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ABSTRACT An elastic model for the supercoiling of duplex
DNA is developed. The simplest assumptions regarding the
elastic properties of double-helical DNA (homogeneous, iso-
tropic, of circular cross section, and remaining straight when
unstressed) will generate two orders of superhelicity when
stressed. Recent experimental results [Brady, G. W., Fein, D. B.
& Brumberger, H. (1976) Nature 264, 231-2341.suggest that in
supercoiled DNA molecules there are regions where two distinct
orders of supercoiling arise, as predicted by this model.

The role of elasticity in supercoiling of DNA is investigated by
ascribing to the double helix the properties of a homogeneous,
isotropic elastic rod. The unstressed molecule has helical twist
of one turn per ten base pairs. As an elastic object, this idealized
molecule resists deviations from straightness and from its un-
stressed twist with certain bending and torsional stiffnesses.

Linear DNA with free ends may deform so as to relieve in-
ternal stresses. In its covalently closed, circular form, however,
the molecule experiences torsional and bending stresses which
cannot be relieved without breaking one of the strands (nicking)
(2). Stresses may be varied by external constraints such as dye
intercalation (3).

If the stresses involved are not too great, the molecule may
respond as a whole by deforming into an equilibrium shape.
(In this paper "equilibrium" refers to elastic, not thermody-
namic, equilibrium.) However, if the stresses are sufficiently
large, they may cause local denaturation (4, 5). Disruption of
the double helix alters or destroys the elastic properties of the
denatured regions, thereby permitting the relief of excess tor-
sional stress through winding or unwinding. In this case, the
regions of double helix between adjacent denatured portions
deform into equilibrium shapes in response to the stresses im-
posed on them.
The equilibrium shapes possible in these situations may be

found from Kirchhoff's theory of linear elastic rods (6). This
allows explicit calculation of shapes as desired. It also permits
a suggestive visualization of the possible shapes through a rig-
orous analogy between deforming rods and spinning tops.

In summary, it is found that three equilibrium shapes are
possible. If the stresses are sufficiently small, a section of double
helix may remain straight (neglecting kinetic effects). If the
straight shape is not possible, then the double helical sections
of the idealized molecule (which may be the whole molecule)
will deform either into a (super) helix (a first order supercoil)
or into a shape having two orders of superhelicity. Deformation
into a (super) helix requires very precise conditions on the im-
posed loads, and is thereby unlikely to occur in practice.

Recent experimental evidence (1) suggests that in supercoiled
DNA are found regions exhibiting two orders of superhelicity,
as predicted by the theory. This suggests that the elastic model
may be adequate to predict supercoiling in DNA.

ELASTIC THEORY
Two cases are considered here-elastic deformations of closed
rings and of linear rods. Only undenatured regions of double
helix are modeled as elastic, which may be either the whole ring
or linear sections of the ring. However, the theory of defor-
mation of a rod with forces and torques on its ends includes the
case of an elastic ring. That is, the ring at equilibrium may be
cut at one cross section, and a system of forces applied to the
ends created. If this system is equal to that by which, in the
original closed ring, each side of this cross section acts on the
other, then the equilibrium shapes of rod and ring will be
identical.

In this model the stresses experienced by the elastic rod are
treated as follows: Consider the cross section at distance so from
one end (s = 0). That side of the cross section where s < s, acts
on the other side (s > se,) with a system of forces that is resolv-
able (7, 8) into a force N(s0) and a torque M(s0). Doing this at
each cross section gives (vector-valued) functions N(s), M(s)
describing the stresses in the rod. (Note that if one begins at the
opposite end of the rod the force and torque found change their
sign. The two sides of any cross section act on each other with
equal and opposite systems of forces.)
Some choices of N(s) and M(s) will cause acceleration of the

rod. Others cause rotation, while still others give rise to dynamic
deformations. Most choices will yield a combination of all three
motions. Those systems N(s), M(s) that occur when the rod is
in an equilibrium shape must satisfy special criteria, called the
equations of equilibrium (8, 9):

dN/ds + K(S) X N = 0

dM/ds+K(s)XM + k(s)XN= 0.

[la]

[lb]

Here K(S) is the curvature of the rod and k(s) is the unit tangent
vector to the rod (in the direction of increasing s), both evalu-
ated at each distance s.

