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Abstract

Despite its apparent simplicity, the problem of quantifying the differences between two structures 

of the same protein or complex is non-trivial and continues evolving. In this chapter, we described 

several methods routinely used to compare computational models to experimental answers in 

several modeling assessments. The two major classes of measures, positional distance-based and 

contact-based, were presented, compared and analyzed.

The most popular measure of the first class, the global RMSD, is shown to be the least 

representative of the degree of structural similarity because it is dominated by the largest error. 

Several distance-dependent algorithms designed to attenuate the drawbacks of RMSD are 

described. Measures of the second class, contact-based, are shown to be more robust and relevant. 

We also illustrate the importance of using combined measures, utility-based measures, and the role 

of the distributions derived from the pairs of experimental structures in interpreting the results.
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1 Introduction

Applications of protein structures comparison methods

The majority of the proteome is made by amino-acid sequences that, due to evolutionary 

selection, reliably and reproducibly form essentially the same three-dimensional structure. 

This observation formed a basis of the “one sequence – one structure” paradigm that 

dominated the protein science for a long time. However, the growing redundancy of protein 

structure databases, i.e. the increase in the number of structures per protein (1-3), made it 

clear that these fascinating molecules possess a lot more than a simple, unique rigid 

structure, and that varying degrees of the inherent flexibility of proteins are critical for their 

functioning. Consequently, quantifying the structural differences in a sensible way becomes 

essential.

*Corresponding author: Ruben Abagyan, PhD, University of California, San Diego, Skaggs School of Pharmacy and Pharmaceutical 
Sciences, 9500 Gilman Drive, La Jolla, CA 92093, Phone: 1-858-822-3404, fax: 1-858-822-5591, rabagyan@ucsd.edu. 

NIH Public Access
Author Manuscript
Methods Mol Biol. Author manuscript; available in PMC 2015 February 09.

Published in final edited form as:
Methods Mol Biol. 2012 ; 857: 231–257. doi:10.1007/978-1-61779-588-6_10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Structure comparison methods have been actively developed and used in the field of 

computational modeling assessments for quantitative evaluation of correctness of predicted 

models. Since 1994, a community-wide experiment called CASP (Critical Assessment of 

techniques for protein Structure Prediction, (4)) provides the modeling community with the 

possibility to evaluate their methods in blind prediction of structures of newly solved (but 

unpublished at the moment of the assessment) proteins. The submitted models are compared 

to an experimental structure using various criteria specifically developed for this task (5). In 

the recent years, other initiatives of this kind have emerged, including CAPRI (Critical 

Assessment of PRedicted Interactions (6)) and GPCR Dock (7), the assessment of modeling 

and docking methods for human G-protein coupled receptor targets, and the assessment of 

the docking and scoring algorithms (8, 9).

Despite the fact that the methods presented in this chapter were originally developed for 

comparison of computational models to the experimental answers, their applicability is not 

limited by the modeling assessments. They now find their use in identification, evaluation, 

understanding, and prediction of protein conformational changes which constitute the 

fundamental basis of their biological functioning.

Properties of an ideal protein similarity measure

An ideal measure should allow both a single ‘summary’ number within a fixed range (e.g. 

0% to 100%) and an underlying detailed vector or matrix representation. The single number 

must distinguish well between related (correct) and non-related (incorrect) structure pairs, 

i.e. its distributions on the two sets must overlap to a minimal possible degree. It has to be 

relevant, i.e. capture the nature of protein folding or protein interaction determinants rather 

than satisfy simple geometric criteria. It has to have the minimal number of parameters, 

which in turn need to be well justified and understandable. It has to be stable and robust 

against minor or fractional (affecting a small fraction of the model) experimental and 

modeling errors; such changes in the structures should not lead to major leaps in the 

calculated similarity measure values. It has to capture the similarities or differences between 

the structures at any given level of accuracy/resolution. Ideally, it should have an intuitive 

visual interpretation. Although the complex nature of the problem prevents a universally 

acceptable single solution, some consensus measures are definitely emerging.

Characterization of protein structure comparison measures on protein structure pair 
datasets

In this chapter, we present an overview of several superimposition (distance)-based and 

contact based measures and characterize them by calculating their distribution on three sets 

of protein structure pairs. The first set consists of 130000 pairs of experimentally determined 

structures of identical proteins in PDB. It includes molecules related by non-crystallographic 

symmetry, structures determined in different crystal forms and in composition with different 

protein or small-molecule binding partners. The second and third sets are made of models of 

two G-protein coupled receptors, dopamine D3 receptor and chemokine receptor CXCR4, 

generated by participants of the community-wide GPCR Dock assessment (10) in summer 

2010 prior to release of the experimental coordinates of these receptors in complex with 

small molecule (D3 and CXCR4) and peptide (CXCR4) modulators (11, 12). The second 
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and third sets are representative of the average modeling accuracy that can be achieved 

when the experimentally determined structures of closely related homologs are available 

(~40% of sequence identity as in the case of dopamine receptor D3 with previously solved 

β1 and β2 adrenergic receptors) or when the homology with existing structures is more 

distant (~25% of sequence identity as in the case of chemokine receptor CXCR4).

2 Methods

2.1 Main types of comparison measures

Sequence-dependent vs. sequence-independent methods—Sequence-dependent 

methods of protein structure comparison assume strict one-to-one correspondence between 

target and model residues. In sequence-independent methods, structural superimposition is 

performed independently, followed by the evaluation of residue correspondence obtained 

from such superimposition. The usefulness of the sequence-independent approach is limited 

to cases where a model approximately captures the correct target fold but the amino-acid 

sequence threading within this fold is incorrect, e.g. when one turn shift of an alpha-helix 

occurs. An example of an alignment-independent measure is the AL0 score routinely used in 

CASP model evaluation (13). AL0 score measures model accuracy by counting the number 

of correctly aligned residues in the sequence-independent superposition of the model and the 

reference target structure. A model residue is considered to be correctly aligned if the Ca 

atom falls within 3.8 Å of the corresponding atom in the experimental structure, and there is 

no other experimental structure Ca atom nearer. AL0 score values are clearly dependent on 

the superimposition; in its original implementation used for CASP model assessment, the 

score is calculated using the so called Local/Global Alignment (LGA (14)) superimposition 

of the two structures. A variety of sequence-independent structural alignment methods have 

been developed in the field: CE (15), DALI (16), DejaVu (17), MAMMOTH (18), Structal 

(19), FOLDMINER (20), KENOBI/K2 (21), LSQMAN (22), Matras (23, 24), PrISM (25), 

ProSup (26), SSM (27), and others.

