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Abstract

Attention-deficit hyperactivity disorder (ADHD) is a complex polygenic disorder. This study 

aimed to discover common and rare DNA variants associated with ADHD in a large homogeneous 

Han Chinese ADHD case–control sample. The sample comprised 1,040 cases and 963 controls. 

All cases met DSM-IV ADHD diagnostic criteria. We used the Affymetrix6.0 array to assay both 

single nucleotide polymorphisms (SNPs) and copy number variants (CNVs). Genome-wide 

association analyses were performed using PLINK. SNP-heritability and SNP-genetic correlations 

with ADHD in Caucasians were estimated with genome-wide complex trait analysis (GCTA). 
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Pathway analyses were performed using the Interval enRICHment Test (INRICH), the Disease 

Association Protein–Protein Link Evaluator (DAPPLE), and the Genomic Regions Enrichment of 

Annotations Tool (GREAT). We did not find genome-wide significance for single SNPs but did 

find an increased burden of large, rare CNVs in the ADHD sample (P = 0.038). SNP-heritability 

was estimated to be 0.42 (standard error, 0.13, P = 0.0017) and the SNP-genetic correlation with 

European Ancestry ADHD samples was 0.39 (SE 0.15, P = 0.0072). The INRICH, DAPPLE, and 

GREAT analyses implicated several gene ontology cellular components, including neuron 

projections and synaptic components, which are consistent with a neurodevelopmental 

pathophysiology for ADHD. This study suggested the genetic architecture of ADHD comprises 

both common and rare variants. Some common causal variants are likely to be shared between 

Han Chinese and Caucasians. Complex neurodevelopmental networks may underlie ADHD's 

etiology.
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INTRODUCTION

Attention-deficit hyperactivity disorder (ADHD) is a common behavioral disorder of 

childhood, affecting 3–6% of school-age children around the world [Faraone et al., 2003]. It 

has been viewed as a polygenic, multifactorial disorder. Both common and rare DNA 

variants contribute to its complex etiology [Poelmans et al., 2011; Stergiakouli et al., 2012; 

Williams et al., 2012].

Genome-wide association studies (GWAS) are hypothesis-free, interrogate all genes and 

regulatory regions of the genome and have the potential to discover novel risk genes. The 

first GWAS of ADHD performed by Neale et al. [2008] analyzed 438,784 SNPs in 909 

Caucasian ADHD trios. Although none of the SNP association tests achieved genome-wide 

significance, the top-25 SNPs (based on P-value) implicated some interesting candidate 

genes, including cytoskeleton-organizer DCLK1, extracellular matrix component SPOCK3, 

cell-cell adhesion protein CDH13, as well as two potassium-channel regulators KCNIP1 and 

KCNIP4. Using the same sample set, Lasky-Su et al. [2008] performed a quantitative 

genome-wide association analysis of ADHD symptoms. A high percentage (30/32, 94%) 

genes hit by the 58 SNPs with P values less than 10−5 were brain-expressed, including five 

related to transcription factors.

Meanwhile, Lesch et al. [2008] used independent DNA pools from343 ADHD-affected 

adults and 304 controls for association analyses of the ADHD diagnostic phenotype. Of the 

30 top-hit genes, seven were involved in cell adhesion/migration/neurogenesis 

(e.g., CDH13, ASTN2, CSMD2, ITGAE, ITGA11, CDH23, SDK2), two regulated synaptic plasticity 

(e.g., CTNNA2, KALRN), three were transcription factors (MYT1L, TFEB, SUPT3H), and 

one coded for a potassium channel (KCNC1) [Lesch et al., 2008].

