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Abstract

Traditionally, scientific research has focused on studying individual events, such as single 

mutations, gene function or the effect of the manipulation of one protein on a biological 

phenotype. A range of technologies, combined with the ability to develop robust and predictive 

mathematical models, is beginning to provide information that will enable a holistic view of how 

the genomic and epigenetic aberrations in cancer cells can alter the homeostasis of signalling 

networks within these cells, between cancer cells and the local microenvironment, at the organ and 

organism level. This systems biology process needs to be integrated with an iterative approach 

wherein hypotheses and predictions that arise from modelling are refined and constrained by 

experimental evaluation. Systems biology approaches will be vital for developing and 

implementing effective strategies to deliver personalized cancer therapy. Specifically, these 

approaches will be important to select those patients most likely to benefit from targeted therapies 

as well as for the development and implementation of rational combinatorial therapies. Systems 

biology can help to increase therapy efficacy or bypass the emergence of resistance, thus 

converting the current (often short term) effects of targeted therapies into durable responses, 

ultimately to improve quality of life and provide a cure.

To ensure the survival of the organism, millions of signals are sent and received every 

second between cells, tissues, or organs and the external environment, and they are 

integrated into responses at multiple levels and scales in the body. Robust homeostatic 

mechanisms must be in place to fine-tune responses and, in particular, allow the organism to 

deal with potentially toxic environmental perturbations, such as those derived from 

pathogens, food, air (tobacco smoke, diesel fumes), or drugs. These mechanisms must also 

be resistant to the effects of spontaneous somatic mutations and the many germline 

mutations that ultimately alter the biological function of proteins.

In a cancer cell, genomic and epigenetic deregulation results in marked disruption of these 

homeostatic mechanisms.1,2 Developing an integrated view of the mechanisms by which 
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genomic and epigenetic aberrations disrupt normal cellular function to induce malignant 

transformation and tumour progression remains a tremendous challenge.

Advances in high-throughput, cost-effective, and tissue-sparing technologies that can 

analyse tumours at multiple levels, combined with high-speed computing resources, has 

facilitated a transition in the research paradigm toward an integrated systems biology 

approach.3–7 These new technologies have greatly expanded our ability to develop robust 

datasets and to integrate the data into a holistic view that is much more than the sum of the 

parts. Although the traditional research approach is instrumental in the acquisition of basic 

detailed knowledge of the function of specific genes and proteins, the appreciation of the 

wider cellular signalling networks between cells, stroma, organs, and the entire organism 

through an integrated ‘system biology’ approach is crucial for the development and 

implementation of effective anti-cancer strategies. Systems biology is a ‘data-driven’ 

science requiring large amounts of high-quality data, crossing multiple scales and concepts 

in order to build robust predictive models. Indeed, one of the key precepts of systems 

biology is that the complexity of the cell and its environment can be “modeled” and that 

these models can be both robust and predictive. It allows an unbiased analysis of the data 

and has the important advantage that it is also hypothesis deriving. Several aspect of clinical 

research can benefit from the use of systems biology, including understanding of (emergent) 

drug resistance, prediction of effective combination therapies and identification of predictive 

biomarkers to increase the response rate to (targeted) treatments. In this review we will 

cover an overview of systems biology approaches and resources that have been developed, 

focusing on some of the clinical and basic science studies that have benefitted from using a 

systems approach to uncover novel concepts and properties. We will also discuss some of 

the challenges and how this relatively young filed can make a positive impact on cancer.

Cancer systems biology

Cancer systems biology, therefore, represents the application of systems biology approaches 

to the analysis of how the intracellular networks of normal cells are perturbed during 

carcinogenesis to develop effective predictive models that can assist scientists and clinicians 

in the validations of new therapies and drugs. These perturbations are caused by the massive 

and ongoing genomic and epigenetic instability in tumors altering the functions of many 

different molecules and networks in a single cell and further complicated by the alterations 

in the interactions with the local environment as well as the individual as a whole through 

the tumorigenic process itself. Cancer systems biology approaches are therefore based on the 

use of computational and mathematical methods to decipher the complexity in cancer 

heterogeneity

Projects such as The Cancer Genome Atlas (TCGA)8, and the International Cancer 

Genomics Consortium (ICGC)9, that build on the success of the Human Genome Project, 

are providing the ‘parts list’ of cancer; while (cancer) systems biology will provide the 

regulatory logic.10 Multiple data types are used and integrated, including clinical data. Just 

as the spectrum of input cancer biology data is wide, so are the computational approaches 

used in cancer systems biology, including new mathematical and computational algorithms 

that reflect the dynamic interplay between experimental biology and the quantitative 
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sciences. A cancer systems biology approach can be applied at the level of an individual cell 

or to a tissue, to a patient with a primary tumour and possible metastases, or to any 

combination of these (Figure 1). This approach can integrate the molecular characteristics of 

tumours at different levels (DNA, RNA, protein, epigenetic, imaging) and different intervals 

(seconds vs. days) with multidisciplinary analysis. One of the major challenges to its 

success, besides the challenge posed by the heterogeneity of cancer per se, resides in 

acquiring high-quality data describing clinical characteristics, pathology, treatment, and 

outcomes and integrating the data into robust predictive models.