The results of alignment-dependent and alignment-independent structure comparison are 

highly correlated with the exception of very distant homology cases. For the rest of this 

chapter, we will therefore focus on alignment-dependent methods of protein structure 

comparison and methods of identification of subtle similarities and differences between the 

models and the reference structures in rather accurate modeling applications.

Evaluation of local vs. global similarity—Identification of global versus local 

similarity represents two orthogonal directions in comparison of protein structures, i.e. 

structures that are most similar globally may not be the best in terms of local similarity. 

Flexible or disordered fragments such as long loops and/or termini are often poorly 

predicted and may significantly compromise the otherwise good similarity between 

structures. Relative domain movements observed in multi-domain proteins can also 

contribute to the poor global similarity scores. Focusing on local similarity helps to avoid 

these issues. Local similarity can be interpreted as a cumulative similarity score for all 

regions of the protein or, otherwise, can focus on a specific region such as, for example, 

ligand binding pocket, while ignoring the remaining parts of the protein.
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Superimposition-based vs. superimposition-independent methods—Any 

method that relies on distance measurements between reference points in the model and their 

respective counterparts in the reference template requires prior superimposition of the model 

onto template, with the results of the comparison clearly dependent on the superimposition. 

Finding an optimal superimposition is an ambiguous task that has multiple solutions 

optimizing specific parameters, therefore, all superimposition dependent methods suffer 

from this ambiguity. A superimposition that minimizes the global Root Mean Square 

Deviation (RMSD) of the model to the template may not necessarily be the best solution for 

the reasons described above: such superimposition is often compromised by a small number 

of significantly deviating fragments. Superimposition of a specific subset may not resolve 

this issue because the choice of the subset is subjective and ambiguous. A method that 

iteratively optimizes the superimposition of two protein structures by assigning lower 

weights to most deviating fragments and, in this way by finding the largest superimposable 

core of the two proteins, is described below. However, even in this approach, the choice of 

weight decay function is rather arbitrary and subjective which may lead to multiple solutions 

introducing ambiguity in any similarity score derived from these superimpositions. 

Superimposition-independent methods, such as contact based measures are devoid of this 

ambiguity.

2.2 Distance-based measures of protein structure similarity

Root Mean Square Deviation (RMSD) is the most commonly used quantitative measure of 

the similarity between two superimposed atomic coordinates. RMSD values are presented in 

Å and calculated by

where the averaging is performed over the n pairs of equivalent atoms and di is the distance 

between the two atoms in the i-th pair. RMSD can be calculated for any type and subset of 

atoms; for example, Cα atoms of the entire protein, Cα atoms of all residues in a specific 

subset (e.g. the transmembrane helices, binding pocket, or a loop), all heavy atoms of a 

specific subset of residues, or all heavy atoms in a small-molecule ligands.

The main disadvantage of the RMSD lies in the fact that it is dominated by the amplitudes of 

errors. Two structures that are identical with the exception of a position of a single loop or a 

flexible terminus typically have a large global backbone RMSD and cannot be effectively 

superimposed by any algorithm that optimizes the global RMSD. An example of such a pair 

is given by the active and inactive conformations of an estrogen receptor α (ERα) which are 

only different by the movement of a single helix 12 (Figure 1). By global backbone RMSD, 

this pair is virtually indistinguishable from the pair of albumin structures where multiple 

smaller scale rearrangements occur. The colored map in Figure 1 shows the distribution of 

the protein backbone RMSD for a large number of experimentally determined structure pairs 

of identical proteins in the PDB. It demonstrates that for the majority of pairs, the RMSD 
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ranges from 0 to 1.2 Å, due to inherent protein flexibility and experimental resolution limits. 

Figure 1 also presents the results of comparison of most accurate GPCR Dock 2010 models 

to their respective reference (answer) structures. It is clear that the backbone RMSD values 

are distributed around 2.3 Å for the easier homology modeling case, D3, and around 4.5 Å 

for the distant homology modeling case, CXCR4. It is however important to realize that 

these RMSD distributions do not reflect the true model accuracy because they are largely 

affected by flexible and poorly defined regions such as C-termini and extracellular loops in 

both GPCRs.

An important extension of the RMSD measure, the weighted RMSD (wRMSD), allows 

focusing on selected atomic subsets, for example, downplaying the regions known to be 

inherently unstructured:

Internal symmetry, ambiguities and RMSD—Any kind of RMSD-based measurement 

requires prior assignment of atom correspondences. In the case of Cα RMSD between two 

structures of the same protein, atom pair correspondence is established trivially via sequence 

alignment, however, measuring all heavy atom RMSD usually requires careful consideration 

of internal symmetry: the atom pair correspondence in such cases cannot be established 

unambiguously because some atoms within each structure are topologically equivalent to 

one another. For example, Cδ1 and Cδ2 atoms in a single phenylalanine (Phe) residue are 

topologically equivalent and therefore can be mapped into Cδ1 and Cδ2 atoms of the 

corresponding Phe residue of a different structure in two ways. The list of residues that 

cannot be mapped unambiguously includes: Arg, Asp, Glu, Leu, Phe, Tyr, and Val. 

Fortunately, the complexity of finding the optimal correspondence minimizing the overall 

side-chain RMSD is linear with respect to the number of residues. Figure 2 illustrates the 

distribution of heavy atom RMSD for a large set of small-ligand binding pocket pairs in 

PDB, calculated with and without side chain rotamer enumeration. While on average, 

finding the optimal atom correspondence reduces pocket RMSD by less than 0.1 Å, this 

effect is largely unpredictable and for extreme cases, can reach 0.5 Å.