Eqs. la and lb above are two first-order ordinary differential
equations describing those systems N(s) and M(s) that arise at
equilibrium. To determine a unique solution one must specify
the force and torque that arise at a single cross section, taken
here to be M(o) and N(o), the torque and force on one end. For
each such choice there is a single equilibrium system M(s), N(s)
having those values for M(o) and N(o).

Physically, this means that one may specify the force and
torque imposed on one end of the rod at will. The solution of
Eqs. la and lb above uniquely determine the force N(s) and
the torque M(s) across every other cross section if the rod is in
equilibrium under the specified load. In particular, the force
and torque that must be imposed on the opposite end of the rod
for equilibrium to occur are specified.
To describe the shape of the rod we introduce Euler's angles.

Then linear elastic laws relating deformations to stresses are
used to find three well-known differential equations, one for
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ential equations for the Euler angles of a symmetric rod at
equilibrium:

Pop-p vcosO
A sin2 0

C Asin20 c..os0

[51

[6]

FIG. 1. The Euler angles 0, p, , relating the fixed space axes X,
Y, Z to the moving body axes x, y, z.

each Euler angle. Solution of these gives the equilibrium shape
of the rod under the given loads.

At each distance s along the rod a system of local, body
coordinates x(s), y(s), z(s) is chosen so that the z(s) axis points
tangent to the rod in the direction of increasing s while the x(s)
and y(s) axes are principal axes of the cross section. A reference
set of space axes X, Y, Z is fixed. To compare the orientations
of the body and space coordinate systems, Euler's angles 0, X,

are used, as in Fig. 1. Rotation through these angles brings
the space axes into alignment with the body axes. For a de-
formed rod the orientation of the local body axes changes as the
rod is transversed, so Euler's angles vary with distance, 4 = ¢(s),
A==C(s), 0 = 0(s).
Two cross sections of the rod separated by an infinitesimal

distance Ais have their body axes infinitesimally rotated by a
vector A4. The vector curvature of the rod at any point s is

K(S) = lim _ d4 [2]
aS -no Os ds

which has components [KX(S), KY(s), i(s)] = K(S) in the x(s), y(s),
z(s) directions. Here Kr(S), Ky(s) are the curvatures of the rod
in the principal directions at distance s, while i(s) is the rate of
twist (i.e., rotation about the tangent). These may be expressed
in terms of Euler's angles as

KX= Isin 0 sin A + cosil' [3a]

Ky= sin 0 cos A1 - 0 sinA,[3b]
TC=cos0+ . [3c]

where the dot stands for differentiation with respect to s in the
local body coordinates.
The elastic laws relating deformations to loads are assumed

to be linear:

M.(s) = AK (s), MY(s) = BKy(S), M.(S) = CT (S). [4]

The constants A,B are the bending stiffnesses in the x,y direc-
tions, while the torsional stiffness is C. If the rod bends as easily
in the x and the y directions, then A = B and the rod is sym-
metric. In this case one can show that the rate of twist T(S) in
the rod deformed to equilibrium is a constant, T(s) = To.
From Eq. la it follows that the vectors N(s) which occur at

equilibrium are constant in magnitude, INI = N, and direction
in space at every cross section. The fixed space Z axis is chosen
to point in the direction of-N.
From Eqs. 1b, 3, and 4 and the condition of symmetry (A =

B) one can derive (using a Lagrangian analysis) three differ-

(pO - py. Cos 0)"2 A02 / 2\
N cos 0 + -20 + =(E- -) = E. [7]

2A sin0 2 \2C
Here pe, p,. are the generalized momenta conjugate to the
generalized coordinates q, ,6._They are constants determinable
from initial conditions, as is E.

Letting u = cos 0 the last equation becomes

2 = 2= 2- _2(p__(Po~2f(u) = - (E -Nu) (1 - u2
A

1 2p u 181
The function f(u) has three real roots -1 _ u 2 c + 1 <
U3. The physical limits of u are u1 < u < u2 because only here
isf(u) > 0 so that u is not imaginary. Solution of these equations
gives the equilibrium shape of the rod through Eq. 3. A useful
visualization of the possible equilibrium shapes has been found
by Kirchhoff.