Neale et al. [2010a] performed case-control analyses in896 cases with DSM-IV ADHD and 

2,455 controls. A consensus dataset of 1,033,244 SNPs was imputed (using the HapMap 

Yang et al. Page 2

Am J Med Genet B Neuropsychiatr Genet. Author manuscript; available in PMC 2015 February 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Phase III European CEU and TSI samples as the reference). No genome-wide significant 

associations were found. The most significant results implicated PRKG1, FLNC, TCERG1L, 

PPM1H, NXPH1, CDH13, HK1, and HKDC1. Combining data from four ADHD GWAS 

projects, Neale et al. [2010b] performed a meta-analysis in a sample of 2,064 trios, 896 

cases, and 2,455 controls. Even with this much larger sample size, no genome-wide 

significant associations were found. One reason for this isthat the samples were 

underpowered to estimate effect sizes of common variants of small effect. This has been 

confirmed by analyses that estimate the variance contributed by common variants all 

together. Genome-wide complex trait analysis (GCTA) [Yang et al., 2010, 2011; Lee et al., 

2011] applied to ADHD samples (4,163 cases and 12, 040 controls) from the Psychiatric 

Genomics Consortium, estimated SNP chip heritability to be 0.28 (SE 0.02; Psychiatric 

GWAS Consortium ADHD Group. Paper submitted for publication).

Copy number variations (CNVs) have also been implicated in the etiology of ADHD. Elia et 

al. [2010] found that inherited rare CNVs in an ADHD sample were significantly enriched 

for genes known to be important for psychological and neurological functions, including 

learning, behavior, synaptic transmission, and central nervous system development. 

Williams et al. [Williams et al., 2010, 2012] found an increased burden of large, rare CNVs 

and reported excess of chromosome 16p13.11 and 15q13.3duplications and an overlap 

between CNVs reported for ADHD and autism spectrum disorders. Elia et al. [2012] further 

showed that CNVs affecting the metabotropic glutamate receptor genes GRM5, GRM7, 

GRM8, and GRM1were enriched across several independent samples.

In summary, although ADHD is acknowledged to be a genetic disorder, GWAS has not 

revealed any common SNP variants with genome-wide significance. This study used both 

common and rare variants, using polygenic and pathway analyses, to evaluate the genetic 

etiology of ADHD in a large homogenous Han Chinese case–control sample.

MATERIALS AND METHODS

Participants

One thousand and forty ADHD cases (876 boys, 84.2%) aged between 6 and 16 years 

[average (9.7 ± 2.4) years] were recruited from the Child and Adolescent Psychiatric 

Outpatient Department of the Sixth Hospital, Peking University. All cases met DSM-IV 

ADHD diagnostic criteria. A clinical diagnosis was first made by a senior child and 

adolescent psychiatrist based on the parent and teacher completed ADHD Rating Scale-IV 

(ADHD-RS-IV), and then confirmed by semi-structured interview with the parents and child 

using the Chinese version of the Clinical Diagnostic Interview Scale [Barkley, 1998; Yang 

et al., 2004]. Those with major neurological disorders (e.g., epilepsy), schizophrenia, 

pervasive development disorder, and mental retardation (IQ < 70) were excluded. The 

sample consists of 680 (65.4%) ADHD combined type and 360 (34.6%) inattentive type. 

The comorbidities included oppositional defiant disorder (ODD) in 380 patients (36.5%), 

conduct disorder in 58 (5.6%), and tic disorder in 167 (16.1%).

Nine hundred sixty three controls were students from local elementary schools, healthy 

blood donors from the Blood Center of the First Hospital, Peking University, and healthy 
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volunteers from our institute. Six hundred and eight were males (63.1%). The average age 

was (15.4 ± 8.8) years. Parents or adults themselves completed the ADHD Rating Scale-IV 

(ADHD RS-IV) to exclude ADHD. Major psychiatric disorders, family history of psychosis, 

severe physical diseases, and substance abuse were also excluded according to a medical 

history report form. All the cases and controls were of Han Chinese decent.

The study was approved by the Institutional Review Board of the Peking University Health 

Science Center. After complete description of the study to the subjects, written informed 

consent was obtained from parents of the ADHD probands.

Genotyping

Both cases and controls were genotyped using the Affymetrix6.0 array at CapitalBio Ltd. 

(Beijing) using the standard Affymetrix protocol. Samples of cases and controls were added 

in equal proportion to each chip to avoid batch effects. The Affymetrix 6.0 array included 

906,600 SNP probes and 946,000 CNV probes. The SNP genotypes were called with 

BIRDSEED v2, while CNVs were called with Genotyping Console (GTC) 4.0 using default 

parameters. A total of 2003 cases and controls passed the first stage sample control with call 

rates >98%, no first or second-degree relative relationships, and genders consistent with site 

reports.

