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Introduction

Osteoarthritis (OA) is the most common degenerative joint disease affecting articular 

cartilage and other joint tissues, resulting in serious morbidity and large socioeconomic 

impact (1–3). In the US, 27 million people experienced OA in 2005 (4). The total cost 

attributed to arthritis and other rheumatic conditions in the US was 128 billion dollars in 

2003 (5,6). Due to an aging population and increasing obesity rates, OA will become even 

more prevalent in the next decades with an estimated 67 million Americans expected to be 

diagnosed with arthritis by 2030 (7). The final treatment option for OA is joint replacement, 

which is associated with complications, limited durability, and contributes to the high costs 

of OA.

Consequently, current OA research focuses on strategies that may be disease modifying, 

such as disease-modifying osteoarthritis drugs, chondrocyte implantation, stem cell therapy, 

or high tibial osteotomy (8–10). Attention is also focused on measures that may prevent or 

delay OA onset, including lifestyle interventions. These strategies all target OA at an early 

stage when they are most effective, thereby avoiding or delaying joint replacement.
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In order for therapeutic approaches to OA to be successful, monitoring of their effectiveness 

with accurate, sensitive, and objective imaging techniques is essential. Clinical OA 

measurements, such as pain, remain important, but are subjective and correlate poorly with 

disease severity (11,12). Radiography is used to stage and follow OA, but it cannot depict 

articular cartilage directly and correlates weakly with cartilage damage on arthroscopy 

(13,14). Furthermore, radiography is incapable of detecting early OA and subtle OA changes 

(15,16), and often does not correlate with OA symptoms (17,18).

Magnetic resonance imaging (MRI) is useful in OA because cartilage and other joint 

structures can be assessed for morphologic changes more reliably than on radiography 

(19,20). Several semiquantitative MRI scoring systems for OA have been developed, such as 

the Knee Osteoarthritis Scoring System (21), the Whole-Organ Magnetic Resonance 

Imaging Score (22), the Boston Leeds Osteoarthritis Knee Score (23), and the MRI 

Osteoarthritis Knee Score (24,25). Cartilage segmentation followed by thickness or volume 

measurements increase sensitivity further (26,27). Morphologic changes, however, are not 

always present in early-stage OA and may not change significantly with disease progression. 

In addition, conflicting reports have been published on the association between cartilage 

defects on morphologic MRI and pain or other OA symptoms (28,29). Therefore, MRI 

methods that rely on morphology may fail to capture early OA onset or subtle changes in 

disease severity (30). Because of the limitations of radiography and traditional MRI 

methods, there is need for new imaging modalities to not only advance our understanding of 

the pathogenesis of OA, but to provide novel end points to accelerate development of 

therapies. In the future, use of imaging to identify asymptomatic individuals in a “pre-OA” 

state may identify individuals for whom therapeutic intervention could prevent the 

subsequent development of OA.

Novel imaging techniques that enable measurement of the biochemical composition of 

cartilage rather than its morphology show promise to fulfill this need (31,32). These 

techniques offer numerical outcome measures that can be used as imaging biomarkers for 

cartilage quality in research on OA and other joint diseases. In addition, they may enhance 

understanding of the pathogenesis of OA. A recent report suggests that quantitative MRI 

may correlate better with knee pain in early OA (33). The majority of quantitative imaging 

techniques for cartilage composition are MRI-based, but recently computed tomography 

(CT) arthrography was also shown to be a suitable imaging modality for this purpose (34). 

In addition, quantitative imaging techniques are also applied to other tissues, such as menisci 

(35–37) and intervertebral discs (38,39). Most research, however, has been performed on 

articular cartilage of human knee joints.

This article presents the principles of quantitative imaging techniques for cartilage 

composition of the human knee, followed by a description of the most commonly used 

techniques, their advantages and limitations, as well as reported applications.