THE KINETIC ANALOGY AND EQUILIBRIUM
SHAPES

A formally precise analogy, known as Kirchhoff's theorem (6),
exists between a rod at equilibrium under the influence of forces
applied to its ends and a top spinning about a fixed point. The
equations describing these two situations are identical, so any
solution of either problem also solves its analogue. If the rod has
symmetry, the analogous top will also be symmetric, with its
center of mass and fixed point lying on a principal axis. In this
situation an exact solution to the equations for the motion of a
top has been found (10, 11). By Kirchhoff's theorem, this solves
the symmetric rod.
To make the analogy precise, consider a symmetric spinning

top. At its fixed point it has three principal (body) axes which
move with it. The body z-axis passes through the fixed point
and the center of mass. Fixed space axes are chosen so that the
space Z axis points opposite to Mg, the force of gravity on the
top. The relationship of body axes to space axes is given by
Euler's angles, as before. In particular, 0 is the angle between
the body z axis and the vertical. As the top spins, the body axes
are carried along so that Euler's angles change with time.

Kirchhoff (6) noted that the differential equations describing
the motion of the top in terms of Euler's angles are formally
identical with those for the equilibrium shape of a rod. With
the appropriate interpretation of the variables given in Table
1, Eqs. 5, 6, and 8 are found to apply to both cases.
An easy way to visualize the Kirchhoff analogy is to imagine

that one traverses the rod at unit speed. As one travels, the rod's
body axes appear to rotate relative to the space axes. This mo-
tion is identical to the motion of the axes embedded in a spin-
ning top whose moments of inertia, mass, etc., are given by the
correspondence shown in Table 1.

In 1811, Lagrange (10) showed that the equations of the
symmetric top are integrable. The solution involves elliptic
functions and may be found, for instance, in ref 11. By Kirch-
hoff's theorem, this gives a solution to the analogous problem
of a symmetric rod subjected to forces and couples on its
ends.

In general, three types of motion of a symmetric top are
possible. First, it may spin about its z-axis while remaining
vertical (0 = 0). Second, it may precess uniformly at a constant
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Table 1. Analogous variables for rod and top;

Variable Rod Top

s Distance Timet
A, B, C Stiffnesses (It, Iya, II,)

Moments of inertia
X Curvature W, Angular velocity
(K,, K,., T) Curvature (ax WYP wz)

components Components of w
-N (Negative of) stress mg, force of gravity

resultant (con- (Constant at all t)
stant at all s)

p4,, p Conjugate momenta Conjugate momenta
M Torque Angular momentum L

angle 0 # 0. Finally, as it precesses it may also nutate (bot
tween two values of 0). These correspond to the analogous
remaining straight or deforming into a helix of pitch angle
- 0 (a first-order supercoil) or deforming into two ordei
supercoils. These shapes may be visualized as in Fig. 2
plotting on a unit sphere the tangent direction of the rod. If
rod remains straight, this direction does not change. De
mation into a helix causes the tangent to describe a circle z

Fig. 2B. A rod deformed into two orders of supercoils (a top
precesses and nutates) gives rise to motions of its tangent s
as those shown in Fig. 2 C and D.

For a rod of length I at equilibrium, on one end of whi(
imposed a force N (0) and a torque M (0) that are coaxial,
straight conformation is always an equilibrium shape
However, only when

12 M2 N
1-> +
12 4A2 A

A B

C D

FIG. 2. The motion of the body z-axis plotted on a unit sphere
for various deformed shapes. (A) The rod remains straight. (B) The
motion that occurs when the rod deforms into the helix. The analogous
top precesses uniformly. (C and D) Two possible second-order su-
percoils, which correspond to a top both precessing and nutating. In
(C) the Euler angle 0 increases uniformly while in (D) it changes sign
in each nutation cycle.
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FIG. 3. Possible shapes of an elastic molecule. The line plotted
is the axis of the double helix. (A) A linear section deforms into two
orders of supercoils, as could occur through dye intercalation. (B) A
toroidal superhelix, one possible shape for a covalently closed ring.

is the straight shape stable. For values of M, N that do not satisfy
Eq. 9 the stable shape will have either one or two orders of su-
percoiling.