Data Quality Control and Statistical Analysis

Data quality control and association analysis were performed using PLINK 1.07 [Purcell et 

al., 2007, http://pngu.mgh.harvard.edu/purcell/plink/]. For inclusion of SNPs we required: 

call rate >95%, MAF >1%, and HWE P-value >10−6. After data cleaning, there were 

656,051 SNPs for the association analyses. To examine population stratification, we 

performed multi-dimensional scaling (MDS). In the pair-wise MDS plot for 10 dimensions, 

the majority of subjects were tightly clustered, suggesting no substantial population 

stratification (SF1). We then conducted logistic regression to adjust the association P-value, 

using the 10 principal components from the MDS procedure as covariates.

CNV calling only included segments larger than 100 kb, spanning at least 10 consecutive, 

informative SNPs. Quality control for samples excluded 136 individuals (71 cases, 65 

controls) who carried more than 40 apparent CNVs. Analysis focused on rare CNVs with 

frequency <1%. We used the human reference sequence of NCBI Build 36.1 - hg18 to filter 

known segmental duplications.

Known common CNVs defined by the Genome Structural Variation Consortium (http://

projects.tcag.ca/variation/ng42m_cnv.php) and known gaps of at least 200 kb in the SNP 

array were also filtered. Burden analysis counted the number of total CNVs, deletions and 

duplications in cases and controls, calculated the CNV rate, as well as percent of cases and 

controls that carried rare CNVs. The significance of CNV differences between cases and 

controls was assessed by permutation test with 50,000replicates.
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Polygenic analyses

To investigate the contribution of common SNPs to variation in liability to ADHD, we 

estimated the SNP-heritability using GCTA [Yang et al., 2011]. A non-zero heritability is 

estimated if cases are genetically more similar to other cases than they are to controls [Lee et 

al., 2011]. We removed individuals such that no pair had genetic similarity relationship 

>0.05 (as this may inflate estimates unfairly), so that 1,010 cases and 917 controls remained. 

We used Caucasian samples from the Psychiatric Genomics Consortium for ADHD (4,163 

ADHD cases and 12,040 controls) and a bivariate model of analysis [Lee et al., 2012b] to 

estimate the SNP-genetic correlation between Han Chinese and Caucasians for liability to 

ADHD. Since the SNP frequencies differ between ethnic groups the additive genetic 

similarities between individuals i and j were estimated as

for the L SNPs with minor allele frequency >0.01and imputation R2 > 0.6 (L = 917,066), 

where i s represent a population that individual i belong to and p and q = 1 − p are allele 

frequencies of the first and other allele and xil is the number of first alleles for the lth SNP in 

individual i. The analysis model include sex, cohort and 20 ancestry principal components 

are covariates.

Pathway analysis

To determine if any neurobiological pathways were implicated by our association signals, 

we input our top hit intervals from the SNP and CNV association analyses into Interval 

enRICHment Test (INRICH [Lee et al., 2012a]). Associated intervals for SNPs included 

those with P-values <10−4 after correcting for the MDS components. The SNP tagging 

function in PLINK was used to generate LD independent genomic intervals (tag r2: 0.2, tag 

kb: 1,000). We included CNV intervals that were more prevalent in cases than in controls 

with at least a trend difference of statistical significance (P < 0.15). We used the Gene 

Ontology (GO) nodes as our target gene sets. After size filtering, 5,237 target gene sets 

(nodes) each comprising at least three genes were examined. Interval overlap was limited to 

20 kb up/downstream of a gene. The number of overlapping genes was recorded as Reali. 

Ten thousand replicates generated random interval sets each matching to the number of 

associated intervals. The empirical gene-set P-value equals the percent of replicates with at 

least Reali number of random intervals overlapping with genes in a target gene set. 

Bootstrapping-based re-sampling was used for multiple testing to correct the empirical gene-

set P-value over all gene sets.