RMS of dihedral angles—An approach complementary to Cartesian backbone RMSD is 

based on the representation of the protein structure in the internal coordinates that include 

bond lengths, planar bond angles, and dihedral torsion angles. For example, the geometry of 

a polypeptide chain backbone is described by the set of pairs of dihedral angle values, ϕ and 

ψ, which provides a way for a superimposition-independent structure comparison with the 

dihedral angle RMS used as the similarity scoring function. The dihedral angle RMS is 

complementary to the atom RMSD in the sense that it captures a different, less intuitive 

aspect of protein structure similarity. Modification of a small number of backbone dihedral 

angles can distort the global structure and packing beyond recognition while having only 
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marginal effect on the dihedral angle RMS. At the same time, very similar structures are 

sometimes characterized by significant variations in their dihedral angles simply because 

these variations may partially cancel each other (e.g. peptide flips). These phenomena are 

well illustrated by the experimental distribution of backbone dihedral angle RMSD as 

compared to backbone RMSD (Figure 1). For example, none of the three representative 

outlier clusters in terms of backbone RMSD, estrogen receptor, albumin, and myosin, is 

characterized by dihedral angle RMS deviating by more than two standard deviations from 

the experimental structure pair average. Similarly, the distribution of dihedral angle RMS of 

the GPCR Dock models to their respective reference structures lies in a region well 

populated by the experimental structure pairs, while their common sense similarity in terms 

of backbone RMSD remains on the margins of the experimental distribution.

Global Distance Test (GDT)—As described above, RMSD heavily depends on the 

precise superimposition of the two structures and is strongly affected by the most deviated 

fragments. A clever way to overcome both shortcomings was implemented in the two 

methods routinely used for CASP model evaluation, Global Distance Test (GDT) and 

Longest Continuous Segment (LCS) (28): here multiple superimpositions, each including 

the largest superimposable subset for one of the residues, are calculated between the two 

structures. In application to comparison of a model to an experimental answer, it means that 

for each residue from the model, the largest continuous (LCS) or arbitrary (GDT) set of the 

model residues is found that contains the residue and superimposes with the corresponding 

set in the reference structure under a selected RMSD (LCS) or distance (GDT) cutoff. The 

maximal residue set for each cutoff is chosen, followed by averaging over several fixed 

cutoffs (e.g. 1 Å, 2 Å, 4 Å, and 8 Å). The output of a GDT calculation represents a curve 

that plots the distance cutoff against the percent of residues that can be fitted under this 

distance cutoff. A larger area under the curve corresponds to more accurate prediction.

The distribution plot of GDT total score on the large set of experimental structure pairs is 

shown in Figure 3(a). Unlike the global backbone RMSD, the GDT measure recognizes 

structural similarity very well for the absolute majority of experimental pairs (GDT-TS > 

50%). It is also more robust against small fragments movements. In particular, it effectively 

distinguishes the pair of active and inactive conformations of ERα which differ only in helix 

12 conformation (GDT-TS = 93%), from the pair of albumin structures with multiple 

smaller scale domain distortions (GDT-TS = 60%).

TM-score—Another problem that one runs into when using RMSD to compare protein 

structures is that the RMSD distribution also depends on the size of the protein. This 

becomes important when the models of several different size proteins are evaluated in 

comparison with one another. The dependence of RMSD on the protein size can be 

eliminated by calculating the so-called TM-score (29):
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Here Ltarget and Laligned are the number of residues in the reference structure and the aligned 

region of the model, respectively, and  is a distance 

scale derived from the analysis of large subsets of related and unrelated structures that is 

used to normalize the distances. Through its dependence on the Ltarget, the dependence of 

the obtained score on the target size is eliminated.

Iterative weighted superimposition and the associated superimposition error
—The main CASP measure, GDT, is dependent on several arbitrarily chosen fixed distance 

cutoffs. This dependence is replaced by a continuous distance dependent weight in the 

iterative weighted superimposition algorithm (30). By unbiased weight assignment to 

different atomic subsets, this algorithm gradually finds the better superimposable core 

between the two structures. It includes the following steps:

1. The atomic equivalences are established between the two structures and a vector of 

per-atom weights {W1, W2, …, Wn} is set to {1, 1, …, 1}.

2. The weighted superimposition is performed (31) and weighted RMSD is calculated 

as described above.

3. The deviations {d1, d2, …, dn} are calculated for all atom pairs, and their X-

quantile, dX is determined. The quantile X is an input parameter for the procedure 

that defines the minimal size of the superimposable core to be found; by default it 

is equal to 50%.

4. The new weights are calculated according to the formula

The well superimposed atoms are assigned weights close to 1, while the weights 

associated with strongly deviating atom pairs get progressively smaller.

5. Steps from (2) through (4) are iterated until the weighted RMSD value stops 

improving or the specified maximum number of iterations is reached.

Following this superimposition, the similarity of the two structures can be evaluated by the 

weighted RMSD or by taking the average of weights recalculated for the structure according 

to step 4 with dX set to a fixed value, e.g. 2 Å. The complement of this number, denoted 

superimposition error (Esuper), ranges from 0 to 100% with lower values corresponding to 

more similar structure pairs:

The presence of a minority of strongly deviating atoms does not compromise the 

superimposition error while large discrepancies are accurately captured and quantified 

(Figure 4).

Kufareva and Abagyan Page 7

Methods Mol Biol. Author manuscript; available in PMC 2015 February 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The algorithm resembles the one published by Damm and Carlson (32) with a few 

modifications, including the adaptable standard deviation for the Gaussian distribution (step 

4 of the algorithm) and the way the weighted RMSD is calculated (normalization by the sum 

of weights. The adaptable denominator in the distribution ensures a better quality 

superposition.

Figure 3(a) represents the distribution of GDT-TS versus superimposition error for the 

experimental structure pair set and for the two sets of GPCR Dock 2010 models. The two 

measures are highly correlated. The adaptive nature of the GDT-TS measure that combined 

multiple superimpositions for different parts of poorly superimposable structures makes it 

more permissive; for the absolute majority of experimental structure pairs its value exceeds 

50%. In contrast, superimposition error quantifies the structural deviations for a single 

weighted superimposition based on the largest common substructure; when two structures 

lack a significant common superimposable domain, superimposition error values may 

exceed 80%.

2.3 Contact-based measures of protein structure similarity

Contact-based measures rely on comparison of pairwise distances and/or interactions within 

one of the protein structures with the corresponding distances/interactions in the other 

structure rather than on finding the distances between the corresponding points in the two 

structures. They therefore possess the advantage of being superimposition-independent. 

Pairwise contact matrices found many applications as a method of 2D representation of 3D 

protein structure (33-36). Multiple possible contact definitions create a variety of contact-

based protein structure similarity measures and make them adjustable to each particular 

subject area. In particular, by changing the contact distance cutoff one can make the contact-

based similarity measure local or global to the evaluator’s taste.