Modelling approaches tackling various aspects of cancer have been successful in predicting 

the behaviour of cancer cells and tissues in the context of drug response and angiogenesis, 

understanding stem cell heterogeneity, the integration of large omics data as well as 

modelling cellular behaviours at the tissue level.11–15 The urgency for the implementation of 

a successful cancer systems biology programme has been highlighted by the emergence of 

targeted therapies as cancer treatment. Although targeted therapies have many advantages 

owing to their ability to specifically target one process, the response rates have not as yet 

fulfilled their early promise and hype.16–19 The use of cancer systems biology and integrated 

network analyses has the potential to support the understanding of the relationship between 

molecular markers and response to (targeted) therapies, facilitating the identification of the 

subgroup of patients most likely to benefit from a particular therapy, or the identification of 

those combinations of therapies that will result in an increased efficacy or will be able to 

bypass drug resistance. Resistance to therapy remains the most frequent cause of treatment 

failure. A systems analysis of the molecular characteristics of non-responsive or resistant 

tumours is an exciting opportunity to elucidate mechanisms underlying resistance and to 

identify ways to overcome it (Figure 2).

Because of the extreme heterogeneity and genomic instability of cancer cells, one of the 

emerging challenges is to distinguish ‘driver’ aberrations, which directly alter the behaviour 

of the tumour, and thus represent potential targets or biomarkers, from ‘passenger’ 

aberrations that do not affect the cancer cell (and thus are not effective targets).20,21 It is 

important to emphasize that passenger aberrations can occur within cancer genes, those 

genes that clearly play a role in cancer pathophysiology, and that different aberrations within 

cancer genes can have distinct effects on cellular functions and response to targeted 

therapeutics. Systems-based computational methods have been useful in identifying low 

frequency mutations in impure and heterogenous samples, which is related directly to the 

correct identification of subclonal drivers and, therefore, our understanding of tumour 

progression and treatment resistance.22 Thus, a systems biology approach has the potential 

to provide the infrastructure to allow a more-efficient discrimination between drivers and 

passengers mutations.

Cancer systems biology resources

High-throughput technologies have been developed to enable comprehensive genomic 

analyses of mutations, rearrangements, copy number variations, and methylation at the 

cellular and tissue levels, as well as robust analysis of RNA and microRNA expression data, 

protein levels and metabolite levels.3,20,21,23–27 In parallel, predictive data-driven 
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mathematical and computational methods have been developed to analyse the large amounts 

of data arising from the new analysis platforms.28–33 Unfortunately, none of the platforms 

alone is sufficient to capture the complexity of changes in the genome of a cancer cell or to 

discriminate optimally between cancer driver and passenger mutations.34,35 In addition, all 

methods generate noise and have their own intrinsic weaknesses, thereby hampering 

interpretation. Beyond the previously mentioned problem of obtaining high-quality clinical 

and phenotypic data to be integrated with the ‘omics’ platforms, a major challenge will be 

the integration of data across the different platforms.

So far, the ability to integrate and interpret data across platforms has substantially lagged 

behind the ability to generate the data;36 however, integrative genomic studies can provide a 

new paradigm for the discovery of cancer aberrations and interactions, novel treatments, and 

resistance mechanisms. Large-scale projects have generated terabytes of ‘omics’ data that 

have been curated and made available to the international scientific community (Table 1). 

To integrate the data and present them in a way that biological translations can be 

generated,37 large programs have developed novel computational tools and databases of 

interactions that are accessible to the larger community (table 1). Furthermore, independent 

of these large-scale projects, many online resources contain annotated high-throughput data, 

computing tools and visualization, databases of interaction and quantitative biological 

information (Table 1).