To explore potential physical interactions among proteins encoded in associated intervals, 

we used a second method for pathway analysis, that is, Disease Association Protein–Protein 

Link Evaluator (DAPPLE) [Rossin et al., 2011]. In consideration of the contributions of 

both common and rare variants to the etiology of ADHD, and that both might separately 

capture nodes in the ADHD pathogenesis network, we used the same genomic intervals for 

both SNPs and CNV that we used for INRICH. DAPPLE uses experimentally validated, 

Yang et al. Page 5

Am J Med Genet B Neuropsychiatr Genet. Author manuscript; available in PMC 2015 February 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



protein–protein interaction databases to identify direct and indirect networks from associated 

proteins and scores network and protein connectivity. We built 10,000 random networks and 

compared these with the ADHD associated networks to determine if the connectivity of the 

ADHD networks and each seed protein was greater than expected by chance.

The third pathway analyses we used the Genomic Regions Enrichment of Annotations Tool 

(GREAT, [McLean et al., 2010] to assess for enrichment of cis-regulatory regions. GREAT 

examines not only proximal but also distal regulatory regions up to 1 Mb upstream or 

downstream of transcription start sites. In addition to typical calculation of gene-based P-

values for enrichment, GREAT computes a binomial test over genomic regions, which uses 

the fraction of the genome associated with each ontology term as the probability of selecting 

the term. This method explicitly accounts for the variability in length of gene regulatory 

domains, eliminating the bias that leads to false positive enrichments for distal regulatory 

regions.

RESULTS

Single Variant Analyses

The quantile-quantile (QQ) plot (SF2) for SNPs’ association was almost completely 

diagonal. The lambda statistic (λ) was 1.02.The distribution of observed P-values did not 

deviate from the distribution expected under the null hypothesis of no association. The 

corrected Manhattan plot is shown inSF3. The lowest P values were about 10−5 to 10−6.The 

SNPs associated with P values of 10−5 or lower are listed in Supplementary Table SI. All hit 

genes were expressed in brain. Most of them were known to be involved in 

neurodevelopment (including cell adhesion, neuron migration, neurite outgrowth, neuronal 

morphogenesis, and synaptic plasticity: ITGA1, NYAP2, ADAM28, CNTN2, LRFN2, NTM, 

GJA1, FLRT2, PRKG1, PICK1, CAMK2G; glutamate receptor and transporter: GRIK4, 

GRM7, SLC38A1; and related transcription factors: PAPOLA, MED27, TAF2, ZNF516).

We included 3,460 rare CNVs (1,817 in cases and 1,643 in controls) in the analyses, with all 

segments intersecting with one or more genes (hg18). Burden analyses showed a 

significantly higher rate of rare CNVs (1.875% vs. 1.830%, ratio: 1.02, P = 0.038) and 

proportion of individuals carrying rare CNVs (55.8% vs. 51.2%, ratio: 1.09, P = 0.026) for 

the ADHD group than for controls. Association analyses found six regions nominally 

associated with ADHD (P < 0.05, with 50,000 permutation tests), though none of them 

survived genome-wide correction (Supplementary Table SII).

Polygenic Analyses

The estimate of the SNP-heritability calculated in the bivariate analysis was 0.42 (SE 

0.13)for the Han Chinese sample .A maximum likelihood ratio test of H0: 

. In ancestry the bivariate analysis the SNP-heritability for the European sample 

 was 0.28 (SE 0.02, P = 0), in close agreement (as expected) with the univariate 

estimate PGC Cross Disorder Group, paper in submission. The estimate of the SNP-genetic 

correlation between Chinese and European samples (rg-SNP) was 0.39 (SE 0.15, P = 0.0072).
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Pathway Analyses

Interval enrichment tests of the most significantly associated SNPs found 23 pathways 

enriched for associated signals (Table I). Although none of these achieved significance after 

correcting for multiple comparisons, many implicated neurobiological functions potentially 

relevant to ADHD, e.g. neuron projection morphogenesis (ITGA1, GJA1), neuron migration 

(PRKG1, GJA1), endocytic vesicle membrane (PICK1, CAMK2G), synaptic transmission 

(PICK1, CAMK2G, SLC38A1, GRM7). Pathways related to transcription were observed, that 

is, transcription initiation from RNA polymerase II promoter (MED27, TAF2). Interval 

enrichment tests of CNVs found 9 pathway nominal significant at P < 0.05. None achieved 

significance after correcting for multiple comparisons (Table I). Most were related to 

transmembrane transport, including water, sodium and potassium ion transport.

