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Abstract

With the growing appreciation of RNA splicing’s role in gene regulation, development, and 

disease, researchers from diverse fields find themselves investigating exons of interest. 

Commonly, researchers are interested in knowing if an exon is alternatively spliced, if it is 

differentially included in specific tissues or in developmental stages, and what regulatory elements 

control its inclusion. An important step towards the ability to perform such analysis in silico was 

made with the development of computational splicing code models. Aimed as a practical how-to 

guide, we demonstrate how researchers can now use these code models to analyze a gene of 

interest, focusing on Bin1 as a case study. Bridging integrator 1 (BIN1) is a nucleocytoplasmic 

adaptor protein known to be functionally regulated through alternative splicing in a tissue-specific 

manner. Specific Bin1 isoforms have been associated with muscular diseases and cancers, making 

the study of its splicing regulation of wide interest. Using AVISPA, a recently released web tool 

based on splicing code models, we show that many Bin1 tissue-dependent isoforms are correctly 

predicted, along with many of its known regulators. We review the best practices and constraints 

of using the tool, demonstrate how AVISPA is used to generate high confidence novel regulatory 

hypotheses, and experimentally validate predicted regulators of Bin1 alternative splicing.
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1. Introduction

Splicing, the removal of introns and precise joining of exons, is an essential step in the 

biogenesis of mature eukaryotic mRNA. High-throughput studies across multiple tissues 

show that the inclusion of exonic regions in mature mRNAs can greatly vary, with ~95% of 
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human multi-exon genes undergoing alternative splicing (AS) [1,2]. The increased 

complexity of the transcriptome has several consequences. First, it serves to expand the 

proteome by allowing the same gene to produce mRNA isoforms that differ in coding 

sequence [3]. Additionally, AS can influence the fate of mRNA transcripts, either by the 

introduction of premature stop codons, which marks the transcript for nonsense-mediated 

decay [4], or by altering untranslated regions, which influences the presence of elements 

involved in transcript stability, translation efficiency, and localization [5]. Recently, AS was 

also shown to regulate the biogenesis of miRNAs that span exon–intron boundaries in 

primary transcripts [6]. Highlighting the importance of splicing and its regulation, studies 

estimate that anywhere from 15 to 50 percent of disease-causing mutations affect splicing 

[7].

Alternative splicing’s key role in post-transcriptional control of gene expression and its 

pervasiveness motivated much work to elucidate the mechanisms of AS regulation. Besides 

identifying spliceosome components and their interactions with the core splicing signals, 

decades of research resulted in the identification of many cis- and trans-acting elements 

involved in pre-mRNA splicing [for reviews see 8,9]. These include features such as splice 

site strength [10], local secondary structure [11], and splicing regulatory elements (SREs) 

which interact with RNA binding proteins (RBPs) to enhance or repress exon inclusion [12].

The role of AS in gene expression and disease state has also led to much interest in the 

broader community in mapping AS regulatory elements controlling exons of interest. 

Researchers became interested in identifying splicing defects due to mutations, tracing 

putative regulators, and understanding how exon inclusion levels change across cellular 

conditions. Consequently, tools were developed to identify some of the elements affecting 

splicing outcome. For example, a number of tools were created that search for splice sites 

and branch points and score how well they bind core spliceosomal components [13–15]. 

Tools are also available for basic motif searches for putative SREs or RBP binding sites 

[16,17], and some allow for scoring of core splicing signals as well [18,19].