In general, a contact can be defined as an arbitrary continuous function of two points in a 

protein structure, not necessarily representing the true physical interaction of these points. 

Point selection defines the “grain” or resolution in the contact definition:

• Residue level contact measures

- Coarse grain residue representation: single point per residue, e.g. Cα, Cβ, or a 

representative side chain “center of mass” point. Inter-residue contacts in the 

form of Cα-Cα distances were used, for example, in DALI algorithm for 

alignment-independent protein structure comparison (16).

- Full atom residue representation

• Residue fragment level contact measures (same as above but each residue is 

divided into fragments, usually the backbone made of N, Cα, C, O atoms and the 

side chain)

• Atom level contact measures (contacts are calculated between the individual atom 

pairs)

Ways of determining the contact function include:
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• Algebraic functions of inter-point distance (discontinuous, e.g. Heaviside step 

function, or continuous/smooth)

• Functions based on physical principles (contact surface area, interaction energy, 

etc.)

• Tabulated physics-based contact strengths as a function of inter-point distance and 

geometry.

Contact Area and Contact Strength Difference—In their Contact Area Difference 

(CAD) paper (37), Abagyan and Totrov came up with a contact definition that directly 

correlates with the strength of physical interactions, namely, they defined a residue contact 

as the difference in accessible surface area when calculated for a pair of residues separately 

or together. While this contact area measure provides the most realistic assessment of fold 

similarity between the two structures, it does require specific residue pairs to be in contact 

with about the same area. If the side chains are not packed correctly even with roughly 

similar fold, the distance will be large.

Contact functions based solely on Cα-Cα or Cβ-Cβ pairwise distances do not require correct 

(matching) residue-residue packing provided the backbones are similar. Given two residues 

whose Cα or Cβ atoms are located at the distance of d Å, the residue contact strength can be 

calculated as

where dmin and dmax are predefined distance margin boundaries. The values of dmin and dmax 

can be chosen in such a way that the corresponding contact strengths are correlated with the 

pairwise residue contact areas which in turn describe the real physical residue interactions. 

Cβ-Cβ contacts approximate contact areas more accurately than Cα-Cα, because on average, 

Cβ atoms are closer to the centers of mass of the residues they belong to. In (38), this 

approach was further improved by replacing Cβ atoms by virtual points, C′β, located in the 

direction of Cα-Cβ bonds at the distance of 1.5×d(Cα,Cβ) from the Cα atom of each residue. 

This was shown to further improve the correlation between the calculated contact strengths 

and residue contact areas with the optimal margin boundaries found to be dmin = 4 Å and 

dmax = 8 Å.

When comparing two structures by their contacts, one builds two matrices of atomic contact 

strengths: CR
n×n for the first structure and CM

n×n for the second structure or model. The 

contact similarity matrix CR∩M is constructed using CR∩M[i,j] = Min(CR[i,j], CM[i,j]); its 

weight is found as |CR∩M| = Σi,jCR∩M[i,j]. This weight can be compared to one of three 

quantities: the weight of the reference contact matrix, |CR|, model contact matrix, |CM|, or 

the union of the two, |CR∪M|, defined by CR∪M[i,j] = Max(CR[i,j], CM[i,j]) or CR∪M[i,j] = 

(CR[i,j] + CM[i,j])/2. The three approaches result in quantities ranging from 0 to 100% and 

reflecting recall, precision, and accuracy with which the model reproduces the reference 
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structure contacts. Alternatively, one may choose to report the contact differences which 

simply complement the above similarity measures to 1 or 100% (contact distance or 

difference = 1. – contact similarity).

Figure 3(b) shows that for a large subset of PDB structure pairs, as well as for GPCR Dock 

2010 models, contact strength differences calculated using the virtual C′β points are highly 

correlated with contact area differences (CAD). For most pairs of experimentally determined 

structures of the same protein, protein flexibility and experimental errors lead to the contact 

strength differences of 5-20%. Small flexible fragments or even large domain movements 

have only minor effect on the contact strength matrices making the contact strength 

measures robust to elastic large scale deformations. At the same time, these measures are 

sensitive to major changes in packing occurring as a result of modeling errors: the best 

GPCR Dock models appear to be about 30% different from the reference structure in the 

case of D3 and about 40% different in the case of CXCR4.

Further developments of contact strength definitions may include their parameterization 

according to the interacting residue types, complementation of the Cβ-Cβ distances with 

other parameters to better capture the dependence of the contact strength or likelihood on the 

relative residue orientation, and elimination of the trivial contacts occurring due to the 

covalent linkages between the neighboring residues. These research topics are however 

beyond the scope of the present chapter.

The importance of multiple criteria analysis—The location of computational model 

populations on the plots of distance-based and contact-based measures of protein similarity 

in Figures 3(a) and 3(b) shows that in both cases, the models occupy the outskirts of the 

experimental distribution, with models built by closer homology (D3) being more accurate 

than distant homology models (CXCR4). The biggest insight however is gained when 

distance-based and contact-based measures are plotted against one another (Figure 3(c)). In 

these coordinates, it becomes clear that for the experimental structure, pairs may often differ 

in conformation (as reflected by superimposition error) or in contacts (as reflected by 

contact strength difference), but rarely in both. In contrast, computational models differ from 

their respective answers by both parameters simultaneously, especially in the more difficult 

modeling case of CXCR4. This observation stressed the importance of applying 

complementary structure similarity measures that combine distance-based and contact-based 

approaches.

2.4 Comparing protein-protein and protein-ligand complexes

Protein structure similarity measures presented above had the goal of comparing two 

structures of a single protein; however, the same general principles apply to evaluation of 

the predictions of molecular interactions. In 2002, the CAPRI (Critical Assessment of 

Predicted Interactions) experiment started with the focus on protein docking (39). Other 

initiatives followed including the GPCR Dock assessment started in 2008 and focused on 

small molecule docking to GPCR targets (7) as well as the recent assessment of ligand 

docking and virtual screening organized by Open-Eye (8, 9).
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The task of docking is defined as prediction of the geometry and interactions in a complex of 

the given protein with either another protein (protein docking) or a small-molecule ligand 

(small molecule docking). In its pure form, the docking problem is based on the assumption 

that the structures of the unbound components are available. However, in real-life 

applications it is rarely the case; even when such structures do exist, they may not be 

directly usable for complex geometry prediction because of the induced fit effect (40, 41) 

and uncertainties in amino acid tautomerization, protonation, and hydration (42). If the 

unbound structures do not exist they must be generated by homology for proteins and by 2D 

to 3D conversion for small molecules which introduces an additional level of difficulty in 

the docking protocol.