DAPPLE identified 16 direct connections among proteins in 152 associated regions (Table 

II). Compared to 10,000 random networks, the associated network (SF4) is significantly 

enriched for direct connectivity (16 vs. 9.7, P = 0.030). The connected proteins formed six 

groups. Their functions involved cell adhesion/synaptic formation/plasticity, especially for 

glutamatergic synaptic plasticity, as well as related transcription factors. For each seed 

protein, taking the best of the direct and indirect scores and correcting for the number of 

tests as well as for the number of genes in one locus, we identified seven genes significant 

for connectivity to be candidate genes for future research: NCL (P = 2 × 10−4), KCNH7 (P = 

8 × 10−4), NXPH1 (1 × 10−3), LANCL1 (6 × 10−3), CNTNAP2 (9 × 10−3), SV2C (1.2 × 

10−2), and PICK1 (4 × 10−2).

Using the same set of associated SNPs and CNVs for GREAT analyses, we found 

significant enrichment for 6 GO Cellular Component terms after correcting for multiple 

comparisons (Table III). The six terms were from two GO branches and their child nodes 

(Fig. 1): synapse (15 genes hit, FDR Q-val: 0.0055; three child nodes were also significant: 

synapse part, synaptic membrane, and presynaptic membrane) and neuron projection (16 

genes hit, FDR Q-val: 0.013; one child node was also significant: axon).

DISCUSSION

This GWAS of ADHD, comprising 1,040 cases and 963 controls, is the first performed in a 

homogeneous Han Chinese population. Although we did not find any genome-wide 

significant SNP or CNV variants, we did find significant evidence for a polygenic SNP 

component and an increased burden of rare CNVs.

The significant SNP-heritability implies that common variants are associated with ADHD, 

but that our sample is underpowered to detect them at the stringent significance level 

imposed by the genome-wide burden of multiple testing. The SNP-heritability in Han 

Chinese was 0.42 (SE 0.15). Although the point estimate is higher than for the larger 

European ancestry sample from the PGC-ADHD, 0.28 (SE 0.02), its high standard error 

shows that the estimates are not significantly different. The estimate of the SNP-genetic 

correlation (rg-SNP) was 0.39 (SE 0.15, P = 0.0072), which indicates that common SNP risk 

variants are shared by the Han Chinese and European Ancestry samples. To our knowledge, 

this is the first such correlation reported for any disease or disorder. The significant 
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correlation indicates that ancient common variants associated with ADHD are shared 

between the ethnic groups.

However, the point estimate of the SNP correlation between Han Chinese and European 

Ancestry samples is lower than between sub-samples of the European Ancestry cohort. 

Specifically, when the PGC-ADHD data was split into two sub-samples, the 

estimates were 0.21 (SE 0.07) for the first sample and 0.41 (SE 0.03) for the other sample 

with a genetic correlation of 0.71 (SE 0.17) implying, as expected, more sharing of 

associated variants and/or higher linkage disequilibrium between causal variants and SNPs 

within than between ethnic populations.

Despite the fact that no individual SNPs reached association at genome-wide significance, 

our most significant findings implicated genes participating in neurodevelopmental 

processes such as cell adhesion, neuron migration, neurite outgrowth, neuronal 

morphogenesis, and synaptic plasticity. Similar sets of genes were also suggested by 

previous ADHD GWAS and a meta-analysis (see Supplementary Table SI). For example, 

PRKG1 was implicated by Neale et al. [2010a], ITGA1, CAMK2G, CAMK1D were 

implicated in the meta-analysis by Neale et al. [2010b], and ITGAE and ITGA11 were 

implicated by Lesch et al. [2008]. Some of our top genes code for glutamate receptors and 

transporters. The same genes and gene family members (GRM7, GRIK1) were reported in 

the quantitative GWAS by Lasky-Su et al. [2008], the meta-analysis by Neale et al. [2010b], 

and the genome-wide CNV study by Elia et al. [2012]. Some genes related to transcription 

(ZNF544, ZNF385D, ZNF423, ZNF516, ZNF75A, DMRT2, FHIT, FOXP1, and MEIS2) 

were also implicated by Lasky-Su et al. [2008] and by Neale et al. [2010b]'s meta-analysis.