The decades of research into splicing regulation revealed splicing to be a highly complex 

process, involving many regulatory elements interacting in a context specific manner. This 

observation motivated researchers to move from descriptive tools that give a “parts list” to a 

predictive splicing “code”, as a set of probabilistic rules that would predict splicing outcome 

directly from genomic sequence, given the cellular context [12]. Consequently, machine 

learning techniques were applied to high throughput, exonic level, expression data to 

develop such probabilistic code models [20]. Using over a thousand putative regulatory 

elements such as sequence motifs, RNA structure, and conservation, these algorithms were 

able to give accurate predictions for changes in exon inclusion levels across four main 

mouse tissue groups: central nervous system (CNS), muscle, digestive, and embryonic vs. 

adult tissues. Briefly, given a putative alternative cassette exon, these algorithms first 

compute the values for the many putative regulatory features extracted from the exon and its 

flanking regions depicted in Fig. 1a. They then use these values along with the cellular 

context (e.g., CNS tissue) to predict the splicing outcome (e.g., “increased exon inclusion in 

the brain”). These new algorithms thus offered a framework for performing predictive 

splicing analysis. Indeed, initial work demonstrated the splicing code models were able to 
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identify novel splicing changes affecting functional domains in disease-associated genes, 

recapitulate much of the previous results about regulatory elements, and identify novel 

regulatory elements that were experimentally verified [20]. Follow up research also 

demonstrated that splicing code models originally derived for mouse were successfully 

applied to human, chicken and frog with a high degree of overlap in underlying regulatory 

features [21]. However, these works were limited to sets of previously identified alternative 

cassette exons, and thus could not offer researchers splicing analysis for general usage.

AVISPA (http://avispa.biociphers.org) is a recently released web tool aimed to make 

splicing code models accessible for general usage [22]. Implemented as a Galaxy server to 

support iterative updates of new datasets and improved models [23], AVISPA is designed as 

a user friendly front end to splicing code models. It allows researchers to analyze an exon of 

interest to get predictions of whether the exon is alternatively spliced, whether it is expected 

to exhibit tissue-dependent inclusion, and to identify putative regulatory elements. Fig. 1b 

provides a brief overview of AVISPA’s input, processing, and output. The user’s query exon 

of interest is first mapped to the genome and a set of RNA related features is extracted. 

Next, an ensemble of over 5000 splicing code models is used to derive predictions of the 

splicing outcome. The exon is first scored for how likely it is to be an alternatively spliced 

cassette exon. If confidence in alternative splicing passes a significance threshold, the 

exon’s feature set is then run through a second set of models that predict whether the exon 

will be differentially included in specific tissues. Importantly, beyond the prediction of 

splicing outcome, AVISPA also reports the query’s feature enrichment and the effects of the 

in silico removal of regulatory motifs on the splicing prediction [22]. In all, AVISPA offers 

those without a computational background, or even those outside of the splicing field, the 

ability to interrogate current splicing code models to gain insights on the splicing profile and 

regulation of exons in genes of interest.

This paper serves as a “how-to guide” for in silico splicing analysis, focusing on how to use 

the AVISPA web tool. Before delving into analysis details, it is important for potential users 

to first note some limitations of AVISPA’s current implementation. First, AVISPA does not 

predict whole transcript structure but rather local changes in exon inclusion levels under 

different conditions. Second, it only supports cassette exons. While cassette exons are the 

most common form of alternative splicing in mammals [1], many other forms are known, 

such as 3′ and 5′ splice site variations, but are not yet supported. Third, AVISPA only 

supports predictions for differential splicing in the four main tissue groups listed before. 

Finally, it does not predict absolute exon inclusion levels. This means that instead of 

predicting, for example, “40% exon inclusion in brain and 20% in most other tissues” it 

offers predictions for “increased inclusion in the brain”. Other more technical constraints of 

AVISPA’s implementation are discussed as part of the analysis case described below. 

Addressing these limitations is an ongoing effort. Nonetheless, as we illustrate below, 

AVISPA can be effectively applied for in silico splicing analysis of genes of interest. 