Methods that are used for the evaluation of docking predictions are largely based on the 

same principles as the methods of comparison of protein structures described above. 

However because the focus is on the intermolecular interactions, one must ensure that the 

unrelated discrepancies in the structures of the individual interaction partners have minimal 

effect on the evaluation outcome.

Let us assume for simplicity that the complex of interest consists of only two molecules, and 

that one of them (a protein) can be classified as a receptor while the other one (another 

protein, a peptide, or a small molecule) is a ligand. In protein-protein complex prediction, 

the designation of one of the partners as a receptor is rather arbitrary and may be performed 

based on the size, rigidity, availability of structural information or other criteria.

The most common way to evaluate the correctness of the docking geometry is to measure 

the Root Mean Square Deviation (RMSD) of the ligand from its reference position in the 

answer complex after the optimal superimposition of the receptor molecules. The choice of 

this optimal superimposition is the first subjective decision that the evaluator must make, 

especially in the case when the receptor had to be modeled and therefore the reference and 

the modeled receptor structures are significantly different. To reduce the effect of the 

irrelevant incorrectly modeled receptor parts, it is important that the receptor 

superimposition is performed by a smaller subset of atoms that includes the immediate 

binding interface (or binding pocket in case of a small molecule docking problem). Criteria 

for the selection of the binding interface residues should be carefully formulated and stated 

upfront; the usual procedure involves selection of residues located at a certain distance from 

the ligand in the reference structure followed by expansion of this selection through the 

sequence so that the short discontinuous stretches of residues are either merged or 

eliminated. The final selection must consist of continuous sequence stretches of at least 4-5 

residues each to ensure that they can be properly aligned between the model and the 

reference structure. The interface selection must be derived from the reference structure and 

propagated to each complex model by the alignment-derived residue correspondence.

The interface atoms or pocket residues must now be superimposed for each model onto the 

reference structure. While the standard superimposition approach is the optimization of the 

selection heavy atom RMSD, flexible side-chains, loops, and termini may compromise the 

superimposition quality and therefore one of the more robust superimposition methods 

described above is preferred. Once the superimposition is performed, the time comes to 
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measure the RMSD between the ligand atoms in the model and the reference structures. The 

spectrum of caveats and challenges here is similar to that described in the previous 

paragraphs about RMSD, with the important distinction that whether the atoms in direct 

contact with the receptor constitute a minor or a major part of the ligand, they should remain 

the primary focus of the RMSD calculation. On the contrary, parts of the ligand distant from 

the interface or not in direct contact with the receptor must be down-weighted or disregarded 

in such an evaluation. For example the contribution of the solvent-exposed parts of the 

ligand to the overall similarity score was eliminated in the GPCR Dock 2008 assessment 

(the solvent exposed phenoxy group of the adenosine A2A receptor antagonist (7, 43, 44) 

(Figure 5 (a)). In protein docking, elimination of the effects of ligand parts not directly 

involved in the interaction with the receptor becomes critical (Figure 5(b)).

Due to these caveats and ambiguities, positional distance-based measures need to be 

complemented with the contact measures of docking complexes. Contact definitions for 

protein-protein complexes are identical to the single protein case but are applied to 

intermolecular residue contacts only. Contacts are calculated between each pair of residues 

in the receptor and in the ligand and can involve Cα-Cα, Cβ-Cβ, virtual C′β-C′β distances as 

well as the actual residue contact areas. In case of small molecule ligands, because the scope 

of the problem is smaller and because atomic-level interactions become primarily important, 

the definition of contact strengths should be extended to allow calculation of the inter-

atomic instead of the inter-residue contacts.

The definition of an atomic contact used for scoring protein-ligand complexes in the GPCR 

Dock 2008 modeling and docking assessment (7) involved a step-wise function of 

interatomic distance equal to 1 below the specified distance cutoff (4 Å) and 0 otherwise 

(Figure 6(a), black curve). In other words, each of the models was characterized by the set of 

all ligand-receptor atom pairs located at the distance of ≤ 4 Å; this set was compared to the 

corresponding atom pair set in the reference structure (45). While simple conceptually and 

computationally, this “hard distance cutoff” approach leads to unstable and discontinuous 

behavior of the contact difference function, because minor changes in the ligand and side-

chain conformation may result in large leaps in the number of matching contacts (Figure 

6(b)). To avoid this problem, the ligand-receptor atomic contact definition was refined in 

GPCR Dock 2010 with the continuous decrease margin approach in the spirit of (38). 

Instead of abruptly dropping to zero at the single cutoff of d0, the contact strength gradually 

decreased between two distances, dmin and dmax = dmin + m, where m is the margin size. The 

margin boundaries, dmin and dmax, were adjusted so that the average number of contacts 

calculated with and without the margin is the same using the following equation:

where r was calculated as r = 0.49 + 0.17 × m/d0. This equation was obtained by linear 

regression on the large number of complex structures.
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The atomic contact definition can be further improved by making it atom-type dependent 

and/or orientation dependent; this will allow, for example, automatic assignment of higher 

weight to correctly predicted hydrogen bonds between the ligand and the protein.

Interatomic contact strength matrices can be calculated for the model and the reference 

structure. Taking the element-wise minima produces the matrix of correctly identified 

contact strengths which can be further compared to the reference matrix to give contact 

recall, model matrix for contact precision, or a combination of the two to give some form of 

contact accuracy. In cases where the physical atom-atom contacts are measured, contact 

precision can usually be disregarded: molecular geometry and van der Waals interactions 

impose natural constraints onto precision values because they limit the number of physical 

contacts that can be made.

The phenomenon of internal molecular symmetry may become a serious hurdle for 

evaluation of similarity of a predicted docking complex to the experimentally derived 

answer by either distance-based or contact-based measures. If the ligand possesses any 

symmetrical groups, all topologically equivalent mappings of its atom set onto itself must be 

considered. For example, because the resonance-stabilized thiol form of the thiourea group 

is symmetric, as many as 16 atom permutations in the compound IT1t (Figure 6(c)) result in 

exactly the same ligand covalent geometry and bond topology; all of these have to be tested 

when determining either RMSD or contact similarity of this compound to its copy in a 

different structure. In combination with the internal symmetry of neighboring side-chains, 

this may easily lead to exponential growth of computational complexity.