Although not significant after correcting for multiple comparisons, the pathways revealed by 

the INRICH analyses of associated SNPs involved neurobiological functions consistent with 

the prior findings discussed above. For example, neuron projection morphogenesis and 

neuron migration pathways were implicated by genes encoding adhesion molecules (e.g., 

GJA1, ITGA1, PRKG1). Neuron migration and axon guidance toward the target in the 

development of the nervous system involve interactions between molecules on the surface of 

the axon and those in the extra-cellular matrix [Tsiotra et al., 1993]. The endocytic vesicle 

membrane and synaptic transmission pathways involve glutamatergic synaptic function. The 

transcription related pathway is a ubiquitous biological process, if, as our findings suggest, it 

is implicated in ADHD's pathophysiology, any defects in the implicated transcription 

network must require other etiological factors to lead to a pathophysiologic state.

Because the GO “pathways” used by INRICH are based on bibliometric gene annotations 

rather than experimental data, we also used DAPPLE, which is based only on 

experimentally documented physical interactions among proteins. Considering the 

complexity of the genetic basis of ADHD, we hypothesized that both common and rare 

variants contribute to the disorder and act on similar functional classes of genes [Poelmans 

et al., 2011; Stergiakouli et al., 2012]. The DAPPLE analyses showed that the proteins 

implicated by our GWAS were significantly more likely to be interconnected with one 

another than expected by chance, suggesting that risk variants might exist in suites of genes 

involved in the underlying biological process of protein-protein interaction networks. The 
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DAPPLE results are consistent with the INRICH results implicating three pathways: cell 

adhesion (NXPH1–NRXN1, CNTN2–CNTNAP2–ZMIZ1), glutamate synaptic development 

(GRM7–PICK1–GRM3, PICK1–EPHA7), and the transcription pathway (TAF2–PAPOLA–

POLR2F–MED27–MED20, POLR2F– NCL–RSL1D1–BYSL).

Using the regulatory annotation of associated signals, GREAT depicted a clearer outline of 

associated genes, which encoded proteins comprising neuronal cellular components from the 

Neuron Projection and Synapse branches of the GO tree. Most of the genes from these 

pathways were consistent with the INRICH and DAPPLE findings; they encode adhesion 

molecules, glutamate receptors and proteins involved in axon and synapse development 

(Supplementary Table SIII).

All the above pathways are consistent with the hypothesis that mis-wiring of the brain 

during neurodevelopment might cause ADHD. Similar conclusions were drawn by Lesch et 

al. [2008] and Franke et al. [2009] based on the findings from existing GWAS, which 

suggested that neuronal spine formation and plasticity might underlie the pathophysiology of 

ADHD. Consistent with these ideas, a recent integration of ADHD GWAS findings found 

significant evidence for a neurodevelopmental network of directed neurite outgrowth 

[Poelmans et al., 2011]. Although our findings are consistent with prior work, they also 

provide evidence for a more comprehensive network, involving neuron migration, neurite 

outgrowth, neuronal morphogenesis, and synaptic plasticity, especially glutamatergic 

synaptic development. The glutamate system is a reasonable candidate for ADHD's 

pathophysiology as glutamate is the major excitatory neurotransmitter in the central nervous 

system, and regulates the catecholaminergic activity which has been implicated in ADHD by 

neurobiological [Scassellati et al., 2012] and treatment [Faraone and Glatt, 2010] studies.

Although our findings are intriguing, we have only captured fragments of the puzzle of 

ADHD's etiology in this study. We could not paint the full picture. Our work must be 

considered in the context of its limitations. We had no genome-wide significant findings for 

any single variant, which might be due to the sample size. However, our bioinformatic and 

pathway analyses found some interesting genes and neurobiological pathways which 

implicate complex neurodevelopmental network underlying ADHD. Our finding of a 

significant polygenic component suggests that there are many common SNP variants with 

small effect sizes that increase the risk for ADHD. Individually, these SNPs will be difficult 

to detect with currently available sample sizes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
Neurodevelopmental network predicted by proximal and distal regulatory region among the 

top hit of genome-wide SNPs and CNVs association.
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TABLE I