Principles of quantitative cartilage imaging

Hyaline articular cartilage is largely acellular as chondrocytes constitute only 4% of its wet 

weight (40). The main components of hyaline cartilage are water (65–85%), the extracellular 
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matrix consisting of type II collagen (15–20%), and proteoglycans (PGs) (3–10%) (41,42) 

(Figure 1A). Hyaline cartilage can be subdivided in 3 layers: the superficial, middle, and 

deep layer. In healthy cartilage, PG density and the orientation of the collagen fibers vary by 

location within the cartilage layer and regionally within the joint (41,43–45) (Figure 1A).

PGs mainly consist of glycosaminoglycans (GAGs) that are negatively charged due to 

ionized sulfate and carboxyl groups. These strong negative electrostatic charges, collectively 

responsible for the so-called fixed-charge density, are important contributors to the structure 

and biomechanical properties of articular cartilage (40). They allow GAG molecules to be 

fixed to the extracellular matrix and attract positive ions that attract water molecules, 

resulting in a swelling pressure of cartilage. This tendency to expand is counteracted by the 

surrounding collagen mesh-work and this balance between swelling pressure and collagen 

tension contributes to the tremendous tensile and compressive strength of hyaline cartilage 

under normal physiologic conditions (40–42,46).

It has been shown that in the early stage of OA and other hyaline cartilage diseases, PGs and 

GAGs leak from the cartilage and the collagen fibers change in size and orientation, 

allowing more water and less restricted water diffusion into the cartilage. These initial 

disease processes occur without macroscopic alterations in cartilage morphology (31,32) 

(Figure 1B). When cartilage disease progresses, morphologic changes (thinning and defects) 

of the cartilage appear (Figure 1C). Recently, MRI techniques have been introduced that are 

capable of measuring changes in cartilage composition before morphologic changes occur. 

These techniques all provide quantitative measures that correlate with collagen and PG 

content. Some techniques are believed to specifically correlate with the GAG component of 

PG, whereas other techniques correlate with water content and with collagen content and 

orientation. Several MRI methods have been proposed, each providing different outcome 

measures that can be used as imaging biomarkers.

The quantitative MRI techniques for cartilage composition require postprocessing 

algorithms to derive the outcome measure in the specific cartilage region of interest. 

Consequently, the underlying mathematic modeling may impact the quality and reliability of 

the biomarker. For example, it has been demonstrated that calculation of T1 relaxation times 

in quantitative cartilage MRI is improved by applying an automated registration algorithm 

(47,48).

In addition to the various MRI techniques, it has been shown that CT provides a quantitative 

outcome measure for cartilage biochemical status (34). Specific features and selected 

applications of quantitative MRI and CT techniques for cartilage composition are discussed 

below. Outcome measures, clinically relevant biochemical correlates, reported typical 

outcome values for healthy and OA-diseased cartilage, and advantages and disadvantages of 

each technique are summarized in Table 1.
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Quantitative MRI techniques for cartilage composition

Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC)

The dGEMRIC mechanism makes use of the repulsive force between a negatively charged 

contrast agent (gadopentate dimeglumine) and negative charges on the GAGs, resulting in 

the contrast agent accumulating in cartilage inversely with GAG content (49). The outcome 

parameter is T1 relaxation time (usually averaged for the pixels in a region of interest: the 

dGEMRIC index). T1 relaxation time is reduced by the contrast agent and consequently is 

lower in areas with decreased GAG content compared to healthy cartilage (Figure 2A). The 

contrast agent is commonly administered intravenously using a double dose (0.2 mmole/kg 

[50]), after which the joint is exercised to promote contrast distribution into the synovium 

and joint cavity. For knees, a 90-minute delay between contrast injection and image 

acquisition is usually applied to achieve a semi-equilibrium state between contrast agent and 

cartilage (51). It has been reported that precontrast imaging is unnecessary (52,53). 