2.5 Combining measures for ranking a model population

As described above, the concept of protein structure similarity involves multiple criteria 

leading to a very different ranking of models. Combining these criteria into a single 

numerical score seeks a fair balance between complimentary measures each representing an 

important part of the whole picture. However, the uncertainties of this combination (which 

terms to use and now to normalize them) often create even more confusion. An approach 

that is routinely used in CASP is based on the analysis of the distribution of scores 

calculated for each individual assessment criterion and each individual modeling target. 

Score mean and standard deviation (SD) are calculated for each criterion after which the 

score is converted into the intra-population Z-score by taking

where μS and σS are the average and standard deviation of the score S. Z-scores can be easily 

modified so that a larger value corresponds to a higher level of accuracy. In many cases it is 

beneficial to remove the lowest accuracy outliers in the set so that they do not significantly 

affect the overall distribution. The intra-population Z-scores calculated in this way for the 

multiple assessment criteria (e.g. RMSD and contacts) are then averaged to obtain a single 

Z-score that is used to rank the models for the given target.
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The intra-population Z-score approach allows bringing multiple differentially distributed 

criteria onto the same scale. In this way, it enables a fair comparison of the models for a 

given target protein without giving preferences to any of the assessment criteria and 

provides a way to determine the most accurate models in the population. The approach 

however is not devoid of drawbacks. Most importantly, it gives no information about how 

accurate the most accurate models are; therefore, Z-scores appear incomparable between 

different targets of varying difficulty. For a challenging target, even a model with the 

highest Z-scores is often extremely far from truth, while for targets with closer homology to 

the existing templates lower Z-score values may correspond to very accurate predictions. 

Furthermore, the choice of measures to be included in the Z-score is not only subjective, but 

often is decided only at the evaluation stage. Combining correlated criteria implicitly gives 

them higher weight in the overall Z-score. Finally, because not all assessment criteria are 

normally distributed, conversion of these values into Z-scores creates somewhat distorted 

statistics, in this case probabilities (a.k.a., the p-values) or their logarithms calculated for 

specific distributions make better contributions to the score (however they cannot be mixed 

with the Z-scores).

The main problem of the intra-population Z-score approach is the absence of information 

about how close the models are to the correct answer. Even within a population of 

completely incorrect models some model will be the “best”. To overcome this problem a 

better method is to compare the predictions with the distribution of the natural structural 

differences between “correct”, i.e. experimentally determined structure pairs. With the 

wealth of protein structure information growing exponentially (1), it is easy to calculate, for 

example, the distribution of ligand RMSD values between multiple structures of the same 

complex. After that, one can normalize a model ligand RMSD value from the reference 

structure by determining what fraction of experimental structure pairs are characterized by 

the same or higher ligand RMSD (cumulative distribution function, CDF). In principle, it is 

possible to calculate the Z-score of each model in the reference experimental value 

distribution, however, caution is necessary for criteria with non-normal distributions. The 

flipside of the CDF approach is that in difficult cases the majority of the models may appear 

far too distant from the real target structure to receive a non-zero CDF score; therefore, the 

model population ranking may become impossible.

To illustrate the concept of CDF percentiles, we calculated their values for the sets of D3 

and CXCR4 models in GPCR Dock 2010 (Table 1). For example, in comparison with the 

most favorable reference (answer) structure, an average model in the top half of the D3 set 

was better than 5.24% of experimental pairs by superimposition error, while an average 

CXCR4 model was only better than 1.68%. Unlike intra-population Z-scores, these CDF 

percentiles project the model quality on the uniform scale of correctness which makes them 

comparable not only (i) between the models, but also between (ii) different targets and (iii) 

assessment criteria. For example, by averaging CDF percentiles over the four comparison 

criteria in Table 1, we can obtain the CDF score of 3.33% for an average D3 model but only 

0.86% for an average CXCR4 model, which is representative of both absolute and relative 

accuracy of the modeling in the two cases. This result is of course expected given the fact 

that closer homology modeling templates were available in PDB for D3 than for CXCR4 at 
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the time of the assessment. It is quite encouraging however, that several D3 predictions fell 

into a significantly populated region of the experimental distribution, with the most accurate 

D3 model achieving 17.57% and 13.46% CDF values in terms of ligand RMSD and 

contacts, respectively.

3 Notes

3.1 X-ray structures as “golden standard” in model evaluation

Structural variability within sets of protein structures determined for the same parent protein 

but in different crystal or molecular environments has been acknowledged and quantified in 

several publications (3, 30, 46). On one hand, such variability may be due to the inherent 

protein flexibility triggered by a different complex composition or crystallization 

environment. On the other hand, it may be an artifact of the limited resolution of the 

structure determination techniques and the inevitable experimental errors. The extent of 

conformational changes observed between multiple structures of the same protein ranges 

from minor side-chain rearrangements to large-scale domain and loop movements, and 

depends on the protein functional class, crystal form and contacts (47), co-crystallized 

interaction partners (30) and other factors. A large-scale analysis of a redundant set of 

protein structures was performed in (3) and led the authors to the conclusion about the 

limited possibility of modeling proteins with multiple conformational states. In this regard, a 

legitimate question is whether a set of crystallographic coordinates represents an 

undisputable truth about native, biologically relevant structure of the protein, and whether it 

is conceptually correct to judge models by the degree of their structural similarity to the X-

ray “answer”. The question is open-ended, because up to date, X-ray crystallography is the 

only experimental method capable of elucidating proteins and their interactions at the atomic 

resolution level. Using crystallographic structures as modeling standards is therefore 

inevitable; however, several measures can be taken to account for arising issues:

• Compare the model to the relevant conformational states and complex 

compositions

• Compare the model to the conformational ensemble and not a single structure 

(choose either the best or the average score)

• Down-weight or eliminate the contribution of flexible or poorly defined regions

• Report comparison scores in context of their distribution between the multiple 

structures in the ensemble.