Moreover, it is important to note that none of the limitations described above are inherent to 

in silico splicing analysis, and thus can be expected to be improved upon as updates are 

introduced into AVISPA.
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Here we illustrate how one can use AVISPA to carry out in silico splicing analysis on a gene 

of interest, Bin1. Bridging integrator 1 (BIN1) is a nucleocytoplasmic adaptor protein known 

to be functionally regulated through alternative splicing in a tissue-specific manner [24]. The 

mouse version of Bin1 is similar in structure and organization to the human gene and both 

play a role in muscle cell differentiation [25,26]. Moreover, a muscle specific isoform is 

essential for membrane curvature and T-tubule biogenesis in skeletal muscle and splicing 

misregulation of this exon has been associated with the muscle disorders myotonic 

dystrophy (DM) and centronuclear myopathy (CNM) [27,28]. Additionally, BIN1 has 

features of a tumor suppressor and BIN1 missplicing is associated with many human cancers 

due to a loss of its inhibitory interaction with the oncogenic transcription factor, Myc 

[29,30]. Fig. 2 illustrates some of the more well described splicing patterns of BIN1 and 

select protein isoforms analyzed in this paper. The figure also helps to illustrate some of the 

limitations of AVISPA as prediction for the complex alternative splicing event involving 

exons 13–16 is currently not supported. Nonetheless, the tissue-specific patterns and disease 

association of this gene make a detailed understanding of its splicing regulation particularly 

useful.

While some splicing regulatory elements of the exons of this gene have been described, it is 

likely that the full picture is far from complete. For example, alternative splicing of exons 7 

and 13 of Bin1 were only recently implicated in a network of exons regulated by the splicing 

factors Quaking (QKI) and polypyrimidine tract-binding protein (PTB) in myoblast cells 

[31]. Using a splicing event centered on exon 13 as a case study (hereafter, “triplet 

12.13.17”, Fig. 2), we describe how to use AVISPA and accurately interpret the output, 

while highlighting some current limitations and precautions that should be considered. 

Extending this analysis to the other exons of Bin1, we rediscover experimentally verified 

features of disease-associated alternative splicing events and suggest high-confidence 

predictions for novel regulatory effects. Finally, we experimentally validate predicted CNS 

splicing regulators in vivo using the mouse Neuro2-a (N2a) neuroblastoma cell line.

2. Methods

2.1. In silico splicing analysis using AVISPA

The event coordinates provided by Hall et al. [31] were used to identify the query exon as 

Bin1 exon 13 flanked by exons 12 and 17. Coordinates for this exon and its flanking regions 

were downloaded from the UCSC genome browser and input into AVISPA. Running an 

exon prediction task, or a query, in AVISPA requires first uploading the query as genomic 

coordinates (BED6 format) or sequence (FASTA format). A query consists of either the 

putative cassette exon of interest (“A”) alone or a cassette exon triplet, which specifies both 

the exon upstream (“C1” or “PreA”) and downstream (“C2” or “PostA”) of the query exon 

(Fig. 1a). If an exon triplet is specified, the name for each element must follow a specific 

format with the region added as a suffix (e.g., “Bin1_12.13.17_C2” or 

“Bin1_12.13.17_PostA”). Since AVISPA’s analysis is based on the mm10 mouse genome 

assembly, the original data files of Hall et al. [31] were converted using the Lift-Over tool 

integrated within AVISPA’s Galaxy server.
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When considering the query event one wishes to analyze, it is important to keep in mind 

certain length restrictions that could lead to an error. AVISPA does not analyze triplets 

containing micro exons less than 10 nucleotides (nt) long, exons larger than 5000 nt, or 

introns less than 25 nt. Additionally, only the exon proximal portions of introns are analyzed 

(i.e., 300 nt from each exon/intron boundary). For example, while triplet 12.13.17 does not 

violate any length restrictions, the region between exon 13 and 17 is quite large (>5300 nt) 

and spans multiple introns and exons. This means only the first 300 nt of the intron 

downstream of exon 13 (the I2(5′) region) and the last 300 nt of the intron upstream of exon 

17 (the I2(3′) region) are analyzed. While this region normally captures the vast majority of 

known splicing regulatory elements, any regulatory features located deep within these 

introns are not considered in the predictions and will not be reported. In contrast, if an intron 

is shorter than 600 nt the entire intron is analyzed and features that fall in the overlap of two 

intronic regions are analyzed for their effects in both regions.