Variations on the dGEMRIC protocol have been reported, with the contrast injected 

intraarticularly (54,55), the contrast agent dose changed (50,56), and the length of delay 

optimized for other joints (56). Image acquisition is aimed at calculating the dGEMRIC 

index in the cartilage, and several MRI pulse sequences can be applied (57–59) with variable 

flip angles (60) or inversion times (57). Recently, time-efficient 3-dimensional (3-D) pulse 

sequences were applied that allowed coverage of the entire joint (57–59).

dGEMRIC has been validated largely with in vitro experiments, demonstrating a good 

correlation with GAG content. In vivo validation studies of dGEMRIC, however, are 

lacking, except for one study by Watanabe et al in which the difference between T1 

relaxation time before and after contrast administration was found to correlate with GAG 

content of biopsied cartilage determined by liquid chromatography in 9 patients after 

autologous chondrocyte implantation (ACI) (61). When performed according to a 

standardized protocol, reproducibility of dGEMRIC was found to be good in several studies 

in healthy and OA subjects (62–64). It has been shown recently that dGEMRIC is associated 

with change in cartilage thickness over time (65).

dGEMRIC has been applied in studies on the influence of anterior cruciate ligament (ACL) 

tear (66,67), femoroacetabular impingement (68), and developmental dysplasia of the hip 

(69,70) on cartilage quality and OA pathogenesis. It was also used to study the OA disease-

modifying potential of oral (71) and intraarticular medication (72), high tibial osteotomy 

(73), and weight reduction (74), and to followup cartilage repair with (matrix-associated) 

ACI in the knee (75) and ankle (76). In the field of rheumatoid arthritis, dGEMRIC has been 

used to visualize early cartilage damage in finger joints (77) and to assess the therapeutic 

effect of tumor necrosis factor inhibitors (78).

dGEMRIC is regarded as the best available imaging tool for indirect GAG measurement in 

vivo. There are, however, disadvantages of dGEMRIC mainly related to the contrast agent 

that increases costs and is potentially dangerous for patients with impaired renal function. 

Total examination time is extremely long due to the required delay between contrast 

administration and image acquisition (Table 1). Finally, rate and degree of contrast 

accumulation in cartilage may be influenced by factors other than cartilage GAG content, 
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such as collagen content and orientation (79,80), pharmacokinetics (81), and type and 

duration of the exercise (56,82).

T2 mapping

T2 mapping is regarded as the best method to measure collagen content (measured by signal 

intensity) and orientation (expressed by anisotropy) (83,84). In healthy cartilage the collagen 

network exhibits low signal intensity on T2-weighted MRI. In the earliest stages of cartilage 

disease, damage occurs to the cartilage matrix, causing loss of collagen content as well as a 

disorganization in its orientation, reflected in elevated T2 relaxation times (85) (Figure 2B).

Image acquisition in T2 mapping is usually performed using multiple spin-echo sequences at 

different echo times (83). Several recent alternatives have been proposed that yield full joint 

coverage within a relatively short acquisition time (86–89). In addition, double-echo steady-

state was recently introduced as a time-efficient 3-D T2 mapping sequence with 

simultaneous acquisition of apparent diffusion coefficient values in cartilage that provide a 

measure of water diffusion (90,91).

In a recent multicenter multivendor study by Mosher et al, reproducibility of T2 mapping 

was found to be moderate to high in OA patients and normal controls (92). Previous 

validation studies of T2 mapping in vitro (84,93,94) and in vivo (85,95,96) have 

demonstrated that T2 mapping is a reliable method for quantification of early changes in 

collagen content and orientation. Although many authors have suggested T2 mapping to 

specifically correlate with collagen (83), some studies have also found a relationship with 

PG content (97–99).

T2 mapping has been used frequently as an outcome measure in clinical studies. Examples 

in the knee include T2 mapping to assess cartilage quality after ACL reconstruction (100), 

and cartilage repair procedures such as ACI (101) and microfracture (102,103). Abnormal 

T2 relaxation times have been reported to correlate with knee malalignment (104), meniscal 

pathology (105), and progression of knee OA (106). In the hip, T2 mapping was shown to be 

an indicator of early cartilage degeneration in patients with hip dysplasia (107) and slipped 

capital femoral epiphysis (108), whereas in the ankle it was mainly used to followup 

cartilage repair (109–111). T2 mapping is also incorporated as an imaging biomarker in 

large-scale epidemiologic studies on knee OA, such as the Osteoarthritis Initiative 

(33,112,113) and followup measurements of the Rotterdam Study (114,115).