The existing systems biology resources contain different types of data that are synergistic 

and complementary and form the spokes of the cancer systems biology wheel (Fig. 3). On 

one side, TCGA, ICGC, and Stand Up to Cancer projects have focused on the collection of 

tumour samples and on the characterization of their molecular profiles together with data on 

patient outcomes. On the other side, CCLE, LINCS, and ICBP projects have focused on 

obtaining a detailed molecular characterization of the responses of several cancer cell lines 

to multiple perturbations. Online databases and computing resources contain detailed 

information on genes, proteins, and molecular interactions as well as online computing 

software and tools to visualize and analyze large datasets (Table 1).

The data collection and computing efforts through many programmes have provided a rich 

resource for the implementation of cancer systems biology and have supported the 

progression of the field. Moreover, adapting new efforts, such as ‘crowd sourcing’ to large 

data analysis, have already provided an exciting and novel way to analyse large system-level 

biological data.38,39 Projects such as the Dialogue for Reverse Engineering Assessments and 

Methods (DREAM challenge), have made ‘big data’, collected through efforts such as the 

ICBP, available to the international community of computational biologists and 

mathematicians (Table 1).

Cancer systems biology approaches

In spite of extensive research investigating and uncovering many important aspects of 

cancer biology, we are still far from an integrated understanding of how the genomic and 

epigenetic abnormalities that occur in cancer cells mediate their functional consequences. 

Many groups have assessed large clinical cohorts by measuring one molecular data type 
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(such as gene expression, mutation, single-nucleotide polymorphism) in relation to a 

measurable outcome to derive correlations between a particular molecular event and disease 

subtypes. These observational studies are important, but they are insufficient to demonstrate 

causality. Furthermore, the interactions between genes, proteins, and metabolites are 

coordinated in intracellular and intercellular networks to enable effective interaction with the 

microenvironment and with all organ systems in our body, necessitating both the acquisition 

and integration of data across multiple levels. The cellular networks that are perturbed in 

cancer are, in general, the same cellular pathways used by normal cells to perceive and 

respond to the environment, although not always with the same interactions or spatio-

temporal dynamics, owing to the rewiring of the networks as a result of molecular 

aberrations. Furthermore, in some cases, gene mutations or fusions can result in new 

functions that are not mediated by the parental molecule. These neomorphic functions 

engendered by genomic aberrations in cancer cells are particularly difficult to deconvolute 

and integrate into cellular pathways and networks. Because aberrations can occur at various 

levels and lead to changes in multiple parts of a signalling network, integrating multiple data 

types from the same tumour becomes necessary in order to derive a more global or 

‘systemic’ understanding of the molecular drivers of the cancer.

The TCGA Research Network has developed perhaps the most comprehensive data set 

encompassing exon and whole-genome sequencing data combined with analysis of DNA 

copy number, mRNA, microRNA, promoter methylation and protein expression.8 In each 

tumour lineage examined, new observations have been reported. For example, the genomic 

analysis of high-grade serous ovarian cancer in the North American and European 

populations has revealed the existence of TP53 mutations across virtually all tumours and 

the dominant effect of DNA copy number aberrations, Furthermore, this analysis identified 

specific microRNA, mRNA, or methylation subtypes and the activation of the NOTCH and 

FOXM1 pathways as key features of ovarian carcinoma.25 Similar analyses in breast cancer 

increased our understanding of previously identified subsets, highlighted the recurrence of 

mutations in TP53, PIK3CA, and GATA3 genes as well as specific mutations within 

subtypes, such as PIK3CA in luminal tumours, and led to the identification of new subtypes 

of breast cancer that were not obvious from previous analyses.3 Interestingly, integrated 

analyses identified dominant signalling pathways driven by HER2 or EGFR activity.3 based 

on the downstream phosphorylation of the EGFR HER2 signaling network stressing the 

differential treatment of patients within this subgroup moving forward. In endometrial, 

colon, and rectal cancer, hypermutated tumours seemed to be a result of microsatellite 

instability, with a new type of instability driven by pole gene mutations resulting in 

ultramutated tumors.24 Integrated analyses also revealed MYC-directed activation in 

aggressive colorectal carcinoma.24 The use of this type of analysis in clear-cell renal cell 

carcinoma, identified cellular oxygen sensing, chromatin remodeling/histone methylation, 

and metabolic shifts in the tricarboxylic acid (TCA) cycle as key processes in this 

pathology.20 Of note, integrated analyses across different cancer types highlighted some 

striking similarities in terms of molecular characteristics for basal-like breast cancer, high-

grade serous ovarian cancer, and serous endometrial cancer.21 Systems approaches 

integrating data across multiple diseases in a ‘pan cancer’ effort aimed at improving our 

knowledge of the molecular pathogenesis of cancer whereby data is analyzed across tumor 
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types to identify molecular characteristics common to a range of cancer types versus disease 

sub-types. The greatest opportunities associated with such analysis are only beginning to 

emerge. The multiplatform data sets on highly characterized patient samples provide the 

information necessary for the development of robust and predictive models. However, the 

importance of an iterative approach wherein hypotheses and predictions arising from the 

modelling are refined and constrained by experimental evaluation must be emphasized. In 

addition to such large consortial efforts, several groups have employed systems approaches 

using novel computational methods to integrate different data types to elicit novel principles. 