It is also crucial to avoid misuse of query matching that might lead to spurious results. After 

submitting, a query is first matched to an internal database (DB) of known cassette exons, a 

DB of known transcripts, or the reference genome, in that order [22]. Thus, specifying an 

entire exon triplet in coordinates is the safest option to produce a mapping, as the 

coordinates specify the exact location in the genome. By contrast, submitting a single exon 

query may be simpler for users to execute, but has the potential to match multiple events in 

AVISPA’s DB (e.g., the query exon being present in transcripts with different flanking 

exons, as in the case of Bin1 triplets 12.13.17 and 12.13.18). In such cases AVISPA will 

inform the user that the query exon has multiple matches in the DB and offer to upload BED 

files for these matches that the user could then execute. It is important to note that AVISPA 

always uses the matched sequence in its DB. This allows users to submit even a partial 

sequence of a single exon, and still get AVISPA to match it and perform splicing analysis 

for it. Another consequence of using the matched sequence is that incorrectly defined exon 

boundaries and SNVs will be ignored. Fig. 3a shows AVISPA’s output mapping a sequence 

matched to Bin1 triplet 12.13.17. In this case, the user submission included a wrong exonic 

start position and a fabricated SNP mismatch, highlighted in green and red, respectively 

(Fig. 3a). However, in some cases users may have bona fide alternative 3′ or 5′ splice site 

definitions for some of the query’s exons that do not match the ones in AVISPA’s DB. In 

such cases, users can submit the triplet coordinates and check the “use coordinates as is” 

option. Using this option, the specified coordinates are matched directly to the genome, 

ignoring the known splice sites. The output will be based on the user defined coordinates, 

though the DB matched coordinates are reported as well. Care should be taken when using 

triplet coordinates to specify a query. Using this option allows users to submit genomic 

regions such as introns and untranslated regions without any error indication. While useful 

for exploring unannotated exons, misuse of this feature may produce highly inaccurate or 

meaningless output since AVISPA was not trained on these types of sequences.

Once a query’s information has been uploaded, the user has several options for the splicing 

analysis execution. Generally, AVISPA’s pipeline involves two prediction stages. The first 

stage determines whether the query exon is alternatively or constitutively spliced, and the 

second determines whether the exon is differentially included in specific tissues [22]. Before 
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execution, the user can specify the significance threshold for each prediction stage by using 

either a false positive rate (FPR) or relative rank value, calculated by comparing the query to 

a labeled set of exons the code model was trained on. It is important to note that if a query 

does not pass the given threshold for the first alternative versus constitutive prediction step, 

the tissue-specific predictions are not executed in order to save computational costs. 

However, if there is experimental evidence for the query exon being alternative, the user 

may specify this in a checkbox during submission. Selecting this option sets a permissive 

threshold (FPR = 0.5) for the first stage prediction, resulting in over a 90% chance that a 

known alternative exon will proceed to the second, tissue-dependent splicing analysis.

After execution, AVISPA’s graphical summary of the in silico splicing analysis is available 

either through the web tool’s interface, or as downloadable html files. The summary files 

include splicing prediction confidence, assessments of enriched regulatory features in the 

query, and evaluations of the in silico removal of regulatory cis elements on predictions. 

Extracts from these summary files for two of Bin1 splicing events are discussed in the 

results section.

2.2. In vivo experimental validation

2.2.1. Cell culture and transfection—For in vivo validation of AVISPA’s CNS 

predictions, Neuro-2a (N2a) cells (ATCC, CCL-131) were cultured according to the 

manufacturer’s recommendations in DMEM (Cellgro 10-013) supplemented with 10% heat-

inactivated fetal bovine serum (FBS) (Gibco 16000-044). To deplete splicing factors that 

AVISPA predicts to be relevant to our events, cells were transiently transfected using 

Lipofectamine 2000 (Life Technologies 11668019), according to manufacturer’s 

recommendations, with siRNA targeting Ptbp1, Qk, or green fluorescent protein (GFP) 

control (Thermo Scientific Dharmacon M-042865-01, M-042676-01, or P-002048-01, 

respectively). Protein depletion was confirmed from whole cell lysates by Western blot 

using antibodies for QKI (Bethyl Laboratories, Inc. A300-183A) or PTB (Calbiochem 

NA63), with hnRNP L (Abcam ab6106) as a loading control.