T2 mapping shows high correlation with collagen content and orientation without the need 

for contrast administration (Table 1). Therefore, it provides information on cartilage quality 

that may be complementary to GAG-specific techniques. Drawbacks include magic angle 

effects (116) that may render T2 relaxation times inaccurate in certain areas of the joint 

(117). Another potential disadvantage is the fact that PG depletion has been suggested to 

occur earlier in the OA disease process than collagen loss by several reports (118–120). 

Therefore, T2 mapping may possibly detect cartilage changes later than GAG-specific 

techniques. It has been suggested that isolated PG depletion from cartilage may be reversible 

and more amenable to repair than cartilage with a structurally damaged collagen matrix (83).
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T1rho mapping

T1rho mapping, also described as relaxation in the rotating frame, uses a constant radio 

frequency field referred to as a “spin lock” pulse to change relaxation rates of water 

associated with large macromolecules in cartilage. As T1rho relaxation time is sensitive to 

protons associated with PG and GAG, several authors have suggested a direct relationship 

between T1rho relaxation time and PG/GAG concentration (121). Decreased GAG content 

may lead to increased mobile proton density in bulk water and increased T1rho relaxation 

times (Figure 2C).

Reproducibility of T1rho mapping was found to be moderate for the femorotibial joint, but 

substantially better for patellar cartilage regardless of OA stage (92,122). The inverse 

relationship between T1rho relaxation time and PG/GAG content was found in several in 

vitro bovine cartilage experiments (123,124) and ex vivo human cartilage specimen 

validation studies (97,125), but the strength of the reported correlations varies 

(97,123,126,127). Several recent in vivo studies have also reported inconsistent correlation 

coefficients (range 0.2–0.61) for the relationship between T1rho relaxation times and GAG 

measurements (98,99,128). These differences between in vitro and ex vivo results compared 

to the in vivo results may be caused by the differences between preclinical and clinical 

T1rho sequences used for these studies (129).

Applied in clinical knee OA research, elevated T1rho relaxation times were found to 

correlate with age (130) and clinical OA scores (131), as well as predicted OA progression 

after 2 years followup (106). After ACL tears, T1rho relaxation times in femorotibial 

cartilage were found to be significantly increased generally (67) and in specific areas 

overlying bone marrow edema–like lesions (132), as well as in patients following ACL 

reconstruction (133). T1rho was also shown to be feasible for monitoring of cartilage repair 

procedures such as microfracture (102) and mosaicplasty (134). In several studies by Souza 

and colleagues, T1rho was sensitive to alterations in knee cartilage composition due to 

various loading conditions, such as jumping tasks (135), acute loading (136), and unloading 

(137). T1rho relaxation times were found to be decreased immediately following 30 minutes 

of treadmill running (138), and elevated 48 hours and 3 months after marathon running 

(139). Outside the knee, T1rho was able to detect biochemical differences in acetabular 

cartilage between normal and cam-type femoroacetabular impingement hips (140).

Although the exact biochemical correlate in terms of cartilage biochemical composition is 

still debated, T1rho has been advocated as a method to noninvasively measure cartilage 

GAG content without a contrast agent (Table 1). A disadvantage of T1rho is the large radio 

frequency power applied that may cause tissue heating at higher field strengths (122,141).

Ultrashort echo time (UTE)

Important musculoskeletal tissues such as cortical bone, tendons, ligaments, menisci, and the 

deepest layers of articular cartilage have short intrinsic T2/T2* relaxation times and produce 

little or no signal on most conventional T2-weighted sequences (142). UTE MRI applies 20–

50-fold shorter TEs so that signals from short T2/T2* relaxation time tissues can be detected 

(143,144). This enables visualization of the deepest cartilage layers, including the calcified 
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zone (Figure 3). Furthermore, UTE offers the possibility to study the osteochondral junction 

and subchondral bone structure that both are believed to play a role in the pathogenesis of 

OA and cartilage damage (145). Novel UTE sequences also enable T1 and T1rho 

measurements in deep cartilage layers (146) or yield constant signal intensity data sets 

(147). Reproducibility of UTE T2* mapping of human articular cartilage in vivo was 

reported as good in a study of 11 asymptomatic subjects (148).