Carro et al.,11 using gene expression and network approaches, identified key transcriptional 

factors, such as CEBP and Stat3, as master regulators of the mesenchymal transformation in 

glioblastoma. Importantly, they demonstrated that the expression of these transcription 

factors could predict poor clinical outcome. In another approach the integration of protein 

and phosphoproteomic interactions with transcription factor-DNA binding data led to the 

discovery of novel features of cellular responses to stress and growth factors.12,29 Similarly, 

systems-level analyses of proteomic and metabolomic data revealed novel regulatory 

functions between these two important cellular networks that would not have been achieved 

otherwise.40 Furthermore, the integration, through network analysis, of mRNA expression 

data with proteomic, phosphoproteomic and clinical outcomes data, allowed the 

identification of key regulators of EGFR signalling and correlated these events with patient 

survival.41 Whole-genome sequencing and proteomics were also used to identify new driver 

genes in endometrial cancer and to identify a novel functional association between ARID1A 

and PI3K pathway activity.42

Systems approaches for tissue complexity

In any tissue in the body, there is extensive interaction between cells within the organ and 

the microenvironment, giving rise to an additional layer of complexity whereby multiple 

networks must work together cohesively. These same interactions occur between the tumour 

and its microenvironment, regulating the process of tumorigenesis. Many of these 

interactions are contextual, with markedly different effects at different stages of tumour 

development. For example, it is clear that TGFβ in the tumour microenvironment can 

mediate both tumour growth and inhibition. However, an understanding of the mechanisms 

underlying these disparate processes has remained elusive. This complex functionality may 

in fact only be solved via a systems biology approach. The molecular aberrations in cancer 

can significantly alter the normal dynamics of (neo)vascularisation and hypoxia response.. 

Furthermore, the role of the microenvironment in tumour dormancy and evading therapeutic 

interventions that allows oestrogen receptor-positive breast cancer to recur years later 

remains elusive.

Owing to the complexity of the tumour microenvironment interactions, many other aspects 

of cancer biology have not been explained by traditional scientific approaches and can 

benefit by the integrated analysis supported by system biology.2,43,44 Imaging of cells and 

their interactions with the extracellular environment can provide the high-quality data 

needed for the development of predictive models. To distinguish a stromal signature from a 

tumour signature and to understand the influence of different (metastatic) 

microenvironments, or how stromal expression changes can influence tumour progression, 

Werner et al. Page 6

Nat Rev Clin Oncol. Author manuscript; available in PMC 2015 February 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



several strategies have been used. An extensive analysis of gene-expression patterns in 

primary and metastatic tumours, applying novel statistical analytical methods, led to the 

discovery of genes that were reprogrammed in brain metastases, but not in other metastatic 

sites. This reprogramming event was a function of the local microenvironment, likely 

regulated by promoter methylation.45 Moreover, Finak et al.46 purified tumour stromal cells 

by laser capture microdissection and compared gene-expression data of the tumour stroma to 

healthy stroma, and developed a stromal signature with clear prognostic impact independent 

of tumour subtypes. Thus, using systems-based methods, several groups have shown that the 

stroma has an important interplay with the tumour and has clear effects on disease 

progression and possibly also on effective treatment options. Developing computational 

models to fit the complex dynamics of the cellular microenvironment can provide potential 

hypotheses to be tested experimentally and aid in the interpretation of the results. This 

iterative approach provides the basis for a truly integrative modelling and experimental 

platform. Several experimental approaches are well adapted to feed data for this high-

complexity integrative platform.

Three-dimensional culture systems provide a potential approach to more realistically mimic 

the in vivo situation. Multiple articles have shown that in contrast to 2D culture, cells grown 

in 3D respond differently to chemotherapy and radiotherapy,47,48 and also have markedly 

different gene-expression patterns related to the extracellular matrix and cell adhesion.49 

Moreover, microfluidic systems, where tissues and even multiple different cell lineages can 

be studied in relatively high-throughput (micro)models, provide another experimental 

approach to support the modelling of the interactions between the tumour and 

microenvironment.50 These approaches have demonstrated critical environmental and 

spatial aspects of cellular responses within the tumour microenviroment.51,52,53,54 These in 

vitro approaches, therefore, have the potential to provide tractable experimental systems to 

develop hypotheses to test in vivo and also to experimentally test mathematical models 

developed from in vivo studies. Integrating in vitro and in vivo modeling approaches can 

play a major role in understanding how spatial orientation and interactions with the 

microenvironment can affect diverse tumour behaviour.