These steps help to translate the knowledge about the “natural” protein variation into an 

improved comparison measure. For example, in GPCR Dock 2010, all dopamine D3 

receptor models were compared to the two non-crystallographic symmetry related 

complexes in the reference structure, PDB 3pbl. The CXCR4 models were compared to the 

ensemble of as many as 8 reference complexes. For each combination of criteria, the values 

were reported in comparison with the most favorable reference in this ensemble. Moreover, 

the primary focus of the assessment was made on prediction of the ligand binding area and 

interactions which, in contrast to the intracellular or extracellular loops, are unlikely to be 

significantly affected by protein flexibility.
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3.2 Separating trivial from non-trivial: the naïve models

In addition to the question of how close a model is to the experimental structure, it is also 

important to know how far it is from the result of applying a sensible but trivial procedure. 

The so called “naïve” models allow evaluation of the contribution of newly developed 

advanced modeling and refinement procedures in comparison with the most simple and 

straightforward approaches. In a way, the role of naïve models is similar to the role of 

placebo in drug clinical evaluation. Quite interestingly, the number of drugs that fail in the 

clinical trials by the reason of being no more effective than placebos constantly increases 

(48), leading some to the conclusion that the placebo effect is strengthening. Similarly, the 

constant method development in protein structure prediction makes the “naïve” models 

increasingly sophisticated thus shifting the baseline in model evaluation.

The most straightforward way to build a naïve model is threading the target sequence 

through a homology template without any subsequent optimization, or, in some cases, with 

fast side-chain optimization aimed at removal of major steric clashes. Even along this simple 

path, several factors may dramatically affect the quality and the degree of naivety of the 

models. They include (i) choice of the homologous protein and (ii) of the specific structure 

of that protein to be used as the homology template, as well as (iii) choice of the target-

template sequence alignment which, with the exception of the extremely high homology 

cases, usually appears ambiguous. Figures 3(d,e,f) present the scatter plot of such naïve 

model on the background of the top half of GPCR Dock models. The accuracy range of the 

naïve models is substantial; in this case the range is primarily determined only by the choice 

of the homology template because we used our best knowledge sequence alignment in each 

case. For homology modeling, we used the six GPCR structures available in PDB prior to 

the 2010 GPCR Dock assessment: those of bovine rhodopsin in dark (bRho) and light-

activated ligand free (opsin) states (49-51), β1 and β2 adrenergic receptors (52-54), and 

adenosine A2A receptor (44). Our naïve models are close to the center of the distribution of 

the assessment models which may indicate the similarity of the approaches used by the 

GPCR Dock participants. However, a few models stand out and fall closer to the natural 

variation zone.

Whenever the modeling process includes not only modeling of the protein structure but also 

the docking of a protein or a small-molecule ligand, the definition of a naive model becomes 

even less defined. In rare cases when a homologous complex structure exists, it may be used 

to build a naïve, non-optimized model of the target complex as long as the target and the 

template ligands can be unambiguously (structurally) aligned. For protein ligands, the 

alignment may be based on sequence homology; but small molecules or in some cases short 

peptides may require finding the maximal common substructure between the target and 

template ligands, or establishing the correspondence in some other non-trivial way.

As an example, let us consider the challenges of building a “naive” model of the dopamine 

D3 receptor complex with eticlopride. This molecule belongs to a large class of aminergic 

antagonists and shares some degree of pharmacophoric similarity with previously 

crystallized antagonists of β2 adrenergic receptor, carazolol and timolol. We performed 

pharmacophore-based alignment of the three-dimensional eticlopride molecule onto the 

structures of these two adrenergic antagonists. Because the procedure produced several 
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answers, the top ten chemical alignments were taken for each template, each was combined 

with the six naïve models generated by sequence threading and locally minimized to 

eliminate severe side-chain/ligand steric clashes. This produced a population of “naive” D3 

complex models presented in Figure 7 (b). The accuracy range of these models is huge. 

Some of them approach (though none of them exceeds!) the level of accuracy of the best D3 

models in GPCR Dock 2010. Though the step of scoring and selection was not employed in 

this exercise, it illustrates that (i) the level of model naivety may be highly variable, 

especially in case of protein-ligand docking complexes, and (ii) “naïve” sampling is capable 

of producing very accurate models.

In summary: the naïve models are useful to separate the actual advances from the trivial 

sensible approach; however, their definition appears too ambiguous to make them reliable 

standards of structure comparison and evaluation.

3.3 Evaluation of model quality without direct comparison to the reference structure

3.3.1 Spatial feasibility—The first question that has to be answered about a model is, in 

fact, not the degree of its similarity to the reference structure, but its spatial feasibility. This 

kind of evaluation is widely used to assess local errors in crystallographic coordinates during 

the refinement process or submissions for a modeling competition. The evaluation may be 

based on geometrical, stereochemical or statistical criteria, e.g. WhatCheck (55, 56), 

PROCHECK (57), or MolProbity (58), while some others, e.g. ICM Protein Health (59) use 

realistic normalized force field residue energies, where the expected distributions for the 

energies for each residue are derived from high quality crystal structures. An alternative 

approach involves the cumulative residue pseudo-energies or scores calculated as function 

of local atom, residue, secondary structure, accessibility environment and trained to predict 

the deviations from the near native-models. Multiple methods (VERIFY3D, PROSA, 

BALA, ANOLEA, PROVE, TUNE, REFINER, PROQRES) were integrated into a meta-

server called MetaMQAP and trained to predict the residue deviations. While the individual 

residue predictions may not be accurate, combining different methods and averaging the 

residue signal in a five residue window led to impressive quality prediction values (60).

3.3.2 Ligand screening selectivity—Despite the obvious progress in protein structure 

prediction methodology and tools, the gain in modeling accuracy, as evaluated by similarity 

to the experimentally solved answer, has become less prominent in recent years (4). It 

appears therefore that the progress in the protein structure prediction area is reaching a 

certain plateau, and that the question of primary importance at this stage is not how to make 

models more similar to the experimentally derived structures, but how to make the most use 

of these models at the given level of prediction accuracy. Because one of major applications 

of modeling is in rational structure-based drug discovery and optimization, it appears 

relevant to directly evaluate the drug discovery potential of the models.

In the area of prediction of protein/ligand complex structures, Virtual Ligand Screening 

(VLS) enrichment by a model represents a clever way of evaluation of the model 

compliance with the experimental data in the form of small molecule chemical activity 

against the modeled protein. In this experiment, a large set of chemicals containing known 
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potent binders to the protein of interest (1-10% of the set) and diverse decoys of similar 

molecular weights and atom counts (90-99% of the set) is docked to the model, and the 

molecules are ranked by their predicted binding affinity. The model that efficiently and 

selectively scores the active molecules better than decoys apparently has a good potential for 

de novo drug discovery efforts. Quite interestingly, it appears also that such models often are 

most accurate in terms of predicted contacts between the ligand and the pocket atoms. For 

example, in both GPCR Dock 2008 (7) and GPCR Dock 2010 (10) assessments, model 

selection by VLS enrichment proved to be a successful strategy leading to most accurate 

predictions.