Although UTE is a promising method that offers assessment of the entire cartilage layer, the 

technology is still evolving and there have been no reports on its application as an outcome 

measure in clinical studies. Disadvantages include lengthened scan times and several other 

challenges related to MRI technique and physics that can reduce image quality (149) (Table 

1).

GAG-specific chemical exchange saturation transfer (gagCEST)

Specific MRI sequences acquire independent signals from 2 water pools: free water and 

macromolecule-bound water. Interactions between these water pools result in a decrease of 

free water signal, the extent of which can be analyzed and used as a measure of 

macromolecule content in certain tissues. This MRI effect is called magnetization transfer 

(MT) (150). In cartilage, MT occurs between water bound to the collagen fibers and free 

water (151).

CEST is an adaptation of MT featuring selective magnetic saturation of exchangeable 

protons of specific molecules. Applied in cartilage, hydroxyl residues of GAG are excited to 

provide a direct measurement of GAG content (gagCEST) (151). The outcome measure in 

gagCEST is usually expressed as an asymmetry value or percentage, whereby lower 

percentages indicate less GAGs in the cartilage matrix.

The technique has been validated in vitro by comparing the results of gagCEST in healthy 

versus GAG-depleted cartilage and to sodium signal (151). In vivo, results of gagCEST have 

been compared to sodium MRI of healthy and diseased cartilage (152), and the difference 

between gagCEST outcomes at 3T and 7T have been assessed (153). In clinical research, 

gagCEST has been primarily used to investigate effects of knee cartilage repair strategies 

(152,154) (Figure 4). A recent cadaver study by Schmitt et al also suggested feasibility of 

gagCEST in the ankle (155).

GagCEST is a promising technique to quantitatively measure GAG depletion of cartilage in 

early cartilage disease. GagCEST is applicable on 7T and 3T MR systems (152–155), but 

drawbacks of gagCEST include its technical complexity and need of sophisticated 

postprocessing tools. Although gagCEST is feasible at 3T MR systems, acquisition is very 

difficult compared to 7T MR systems and might not be possible at all on 1.5T scanners due 

to different relaxation properties of water at different MR field strengths (152,153) (Table 

1).

Sodium MRI

Unlike previously discussed MRI techniques that rely on proton (1H) imaging, sodium MRI 

measures sodium (23Na) signal (156). As positive sodium ions are associated with 
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negatively charged GAGs of the extra-cellular matrix (157), sodium MRI outcomes 

correlate with GAG content. GAG loss from cartilage in early cartilage degeneration is 

accompanied by reduced sodium concentration resulting in decreased sodium MRI signal 

(158) (Figure 2D).

Sodium imaging has been validated in vitro, demonstrating its sensitivity and specificity in 

detecting small differences in GAG concentration (157,159). It has been used both in vitro 

and in vivo to assess its potential to measure cartilage GAG content (49,160).

Despite good reproducibility in healthy volunteers and OA patients (161,162), sodium MRI 

is used infrequently as an outcome measure of cartilage GAG content in clinical research, 

due to several limitations, i.e., less favorable magnetic properties and a much lower 

concentration render sodium signal-to-noise ratio and in-plane resolution low unless the 

magnetic field strength is increased (158), special transmit and receive coils are used, and 

acquisition time is prolonged (163) (Table 1).

Nevertheless, several groups have applied sodium MRI in clinical studies to determine GAG 

content, mainly for cartilage repair assessment (152,154,164,165) (Figure 4C). Recently, 

fluid-suppressed sodium MRI at 7.0T was shown to distinguish healthy subjects from OA 

patients more accurately than conventional sodium MRI sequences (166).