2.2.2. RT-PCR analysis—RNA was isolated 48 h following transfection using RNA-Bee 

(Tel-Test, Inc. Cs-105B) following the manufacturer’s protocol. Reverse transcription-PCR 

(RT-PCR) was performed as previously described in detail [32] using sequence specific 

primers for Bin1 triplet 12.13.17 (Forward: 5′-GCTGCTACCCCTGAGATCAGAGTG; 

Reverse: 5′-GTTGCTTCACTGGCTGCTGTTCCC) and triplet 6.7.8 (Forward: 5′-

AGCTGGTGGACTATGACAGTGCCC; Reverse: 5′-

CGCGATGCTCTGGAACGTGTTGAC). Gels were quantified by densitometry through the 

use of a Typhoon PhosphorImager (Amersham Biosciences). Percent inclusion was 

calculated as the percent of isoforms including the variable exon over the total isoforms 

relevant for each exon triplet analyzed.

3. Results and discussion

A query for Bin1 triplet 12.13.17 was uploaded in the form of a triplet BED as described 

above and AVISPA was executed with the default parameters (FPR = 0.05 for alternative vs. 

constitutive splicing and rank value = 0.05 for tissue-specific predictions). To gain further 
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insights on Bin1 splicing patterns, the same process was repeated for all of Bin1 exons found 

in RefSeq and AVISPA’s transcript DB.

3.1. Interpretation of AVISPA output for cancer-associated Bin1 triplet 12.13.17

3.1.1. Analysis of alternative vs. constitutive and tissue-specific predictions—
Fig. 3 highlights the three sections of the query summary for triplet 12.13.17 that is used to 

navigate through the various splicing predictions that AVISPA provides. We see from the 

query matching section of the output (Fig. 3a) that this exon was matched to AVISPA’s DB 

of cassette exons (level 1), indicating transcript- based support for this exon being 

alternatively spliced. Query match details indicate the coordinates of the matched event used 

for predictions, and we see there are differences between the query and the matched 

sequence. As mentioned before, it is the matched sequence that is analyzed, not the input 

which had a mislabeled exonic start position and a fabricated SNP.

The results of the splicing predictions are presented as a table and indicate that, based on the 

specified thresholds, this exon is both alternatively spliced and differentially included in all 

four tissue groups (Fig. 3b). Notably, passing the significance threshold for multiple tissues 

can occur for multiple reasons. Obviously, the more permissive the significance threshold 

used, the higher the chance more tissue-dependent predictions will pass it. Also, some 

regulatory features are shared between models for different tissue-dependent splicing and 

their occurrence will push for higher scores in all prediction tasks. Some of those features 

may be general regulation indicators, such as high intronic conservation around the 

alternative exon, while others represent factors known to operate in different tissues, such as 

FOX-1/2 binding in both muscle and brain tissues [33]. It is therefore important to also 

compare the relative confidence in the predictions and the chance of error. For example, the 

summary shown in Fig. 3b indicates a false positive rate of 0.003 for the alternative versus 

constitutive prediction step. This means that, based on comparisons between the query and 

the negative set used to train the model, the probability of falsely rejecting the null 

hypothesis (i.e., classifying this exon as alternative when it is actually constitutive) is 0.3% 

(Fig. 3b, first row). The rank values for the the tissue-dependent splicing predictions 

indicates that the most confident prediction is for differential inclusion in CNS where only 

0.2% of the samples in the reference set achieve a score as high as this Bin1 exon 13 triplet 

(Fig. 3b, rank = 0.002).