An important question is how to quantify VLS enrichment by a model. One of the traditional 

approaches to the problem involves calculation of the area under the so-called Receiver 

Operating Characteristic curve (ROC curve) which plots the ratio of true positives (TP, y-

axis) against the ratio of false positives (FP, x-axis) in the top portion of the hit list ordered 

by the predicted binding affinity for each value of the affinity cutoff. A variation of the ROC 

curve is built when the fraction of TP is plotted against the total number of compounds 

scoring below the given cutoff rather than the FP rate. Both approaches suffer from the 

inability to distinguish early enrichment from late enrichment, and therefore are often 

complemented by the specific enrichment factors (EF) at the given FP rate, e.g. EF1 denotes 

the fraction of correct, active compounds that score better than 1% of the top-scoring 

decoys.

The normalized square-root Area Under Curve (nsAUC) is the area under the curve that 

plots the fraction of TP on top of the hit list (y-axis) against the square root of the total 

number of compounds scoring below the given cutoff (x-axis). Previous studies indicated 

that this measure is more representative of the true model selectivity than either the regular 

ROC which under-stresses the initial compound recognition (Figure 8) of the log-AUC (61, 

62) which over-stresses it. With the non-normalized square-root AUC approach, the ideal 

sAUC (perfect recognition, all actives are ranked better than all inactives) and the random 

sAUC (actives are retrieved at the same rate as total compounds in the set, no recognition) 

are given by

and

respectively. Here c is the fraction of the active compounds in the set. For the purpose of 

comparing the AUC across different datasets, sAUC is normalized to get:
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that ranges from 0% (random) to 100% (ideal).

Finally, the VLS enrichment is not the only possible way to incorporate ligand binding 

information in the modeling process. Alternative approaches may be based on known active 

ligand pharmacophores, for example, by detection of complementarity of such 

pharmacophores to the model pocket. Though not directly measuring the drug discovery 

potential of the model, this approach also proved fruitful for increasing the accuracy of the 

GPCR-ligand complex structure prediction in GPCR Dock 2010 (10).
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Figure 1. 
Distribution of backbone atom RMSD/backbone dihedral RMSD values for a large number 

of experimentally determined pairs of protein structures in PDB. Representative structure 

pairs are shown. Computational models of dopamine D3 receptor (•) and chemokine 

receptor CXCR4 (+) are presented on the experimental structure pair background.
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Figure 2. 
Because some protein sidechains possess internal symmetry, atom correspondence between 

two identical sets of residues can be established in multiple ways resulting in different atom 

RMSD values. Finding the true pocket RMSD requires enumeration of possible 

correspondences between multiple equivalent side-chain rotamers. Equivalent rotamer 

enumeration lowers the calculated pocket RMSD by ~ 0.07Å on average, and by as much as 

0.5 Å in extreme cases. Statistics collected from a set of 65000 PDB pocket pairs is 

presented as well as the results of analysis of GPCR Dock 2010 models.

Kufareva and Abagyan Page 23

Methods Mol Biol. Author manuscript; available in PMC 2015 February 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. 
Distribution of different measures of protein structure similarity for a set of 130000 protein 

structure pairs in PDB (a-c, heat map), GPCR Dock 2010 models (a-c, • for D3 and + for 

CXCR4; d-f, heat map), and naïve models of GPCR Dock 2010 targets (d-f, ○ for D3 and + 

for CXCR4). Only the top half of each GPCR Dock model set is shown: models less 

accurate than average are eliminated.
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Figure 4. 
Calculation of superimposition quality and superimposition error for representative structure 

pairs from Figure 1. Superimposition quality is calculated as the area under the weight 

curve; superimposition error (Esuper) is its complement to 100%. Essentially identical 

structure pairs like active/inactive conformation pair of ERα receive high weight for the 

majority of the structure and, consequently, low value of superimposition error.
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Figure 5. 
Distance-based evaluation of protein-ligand (a) or protein-protein (b) complexes must be 

focused on ligand parts that are in direct contact with the receptor, and not on the entire 

ligand molecule. Because position and conformation of solvent exposed parts is only 

approximately defined by the interaction within the complex, such parts must be either 

excluded or down-weighted in docking complex evaluation.
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Figure 6. 
Issues in evaluation of atomic contacts in protein complexes with small molecules: (a) 
definition of atomic contact strength with and without the continuous decrease margin; (b) 

hard distance cutoff (no margin) definition of the atomic contact leads to unstable behavior 

of the contact strength as a function of contact radius; (c) example of a small molecule with 

high degree of internal symmetry. Topologically equivalent atom permutations need to be 

enumerated when evaluating RMSD or comparing contacts of this molecule with its copy in 

a different structure.
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Figure 7. 
Distribution of ligand RMSD values and atomic contact strength differences between 

identical composition complex structures: statistics of a large subset of experimental 

complex structures pairs in PDB (a, heat map), GPCR Dock 2010 models (a, • for D3 and + 

for CXCR4; b, heat map), and naïve models of dopamine D3 receptor (b, ○).

Kufareva and Abagyan Page 28

Methods Mol Biol. Author manuscript; available in PMC 2015 February 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 8. 
Unlike the routinely used ROC AUC (a), the normalized square-root AUC (b) rewards the 

initial hit recognition in virtual ligand screening. This approach makes the profile in black 

preferable over the one in gray.
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Table 1

Cumulative Distribution Function (CDF) percentiles of GPCR Dock 2010 models in the experimental 

distribution. Statistics are calculated for the top half of each model set, i.e. models less accurate than average 

are eliminated.

Average CDF Best CDF

protein similarity measure D3 CXCR4 D3 CXCR4

superimposition error 5.24% 1.68% 8.40% 2.40%

virtual C′β-C′β contact strength difference 2.06% 0.10% 3.99% 1.20%

ligand heavy atom RMSD 3.65% 0.91% 17.57% 5.02%

ligand-pocket contact strength difference 2.36% 0.75% 13.46% 2.60%
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