Response to (targeted) treatment and tumor progression are intrinsically linked to 

immunological pathways. At a single platform level, the complex interplay from the 

multitude of players cannot be completely captured. Using a pathway recognition algorithm 

and multilevel data from TCGA, Kristensen et al.55 showed that tumors can be stratified by 

their immune signatures. This stratification is shown to be relevant for patient survival and 

targeted treatment response. Further underlining the importance of the relationship between 

the tumor and the microenvironment, multiscale analysis showed the tumor can recreate its 

immune environment throughout cancer progression56.

Several investigators have developed modelling approaches to study the relationship 

between intracellular pathways and the behaviour of cells at the tissue level.57 Recently, 

some researchers modelled myc and p53 pathways during the proliferation of lymphoma 

cells in the context of surrounding tissue, growth factors, and angiogenesis.58 In addition, 

models considering the effect of cell division rates as well as interactions between cancer 

cells and the microenvironment predicted that the order in which targeted and chemotherapy 
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approaches are delivered, is important to optimizing benefit whereby the proliferation rates 

and migration capabilities of different cell types could alter the tissue level response to 

therapy.59 Critically, these models will help to predict how effects at small intervals within 

the cell relate to long-term effects observed at the tissue or whole body level. Mathematical 

models of the spatio-temporal heterogeneity of the extracellular matrix have provided 

unexpected insights into how, for example, the urokinase plasminogen activation system 

impacts on cell invasion.60 The aforementioned studies primarily used ‘omics’ data derived 

from analyses of tumour lysates without the consideration of spatial orientation, one of the 

key aspects of the tumour microenvironment is spatial constraints. To incorporate spatial 

information, imaging of tumour cells and their environment is of paramount importance, 

particularly in the context of angiogenesis. The differential imaging of blood vessels and cell 

types using fluorescent probes as well as intravital imaging of tumours in animal models and 

cell cultures are techniques that provide the data necessary to develop ‘tissue-level’ 

computational models that can incorporate all these facets. For example, two predictive 

models for angiogenesis and cell-cell interactions have been developed, by incorporating 

imaging data, in order to study in vivo aspects of the tumour biology and drug response, 

respectively.70,71 Furthermore, Haeno et al.61 used a dissemination dynamics model 

(including well-annotated patient data) to predict the type and sequential order of treatments 

most likely to benefit patients with pancreatic cancer. This model can have important 

clinical implications for this disease that has a notoriously poor prognosis. Importantly, Kim 

and colleagues highlighted the applicability and individual benefits of different types of 

modelling in combination with in vitro and patient data to study spatio temporal drug 

distribution within the tumor to optimize drug selection and delivery.62

Systems approaches for cell heterogeneity

Cancer stem-like cells, also known as tumour-initiating cells, have been intensely studied in 

recent years. These studies have been driven in part by the discovery that the presence of 

cancer stem-like cells likely contributes to drug resistance and poor outcome.63,64 

Interestingly, characteristics previously attributed to epithelial-mesenchymal transition 

(EMT), including EMT markers and mesenchymal morphology, can contribute to or be 

associated with a cancer stem cell-like state and drug resistance.65 The ability to transition in 

and out of an EMT-like state is critical for a cell to initiate and complete the metastatic 

process.66,67 Systems-based analysis of prostate cancer identified a molecular signature 

associated with patient outcome.68 Moreover, the results from this study highlighted an 

extensive plasticity of basal cells, supporting a model in which cells of origin can generate 

distinct molecular subtypes of prostate cancer.68

Different models of the spatiotemporal dynamics of stem cells in both healthy cells and 

tumour cells have been published to evaluate normal olfactory epithelium,69 bowel crypts,70 

and solid tumours71 in an attempt to understand the regulatory strategies of cell renewal. 