Pathways Enriched for Associated SNPs and CNVs by INRICH Test

Target Target size Interval no. Emp. P Cor. P Gene list

Pathways enriched for associated SNPs
a

    GO: 0009268Response to pH 12 2 0.00009999 0.14917 ARSB, GJA1

    GO: 0043403Skeletal muscle tissue regeneration 9 2 0.00019998 0.192162 PLAU, GJA1

    GO: 0048812Neuron projection morphogenesis 18 2 0.00029997 0.231354 ITGA1, GJA1

    GO: 0007160Cell-matrix adhesion 72 3 0.00049995 0.295941 VCL, ITGA1, BCL2L11

    GO: 0005916Fascia adherens 9 2 0.00079992 0.378724 VCL, GJA1

    GO: 0006936Muscle contraction 93 3 0.00109989 0.447111 VCL, ITGA1, GJA1

    GO: 0030666Endocyticvesicle membrane 24 2 0.00269973 0.661668 PICK1, CAMK2G

    GO: 0006367Transcription initiation from RNA 
polymerase II promoter

67 2 0.00379962 0.727854 MED27, TAF2

    GO: 0005741Mitochondrial outer membrane 85 2 0.00679932 0.847231 GJA1, BCL2L11

    GO: 0007229Integrin-mediated signaling 
pathway

58 2 0.010399 0.894421 ITGA1, ADAMDEC1

    GO: 0005178Integrin binding 64 2 0.0114989 0.907419 ITGA1, ADAMDEC1

    GO: 0007268Synaptic transmission 266 4 0.0121988 0.915217 PICK1, CAMK2G, SLC38A1, 
GRM7

    GO: 0005764Lysosome 154 2 0.0157984 0.946011 ARSB, GJA1

    GO: 0030165PDZ domain binding 54 2 0.019898 0.965807 GRM7, GJA1

    GO: 0015293Symporter activity 112 2 0.019898 0.965807 SLC38A1, SLC16A8

    GO: 0005624Membrane fraction 467 4 0.0243976 0.982004 ITGA1, SLC16A8, PSD3, 
BCL2L11

    GO: 0001764Neuron migration 59 2 0.0255974 0.983003 PRKG1, GJA1

    GO: 0045121Membrane raft 110 2 0.0256974 0.983203 ITGA1, GJA1

    GO: 0006814Sodiumjon transport 118 2 0.0265973 0.984003 SLC38A1, SCN9A

    GO: 0005654Nucleoplasm 732 4 0.0214979 0.968806 MED27, CAMK2G, DSCC1, 
PAPOLA

    GO: 0017124SH3 domain binding 101 2 0.0357964 0.992402 BAIAP2L2, GJA1

    GO: 0043234Protein complex 152 2 0.0437956 0.995601 PICK1, VCL

    GO: 0001701In utero embryonic development 142 2 0.0459954 0.996601 GJA1, BCL2L11

Pathways enriched for associated CNVs
b

    GO: 0006833Water transport 36 2 0.00549945 0.508498 AQP9, ADCY8

    GO:0005244 Voltage-gated ion channel activity 149 4 0.0115988 0.734653 KCNH7, KCNQ1, SCN10A, 
SCN11A

    GO: 0055085Transmembrane transport 619 6 0.0125975 0.752849 KCNH7, SCN10A, KCNQ1, 
AQP9, ADCY8, SCN11A

    GO: 0042493Response to drug 241 3 0.0164984 0.834233 USP47, CPS1, SCN11A

    GO:0005248 Voltage-gated sodium channel 
activity

15 2 0.0172983 0.84883 SCN10A, SCN11A

    GO:0001518 Voltage-gated sodium channel 
complex

12 2 0.0172983 0.84883 SCN10A, SCN11A

    GO:0006814Sodiumjon transport 118 2 0.0258974 0.909018 SCN10A, SCN11A

    GO:0006811 Iontransport 565 5 0.030397 0.928814 KCNH7, KCNQ1, KCNT2, 
SCN10A, SCN11A
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Target Target size Interval no. Emp. P Cor. P Gene list

    GO: 0006813Potassiumiontransport 153 3 0.0392961 0.956809 KCNH7, KCNQ1, KCNT2

a
With corrected P-value <10e–4.

b
Including CNVs more in cases than in controls with P < 0.15.
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