002 (12.2%) - -
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Table 2

Observed versus predicted hospital mortality.

Observed hospital death (%) 3002 (12.2%)

Mortality prediction (mean [IQR]):

SOFA 0.12 [0.05–0.15]

SAPS II original version 0.30 [0.08–0.48]

SAPS II refitted 0.12 [0.03–0.16]

APACHE II refitted 0.12 [0.03–0.16]

Super Learner 1 0.12 [0.02–0.16]

Super Learner 2 0.13 [0.01–0.19]
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Table 4

Illustration ofmortality prediction scores obtained from the SAPS II, APACHE II and SICULA algorithms for 

three different patient profiles.

Patient 1: Haemorrhagic shock Patient 2: Medical Sepsis Patient 3: Scheduled high-risk surgery

Age 40 80 80

Heart rate 120 100 100

Systolic BP 95 85 100

GCS 8 14 15

Temperature 35.5 38 35

Urine output 700 700 1200

PaO2/FiO2 300 200 300

Serum urea 7 10 7

WBC 9 19 14

Potassium 4.0 4.8 4.0

Sodium 142 142 142

Bicarbonates 18 18 22

Hematocrit 25% 35% 35%

Bilirubin 0.8 0.8 0.8

Chronic diseases None None Metastatic cancer

Type of admission Unscheduled surgery – Trauma Medical Scheduled surgery

Mortality prediction:

SAPS II 46.1% 41.5% 21.3%

APACHE II 32.2% 23.5% 26.2%

SICULA 29.4% 29.9% 28.7%
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