In addition to predicting whether the query is differentially spliced in these tissue groups, 

AVISPA also supplies predictions for whether the exon exhibits increased inclusion or 

increased exclusion in these tissues. This information about the polarity of the tissue-

dependent splicing changes is provided for each tissue group by clicking on the “+” sign in 

the splicing prediction table, and here we show muscle as an example (Fig. 3b). In muscle 

AVISPA makes predictions that pass the given significance threshold for both increased 

inclusion (rank = 0.006) and increased exclusion (rank = 0.002). Dual high confidence 

predictions such as this indicate that the exon has features that strongly suggest there is a 

splicing change in muscle, but the direction of this change is less clear.

Similar bi-directional predictions are given for CNS, embryo, and digestive tissues, but the 

relative magnitudes of these predictions point to an interesting hypothesis where the exon is 
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differentially included during development but then excluded in adult tissues (increased 

inclusion rank = 0.002 for embryo; increased exclusion rank = 0.002 for CNS, muscle, and 

digestive tissues). Such a splicing pattern would be in line with reports that missplicing of 

the BIN1 gene, leading to inclusion of exon 13, is associated with human cancers (Fig. 2, 

Bin1 12.13.17 and Bin1 12.13.18). Specifically, several works have shown that when exon 

13 is included in this way in adult tissues in both human and mouse cell lines, BIN1 no 

longer interacts with Myc to inhibit oncogenic activity [24,29,30,34,35]. We note that this 

same tissue-specific preference for inclusion in embryo and exclusion in adult tissues is 

observed with the splicing prediction for the Bin1 12.13.18 triplet (data not shown).

3.1.2. CNS regulatory feature analysis—In addition to splicing predictions, AVISPA 

provides the user with information about numerous regulatory features used to make these 

predictions. This information can help guide users to which cis and trans elements may 

control the inclusion of their exon of interest. The first type of information is the relative 

enrichment of these features in the query compared to several reference groups of exons, 

such as alternative or constitutive exons. This information is available to users as “Feature 

Effect” files for each prediction made, found by clicking on the bar charts in the right-most 

column (Fig. 3b). Here we use the outputs for the CNS-specific predictions as an example.

Various features are represented as a table with a heat map coloring scheme to highlight 

those that have particularly high or low values for their respective groups (Fig. 4b). Each 

row represents a feature and each column compares these features of the Bin1 exon 13 triplet 

to a reference set. For example, we see that the position of the first AG dinucleotide 

upstream of exon 13 scores relatively high, particularly when compared to the constitutive 

set where it scores higher than ~98.4% of this set (Fig. 4b, fourth column). Similarly, this 

feature scores higher than ~95.8% of the alternative set (Fig. 4b, third column). The fact that 

this feature scores higher than a greater percentage of the constitutive set could be expected 

because more distant first AG dinucleotides have been associated with more distant branch 

point sequences and alternative splicing [15]. We also note the high scores for secondary 

structure free regions downstream of exon 13 (I2(5′)) and upstream of exon 17 (I2(3′)). 

Because many splicing regulatory proteins bind RNA in a single strand state [36], these 

values indicate a higher likelihood that RBPs can bind to these regions and regulate exon 

inclusion.

For putative regulatory sequence motifs, AVISPA also includes a normalized feature effect 

(NFE) score, summarized using a bar chart. For each splicing prediction that passes the user 

defined threshold, a matching NFE summary file is produced. Briefly, the feature effect (FE) 

is computed by comparing the predictions for the “wild type” and an in silico “mutant” 

where the regulatory motif has been removed. The NFE score is then computed by 

normalizing each individual feature effect by the total effect of all motifs evaluated [22]. 

Given the many possible regulatory elements surrounding a query exon, the NFE score can 

thus help narrow down the list of regulatory candidates to ones that are more likely to affect 

the exon. However, since the scores are normalized per query and are based on differences 

in prediction confidence, users should be careful not to associate NFE scores with a measure 

of exon inclusion levels.
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Fig. 4a represents the NFE scores of regulatory motifs that may affect CNS Bin1 exon 13 as 

a stacked bar chart where the colors represent the region in which a motif was found. This 

chart is generated for each splicing prediction and is linked to AVISPA’s summary page. 