Suppose now that the applied torque M(O) is tangential, M(O)
= M k(O), and the angle between M(O) and N(O) is 0. Then
cos 00 = U, = U2 < 1 gives the upper limit of the physical range
of the variable u. The circle u = U2 = ut is the upper bound on
the analogous nutation in Fig. 2 C and D. The other two roots
of Eq. 8 satisfy

2NA2(1-,2)

[9] The rod forms a helix precisely when u = U2= Uo. From the
above equation this occurs when ul = U2 = ± 1 so the rod re-
mains straight. Therefore, when the initial torque is tangential
and the rod is not straight, its equilibrium shape must have two
orders of supercoiling (Fig. 3A), called here the precessional
and nutational orders.

If the straight conformation is not stable and the initial torque
is not tangential, then a pure helix can arise of pitch angle 900
- 00 and either of two possible radii. The analogous top
undergoes either a slow or a fast precession, which may be
shown to be in the same direction as the twist T (13).

Deformation into a helix (analogous to uniform precession)
occurs only in the exceptional situation where the two smallest
roots of f(u) in Eq. 8 coincide, uI = u2. In general, 0 (and hence
u and the pitch angle 900 - 0) will vary between the limits 01
and 02 where 0 = 0. The precession angle 0 satisfies Eq. 5. If the
numerator of this equation is never zero within the physical
range uI < u < u2, then X always moves in one direction, as
in Fig. 2C. If ul <p,/pV, <u2, then k changes sign whenever
u = po/pv. (Fig. 2D). If pOI/p4 = u2 (as happens when the ap-
plied torque is tangential), there is a cusp of the motion on the
upper circle. As the tangential component M, of the applied
torque increases (other things remaining equal) the two circles
u = uI and u = u2 move closer together. The nutational su-
percoils become inconspicuous, so the shape approximates a
helix of radius

CT- CTu0
2N 2E

[10]

APPLICATIONS TO SUPERCOILING
In this section the results developed for the equilibrium shapes
of thin elastic rods subject to stresses are applied to supercoiling
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Biophysics: Benham

A

B



Proc. Natl. Acad. Sci. USA 74 (1977)

of DNA. First, a molecular origin for the stresses is proposed.
Then the equilibrium shapes possible under given stresses are
described using the results of the last section. Local denaturation
(and possible kinking) are modeled as the breakdown of the
elastic laws under high stresses. In these cases the elastic analysis
can be applied only to regions of double helix. In this way, the
theory includes deformation of linear, rodlike elastic pieces of
double helix as well as of complete, closed rings.

In its covalently closed, circular form a molecule of duplex
DNA has linking number Lk (14, 15), an integer measuring the
number of times one strand links through the other. This Lk
cannot change unless a strand is broken (nicked), so it is fixed
when the strands close. If the helix is wound without constraint,
before closing it will have equilibrium twist T = T,. When
covalently closed into a circle its linking number is Lk = T =
T0.

It may happen that the helix is under- or over-twisted at the
time of covalent closure, T # To. (Note that the total twist T
is related to T by 2-r(T - TO) = STds.) The twist also may be
changed by external constraints (such as dye intercalation) after
closure. The deficiency or excess that arises due to either of these
causes is expressed as the writhing number Wr (14, 15) of the
molecule. Thus,

Lk = Wr + T. [

This quantity Wr depends only on the shape of the axis of the
double helix. As the molecule bends, Wr may vary continuously
(14, 15). However, Lk is a topological invariant, which cannot
change unless the molecule is nicked. Thus, changes in shape
will cause compensating changes in the total twist T so as to
leave Lk invariant.

In covalently closed molecules elastic stresses may arise which
cannot be relieved without changing Lk. As an example, a
molecule that is underwound at the time of covalent closure will
experience elastic stresses trying to twist it up to the equilibrium
value T, It can twist only at the expense of changing Wr, that
is, of bending (Eq. 11). But bending causes elastic restoring
stresses also. Thus, the molecule settles into an equilibrium
conformation balancing its torsional and bending stresses.
Precisely how the stresses are partitioned will depend upon the
ratio A/C of elastic constants.