Quantitative CT arthrography

Interest in quantitative CT arthrography to measure cartilage quality has recently increased 

(167,168). Like dGEMRIC, quantitative CT arthrography, also referred to as delayed 

quantitative CT arthrography, uses the inverse relation between a negatively charged 

contrast agent (ioxaglate) and GAG content in cartilage (34). The quantitative outcome of 

CT arthrography is the radiographic attenuation measured in Hounsfield units and is higher 

in GAG-depleted compared to healthy cartilage (Figure 5). In CT arthrography, the contrast 

agent is injected intraarticularly and is also used for cartilage delineation and segmentation 

(168,169). After contrast injection, the patient actively moves the joint to promote contrast 

distribution throughout the joint cavity. The reported delay between contrast administration 

and CT acquisition varies (34,169), but is shorter than dGEMRIC (51).

CT arthrography in humans has been validated in a recent ex vivo study in which 

radiographic attenuation on CT arthrography was correlated with GAG content in cartilage 

determined by a reference test (34). A recent in vivo study showed that CT arthrography 

correlates well with dGEMRIC T1 relaxation times in patients with knee symptoms (169). 

The reproducibility of CT arthrography has not been investigated yet, probably due to the 

relatively high amount of ionizing radiation used by most groups to obtain CT arthrography. 

It was demonstrated, however, that accurate measurement of overall cartilage quality is 

feasible with low-radiation dose CT arthrography protocols (170).

CT arthrography needs further optimization before it may serve as an outcome measure in 

clinical research. Despite ionizing radiation, the technique has some important advantages 

over MRI: short acquisition time, relatively wide availability, low costs, and high in-plane 

resolution. Its ability to simultaneously acquire high-resolution information on cartilage and 
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the underlying bone may be utilized to study the proposed role of subchondral bone in the 

pathogenesis of OA and cartilage damage (171) (Table 1).

Discussion and future perspectives

Quantitative MRI and CT techniques that measure cartilage composition in early disease 

stages are available. All techniques have a great potential to evolve further and be 

implemented increasingly in clinical research on OA. Even an application in patient care for 

specific clinical decision-making scenarios is foreseeable in the near future. Most techniques 

need thorough validation of in vivo measurements against in vitro reference standards, and 

studies comparing different techniques within the same subject are lacking. Future research 

should focus on larger-scale validation and comparison of these techniques. Quantitative 

imaging research needs to establish correlations with clinical symptoms and predictive value 

for clinical outcomes. These techniques will play a pivotal role in future research on and 

development of next-generation therapeutics for OA and other cartilage diseases. 

Ultimately, imaging could be used to guide clinical decision making by identifying 

individuals in a “pre-OA” disease state, for which intervention with a future disease-

modifying therapy could prevent the development of OA.
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Significance & Innovations

• There is great need for imaging to advance our understanding of the 

pathogenesis of osteoarthritis (OA), to provide end points to accelerate 

development of therapeutics, and to ultimately guide clinical decision making.

• A variety of innovative magnetic resonance imaging (MRI) and computed 

tomography techniques to measure cartilage composition are available, 

correlating with cartilage matrix elements (collagen and proteoglycans/

glycosaminoglycans) that are affected in early disease stages.

• The role of quantitative imaging techniques in OA is emerging because they 

detect cartilage disease at earlier stages than radiography and conventional MRI, 

and provide outcome measures that can be used as imaging biomarkers in 

clinical research.