These models give rise to the hypothesis that stem cells are not cell types as such, but rather 

a behavioural state imposed on the cell by feedback mechanisms. Such mechanisms are still 

in place in tumours, although they are susceptible to perturbations, including those induced 

by treatment. Changes in tumour size can alter cell proliferation and death by disturbing the 
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feedback mechanisms and shift the balance towards cell renewal. These models could help 

in predicting which approaches might successfully shrink the tumour and benefit patients.71

Intratumoural and intertumoural heterogeneity contribute to patient prognosis and predicts 

response to therapy.67,72 Intratumoural heterogeneity may represent the greatest challenge to 

deliver effective personalized cancer therapy. Tyson et al.73 developed novel automated 

tools to capture and quantitate multiplexed imaging features to develop predictive models of 

the heterogeneity of response of individual cells to perturbations and were able to show 

heterogeneous cell fates upon exposure to anti-proliferative drugs. In another study, 

Yankeelov et al.,74 used quantitative tumour imaging methods and developed a model of 

interactions between cancer cells, stroma and immune cells, vascularisation and the 

extracellular matrix, that was able to predict treatment response and tumour progression. 

These modeling approaches have been very useful in enabling us to understand cellular 

heterogeneity and response to perturbations and lay the foundation of how we can use such 

information to develop novel methods to treat tumors which are inherently heterogeneous.

Systems approaches for targeted therapy

One of the continual challenges in the use of targeted therapy is the low response rates 

observed in the clinical setting.16–19 In many cancer systems biology efforts, novel 

computational and mathematical methods are used to integrate and analyse patients’ 

molecular data to identify optimal markers and targets. Recent efforts focusing on colorectal 

and liver cancers have integrated whole-genome expression data with patient’s outcomes to 

classify patients and their therapy responses according to gene-expression patterns.75 Using 

unbiased analysis of these datasets, the investigators identified specific expression patterns 

and pathways that were associated to specific mutations in the tumour, and which altered 

drug response in the cancer cells.75 Furthermore, extensive computational analysis of a large 

metabolic network revealed key regulatory nodes, such as oxidative phosphorylation, 

glycolysis and citric acid cycle that could serve as optimal targets for therapy.76,77 Several 

groups have also integrated phosphoproteomic time-course data of cell line responses to 

growth factors and perturbations in epithelial tumours, developing predictive data-driven 

models to identify rational targets and combinations of drugs for effective therapy.13,33,78,79 

In diseases with limited therapeutic options (such as pancreatic cancer) an extensive systems 

biology approach integrating gene-expression data from primary pancreatic ductal 

adenocarcinomas and from human or murine pancreatic adenocarcinoma cell lines, revealed 

novel classifiers, predicted potential subtype-specific therapies, and identified non-

responders.80

Beyond pancreatic cancer, an area of intense research in terms of system biology has been 

breast cancer. Much work has in fact focused on molecular phenotypes and drug responses 

in breast cancer. These efforts used several systems-level approaches, including large 

‘omics’ data acquisition, analysis of patients and responses to clinically approved drugs as 

well as large panels of cell line-based assays.26,40,81–85 Computational modeling and 

analysis of perturbation screens using non-coding RNA have also proven useful in defining 

network topologies and predicting combinations of targets based on mechanistic functions of 

subnetworks.7,86–88
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Approaches for drug resistance

As mentioned before, drug resistance is one of the major challenges to effective cancer-

treatments. Integration of thousands of ‘omics’ datapoints acquired from sensitive and 

resistant tumours into a systems-based therapeutic strategy has been shown to be a powerful 

tool for tackling resistance.75,89 For example., models of dynamic changes in signalling 

networks of receptor tyrosine kinases (RTK) families have facilitated the classification of 

RTKs and their network activation and led to the identification of points of intervention to 

delay or overcome drug resistance.78,90 Furthermore, Komurov et al.,91 used a novel 

network-based analysis of gene expression and proteomics coupled to ErbB2-positive 

patient survival data, and showed that in breast tumours with acquired resistance to 

lapatinib, the drug was still able to block EGFR/ErbB2 signalling, but that upregulation of 

glucose metabolism, unfolded protein response, and endoplasmic reticulum (ER) stress 

pathways mitigated the ability of lapatinib to induce cell death, suggesting that coordinated 

targeting of metabolic networks and signalling networks has the potential to improve patient 

outcomes.91,92 Beckman et al.93 illustrated that the potential effects on drug response and 

resistance acquisition induced by single cell heterogeneity and cellular dynamics can be 

mathematically modeled and, therefore, should be included in personalized treatment 

strategies. They demonstrated that a strategy targeting all cancer subpopulations including 

the precursors of resistant clones, rather than treatment targeting the clone predominantly 

present which therefore initially leads to the largest reduction in tumour size, may be more 

effective. As such counterintuitive strategies may be of advantage for patient outcome. 

Lastly, integrating patient data with murine models has proven a powerful systems approach 

to identify mechanisms to overcome resistance to androgen therapy in prostate cancers.94 

All these different studies highlight how using systems biology approaches can improve 

targeted therapy and help to overcome drug resistance.