Changing the linking number Lk causes compensating
changes in T and Wr (and hence in equilibrium shape) in ac-
cordance with Eq. 11. Using gel electrophoresis, molecules of
different Lk may be separated (16, 17).
The local twist T may be varied by external constraints such

as dye intercalation. It is known that the intercalation of
ethidium bromide untwists (18) the site of binding by 260. The
regions between binding sites, as elastic objects, will resist a
compensating twisting. Thus, dye binding causes changes both
in the total twist T and in the writhing number Wr (i.e., the
shape of the molecule).

In our model the untwisting caused by dye intercalation
corresponds to the case of tangential applied torque on the rod.
The elastic theory makes two predictions in this case. First, an
elastic rod deforming under a tangential torque always exhibits
two orders of supercoiling (see Fig. 3A). Second, as the torque
is increased (i.e., as more dye is bound), this shape approximates
a helix.
One can also predict shapes of closed rings (in the absence

of local denaturation). A necessary (but not sufficient) condition
for ring closure is that the curve of tangents of Fig. 2 be closed.
If this curve also crosses every great circle, then there is a
closed-ring shape with this curve as its curve of tangents (19).
One possible shape for a closed molecule is a toroidal helix, as

in Fig. 3B. This arises when u1 = -u2 and there are m 4uper-
coils in one trip around the ring.

Sufficiently large elastic stresses may cause local denaturation
(and perhaps also kinking) of the molecule (4, 5). The disruption
of the double helix alters or destroys the elastic properties of the
regions involved. The denatured regions could take up excessive
(or deficient) twist (3) by a disorganized winding, thereby re-
lieving (at least partially) the excess stresses on the double-helical
portions. In the simplest case there could be a threshold twist
rate r beyond which all further stresses go into denaturation.

DISCUSSION AND CONCLUSIONS

The elastic model of supercoiling presented rests upon the as-
sumption that double-helical DNA has the elastic properties
of a homogeneous, isotropic, symmetrical rod. The theory
makes qualitative predictions of equilibrium shapes involving
two orders of supercoiling. Recent experimental evidence (1)
suggests that native closed, circular PM2 viral DNA exhibits
regions with two orders of supercoiling, as would arise from the
above elastic properties.

Before quantitative predictions of shape are possible, the
bending -stiffness A and torsional stiffness C of DNA must be
evaluated. An experimental determination of an effective
bending stiffness of linear DNA has been made from sedi-
mentation data (20). It may be possible to determine the tor-
sional stiffness C from existing data on the free energy of su-
percoiling (16, 21). The present theory also suggests methods
for evaluating C either from Eq. 9 for the onset of supercoiling
or from Eq. 10 for the shape at large twist (assuming no dena-
turation).

This model assumes the simplest elastic properties. The
symmetry condition is that the bending stiffnesses in the two
principal directions are equal, A = B. This may not be strictly
correct on the scale of the double helix. Nevertheless, it is a
reasonable approximation if the bends involved in supercoiling
are spread over several turns of the double helix (as is suggested
by the x-ray data of ref. 1). The present model is being refined
to include possible asymmetries, as well as shear and defor-
mation of the cross section.
An important assumption implicit in the present theory is the

absence of crossing forces. These arise when the molecule tries
to cross itself in getting to its equilibrium shape. The molecule
is barred from equilibrium, and settles instead into a metastable
state. In a kinetic environment it may eventually reach equi-
librium in spite of crossing forces.
The ionic and solvent influences on the DNA could be sub-

sumed into the effective elastic properties, but kinetic and
statistical effects must be investigated separately. Landau and
Lifshitz (22) and others have developed the statistics of long-
chain, linear elastic polymers. However, unconstrained linear
molecules can relieve stresses by bending and twisting freely.
The situation is different for a covalently closed molecule, for
now the molecule cannot bend and twist -to relieve stresses. (Also
the entropic contribution is smaller due to the identified ends.)
It is constrained to shapes that satisfy Eq. 11. The effects of
closure (through the linking number Lk) can impose a highly
organized global structure on the molecule.

Finally, a careful analysis of the role of local denaturation
in supercoiling is needed.
The conclusions of the present analysis when taken in con-

junction with the experimental results of Brady et al. (1) suggest
that elastic properties can account for supercoiling, and that
studies of supercoiling, in turn, may permit determination of
the elastic constants of DNA.
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