• Quantitative imaging techniques for cartilage composition are likely to play a 

pivotal role in future research and development of disease-modifying therapy for 

arthritis.
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Figure 1. 
Schematic representation of articular cartilage composition and morphology in healthy (A), 

early-stage osteoarthritic (B), and advanced-stage osteoarthritic cartilage (C). In healthy 

cartilage (A), the orientation and density of the collagen fibers varies by location within the 

cartilage layer and regionally within the joint. Relative to the articular surface, their 

prevailing orientation is parallel in the superficial layer, oblique in the transitional (middle) 

layer, and perpendicular in the deep radial zone. Similarly, the concentration of 

proteoglycans varies according to location and is highest in the middle layer. In early 

osteoarthritis (OA) (B), proteoglycans and glycosaminoglycans leak from the cartilage and 

the collagen fibers change in size and orientation. These initial disease processes occur 

without macroscopic alterations in cartilage morphology. When OA progresses (C), 

morphologic changes (thinning and defects) of the cartilage appear. Color figure can be 

viewed in the online issue, which is available at http://onlinelibrary.wiley.com/doi/10.1002/

acr.22316/abstract.
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Figure 2. 
Delayed gadolinium-enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC), 

T2 mapping, T1rho mapping, and sodium imaging differentiate between healthy and early-

stage knee osteoarthritis (OA). Sagittal slices through the center of the medial or lateral 

tibiofemoral compartment of knee OA patients and healthy volunteers (insets) acquired 

using different quantitative MRI techniques (all images acquired in different subjects). None 

of the early OA patients showed clear abnormalities on the conventional MRI sequences 

(not shown). A, dGEMRIC color map shows a clear decrease in T1 relaxation times (purple/

red) in early OA, representing loss of glycosaminoglycans. B, T2 mapping demonstrates 

increased T2 relaxation times (blue/purple/red) in early OA due to disorganization of the 

collagen matrix and increase in water content. C, T1rho mapping shows increased T1rho 

relaxation times (red) in a patient with moderate knee OA. D, Sodium MRI detects less 

sodium signal in OA compared to healthy knee cartilage (inset). PG = proteoglycan. Color 

figure can be viewed in the online issue, which is available at http://

onlinelibrary.wiley.com/doi/10.1002/acr.22316/abstract.
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Figure 3. 
Morphologic and quantitative ultrashort echo time (TE) images of the knee. Ultrashort TE 

morphologic (A) and quantitative T2* (B) magnetic resonance images of a cadaveric knee 

(male donor, age 77 years). Note that the deepest layer of articular cartilage is clearly visible 

as a line of high signal intensity (A, white arrows), along with focal areas of diminished 

signal intensity (A, red arrows) that may suggest abnormality of the deep region. (Courtesy 

of Christine Chung, University of California, San Diego).
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Figure 4. 
Glycosaminoglycans (GAGs)–specific chemical exchange saturation transfer (gagCEST) 

and sodium magnetic resonance imaging (MRI) to followup cartilage repair. Proton density 

(A), gagCEST (B), and sodium (C) MRIs acquired at 7T of a patient 8.7 years after 

autologous osteochondral transplantation (white arrow). The color overlay in (B) represents 

the gagCEST asymmetries in percentages (the lower the values, the less GAGs are present in 

the cartilage). The color overlay in (C) represents the sodium signal-to-noise ratio values 

(the lower the values, the less GAGs are present in the cartilage). The transplantation region 

(white arrow) clearly contains less GAGs compared to the posterior femoral cartilage (B 
and C). The CEST image (B) has a relatively high spatial resolution compared to the sodium 

image (C), which makes the technique promising as an outcome measure for cartilage GAG 

content in future research. (Courtesy of Benjamin Schmitt and Siegfried Trattnig, Medical 

University of Vienna, MR Center of Excellence, Vienna, Austria [154]).
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Figure 5. 
Quantitative computed tomography (CT) arthrography detects Glycosaminoglycans (GAGs) 

reduction in osteoarthritis. Representative image of a knee with medial joint space 

narrowing (red box, middle panel) and a normal lateral joint space (green box, middle 

panel). CT arthrography clearly shows higher radiographic attenuation values, indicating 

less GAGs in the medial knee compartment (red box, left panel) compared to the lateral 

tibiofemoral compartment (green box, right panel) (34). Color figure can be viewed in the 

online issue, which is available at http://onlinelibrary.wiley.com/doi/10.1002/acr.22316/

abstract.
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