With the aim of improving effective combinatorial drug prediction in cancer, mathematical 

modelling combined with high-density time-dependent measurements showed that 

modulation of oncogenic pathways through sequential application of drug combinations is 

possible and can render cancer cells much more susceptible to the drugs, thus significantly 

increasing the efficacy of treatment.95 Context-specific metabolic modelling algorithms 

demonstrated feasibility in predicting drug targets and phenotypic tumour response, 

including off-target effects, making this an effective systems approach for the development 

of new (combinatorial) drugs therapy.96 For example, STK38 (Serine-threonine kinase 38,) 

was identified as an upstream regulator of MYC activity through a model of network 

dynamics(modulator inference by network dynamics (MINDy) Algorithm) aimed at 

predicting transcription factor modulators, and experimental manipulation of STK38 

demonstrated inhibition of tumour growth in MYC-dependent tumors in vivo; and thus a 

potential novel means to target these tumours.97

Cancer systems biology has made an impact on drug discovery and development from the 

identification of targets up to the clinical trial stage. Computational analysis of the ErbB 

family network has revealed ErbB3 as a key node of ligand-induced ErbB2 activation.98 

These results facilitated the engineering of a bispecific ErbB3 antibody, MM-111, that 

inhibits ligand-induced receptor activation in an ErbB2-overexpressed environment and as 
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such bypasses the tumour ErbB3 escape route that is often activated in drug resistance.99 

Computational modelling together with pharmacodynamic and tumour growth algorithms 

aimed at identifying optimal drug combinations (with MM-111) to prevent drug 

resistance.100 Of note, the MM-111 antibody, a drug that would not likely have been 

developed without a systems biology approach, is currently in clinical development.

The examples described in this Review highlight the potential of combining multiscale high-

throughput data analysis with mathematical modelling to identify novel and sometimes 

unexpected principles. Importantly, a number of these models are being used to develop 

selection approaches for implementation into clinical trials.

Data sharing

Although large-scale collections of data is inherently associated with risks of errors, making 

these data sets available to the cancer research community and the public enables a 

community or crowdsourcing approach to data analysis as well as data forensics, facilitating 

the recognition of possible errors.101–103 Bilal et al.101 have proposed competition-based 

modelling using large datasets with omics and clinical information to improve survival 

predictions among patients with breast cancer. The fact that the data sets are available to the 

public, allows the models to evolve through interaction with the community and prevents the 

so-called ‘self-assessment trap’, where model building and testing are carried out within the 

same group with the risk of reporting (too) favourable results. A different crowdsourcing 

research study focused on developing prognostic models for breast cancer using genome-

scale data (gene expression, copy number analysis, and clinical variables), and showed the 

approach to be capable of generating prognostic models of at least equal quality to 

previously reported studies,110 and consistent across multiple independent evaluations.38,39 

Much as there have been different experimental approaches to understand cancer there have 

also been many different modeling approaches that have been developed. The modeling 

approaches utilise different algorithms and these are largely dependent on the type of data 

that has been available and the questions that are being answered

Conclusions and future directions

The era in which cancer was treated solely according to the organ of origin is coming to an 

end, leaving space for a greater understanding of the complex interactions between the 

genomic aberrations present in tumour cells, the intrinsic gene-expression patterns of the 

tissue of origin, and the tumour microenvironment (Figure 2). Cancer systems biology has 

the potential to usher in an era in which the effects of molecular aberrations and interactions 

within networks are integrated with molecular knowledge and pharmacogenomics. 

Improvements in our ability to image and measure quantitatively spatial localization of 

network activities and incorporate spatio-temporal information acquired in patients with 

‘omics’ data and computational analysis are providing the right platform for systems biology 

to impact on patient outcomes. Cancer systems biology approaches can improve our 

understanding of how tumour heterogeneity, neovascularization, immune response, and 

changes in the tumour and its microenvironment over time and in response to therapeutic 

interventions contribute to treatment response. Cancer systems biology is a young field and 
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clinical studies have not yet been reported based on systems approaches, nevertheless 

systems biology has already shown a great potential and it is clear that will have a major role 

in the further development of personalized therapy. In our opinion, the greatest opportunity 

for cancer systems biology in the near future is to elicit emergent mechanisms of resistance 

and identify rational combination approaches to prevent or bypass drug resistance. It will 

also be important to incorporate side effects and toxicities in the models. In this way, 

systems approaches will contribute to the development of the next generation of clinical 

trials and cancer therapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Review criteria

A search for original articles was performed in MEDLINE and PubMed, with the search 

terms ‘integrative/systematic analysis’, ‘computational/mathematical modeling’, 

‘multidimensional networks’, ‘genetic dynamics’, ‘cellular heterogeneity’, alone and in 

combination; with a strong emphasis on literature published in the last 3 years. All 

articles identified were English-language, full-text papers. We also searched the reference 

lists of identified articles for further relevant papers.
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Key points

• Systems biology and its application to cancer research and therapy

• Integration of multiple omics data types to determine systems properties that can 

exploited for cancer therapy

• Integration of computational and mathematical models with patient and lab-

based data to identify and target novel emergent properties

• Use of systems biology approaches to make clinical impact in the future of 

cancer personalized therapy
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Figure 1. Application of cancer systems biology to decipher complex interactions in multiple 
dimensions
This figure shows the complexity of interactions between different molecular networks 

within the cell that regulate the multitude of cellular functions. The intracellular machinery 

must coordinate with surrounding cells and the extracellular microenvironment to achieve 

homeostasis. Working within the body as a whole, each of these physiologically functional 

units is tightly coupled and regulated. Accumulated aberrations at the molecular level can 

decouple any one of these complex interactions and lead to a neoplastic phenotype. The 

promise of cancer systems biology is the ability to integrate these multi-scale characteristics 

into cohesive predictive models that can uncover emergent properties to be used in making 

cancer history.
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Figure 2. Integrating tumour molecular characteristics with pharmacogenomics for precision
Cancer systems biology can bridge the vast amount of molecular characteristics of the 

tumour with pharmacogenomics to deliver on the promise of personalized therapy. The use 

of systems models to integrate patient specific data sets with drug response profiles can 

enable the prediction of effective patient-specific therapeutic options.
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Table 1

Project Website

TCGA (The Cancer Genome Project) http://cancergenome.nih.gov/

 TCGA performs comprehensive genomic characterisation and analysis of multiple cancer types to drive the understanding of the molecular 
basis of cancer

ICGC (International Cancer Genome Consortium) http://icgc.org/

 ICGC is focused on a comprehensive understanding of the genomic abnormalities in cancer

SU2C (Stand Up to Cancer) http://www.standup2cancer.org/

 SU2C aims to drive innovative cancer research through interdisciplinary science

LINCS (Library of Integrated Network-based Cellular 
Signatures)

http://www.lincsproject.org/

 LINCS aims to enhance a network-based understanding of biology, cataloging changes in gene expression and other cellular processes in 
response to perturbations

Sanger Institute databases http://www.sanger.ac.uk/resources/databases

 The institute has developed a suite of databases to manage and interpret large-scale data

cBioPortal for Cancer Genomics http://www.cbioportal.org/public-portal/

 CBIO is a platform to visualise, analyse and download large scale genomic data sets

The Human Protein Atlas http://www.proteinatlas.org/

 The atlas aims to explore the human proteome systematically through antibody-based proteomics

The Cancer proteome atlas http://app1.bioinformatics.mdanderson.org/tcpa/_design/basic/index.html

 The atlas aims to provide a comprehensive resource for accessing, visualising, and analysing cancer functional proteomics

TCGA data portal https://tcga-data.nci.nih.gov/tcga/

 A platform for researchers to search, download, and analyse data sets generated by TCGA

Cytoscape http://www.cytoscape.org/

 Cytoscope is an open source platform for visualising complex networks and integrating the networks with other data types

Vcell http://www.nrcam.uchc.edu/

 The Virtual cell is a computational platform to model and simulate cell biology

COPASI http://www.copasi.org/tiki-view_articles.php

 COPASI is a platform to simulate and analyse networks and their dynamics

Netwalker https://netwalkersuite.org/

 Netwalker is a platform to assist in functional analyses of large-scale genomics datasets focused on molecular networks

SageBio http://sagebase.org/

 SageBio creates platforms to enable collaboration on data and data sharing.

 They also run challenges on complex biomedical problems

STRING http://string-db.org/

 String is a database of known and predicted physical and functional protein interactions
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Project Website

GeneCards http://www.genecards.org/

 GeneCards provides a database of human genes with comprehensive information on all known and predicted human genes.

Pathway Commons http://www.pathwaycommons.org/about/

 Pathway Commons is a portal to access biological pathway information collected from public pathway databases

DREAM (Dialogue for Reverse Engineering Assessments 
and Methods)

http://www.the-dream-project.org/

 DREAM aims to be a catalyser for the interaction between experiment and theory focused on cellular network inference and quantitative 
model building

ICBP (Integrated Cancer Biology Program) http://icbp.nci.nih.gov/

 ICBP develops and implements computational models of cancer processes
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