Selecting the prediction type in the Motif Visualization section (e.g., CNS) and clicking the 

“Motif Effect” icon (Fig. 3c) displays the chart. AVISPA predicts motifs known to bind the 

splicing factors NOVA, PTB, FOX-1/2, and QKI to be particularly important regulators of 

CNS-specific alternative splicing of Bin1 triplet 12.13.17 (Fig. 4a).

A number of these predictions are consistent with previously described results. Utilizing 

another aspect of AVISPA’s visualization output, the top four motifs were mapped to the 

UCSC genome browser by selecting the “Motif Map” icon (Fig. 3c), along with a custom 

track of UV cross-linking and immunoprecipitation (CLIP) tag clusters for NOVA binding 

in mouse brain [37] (Fig. 4c). The combined genome browser view shows that numerous 

AVISPA predicted, CNS-relevant NOVA motifs correspond to actual in vivo binding sites 

(Fig. 4c, top two tracks). The two CLIP binding sites within the regions considered that are 

not predicted by AVISPA lack the YCAY NOVA consensus motif. Additionally, NOVA, 

the topped rank motif by NFE (Fig. 4a), was shown to be an important regulator of exon 13 

splicing in mouse brains [37]. Similarly, Muscleblind-like protein (MBNL) ranks eighth 

overall by NFE (Fig. 4a) and has previously been observed to have a modest effect on 

splicing of this event (~5% change) in MBNL1 knockout mouse brains compared with 

controls [38]. Finally, we note the appearance of the SF2/ASF (also known as SRSF1) motif 

which ranks 7th overall in CNS by NFE score (Fig 4a). AVISPA similarly predicts this 

splicing factor to be influential in muscle (ranks 9th) and embryonic tissues (ranks 13th) 

(data not shown). Interestingly, slight SF2/ASF overexpression was sufficient to transform 

immortal rodent fibroblasts, in part due to increased exon 13 inclusion of the Bin1 event 

described here [35]. This result thus highlights the potential role of other putative regulatory 

factors described here to maintain BIN1 tumor suppressor activity.

AVISPA’s CNS predictions also suggest potential novel regulators. FOX-1/2 ranks third by 

NFE score (Fig. 4a) and is an important muscle and neuronal specific splicing factor but has 

not, to our knowledge, been shown to regulate Bin1. Previous work has shown that triplet 

12.13.17 is under PTB and QKI regulation in the mouse proliferating myoblast cell line 

(C2C12) by microarray [31], but the neuronal regulation of this event has yet to be 

examined. AVISPA predicts these two RBPs to be particularly influential for this alternative 

event in CNS tissues where PTB ranks second overall by NFE and QKI ranks fourth (Fig. 

4a). We chose to validate these two novel CNS predictions in vivo using a mouse 

neuroblastoma cell line.

3.1.3. In vivo validation of AVISPA predictions of PTB and QKI regulation—To 

experimentally validate the predicted CNS regulation of our event of interest by PTB and 

QKI, we performed low cycle RT-PCR on RNA extracted from N2a cells depleted for these 

splicing factors by siRNA transfection and compared them to control RNA from cells 

transfected with siRNA for GFP. Protein depletion was confirmed by western blot (Fig. 5a). 

Upon PTB knockdown (KD), we observed a striking decrease in exon 13 inclusion, with an 

average differential of 41% compared to controls (i.e., 85–44% inclusion, Fig. 5b, p = 3.3 × 

10−6, two tailed t-test). While the difference was not as pronounced upon QKI KD, we 
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observed a consistent decrease in exon inclusion, averaging 12% (Fig. 5b, p = 0.01, two 

tailed t-test). These data suggest that both PTB and QKI act to promote exon 13 inclusion, in 

the context of the exon 12.13.17 triplet.

AVISPA similarly predicted PTB and QKI to be important regulators of the neuronal 

specific inclusion of exon 7 (triplet 6.7.8, Fig. 2) where PTB ranks first and QKI ranks fifth 

by NFE scores (data not shown). RT-PCR results validate these CNS predictions and show 

that, upon PTB or QKI KD, exon 7 inclusion increases on average by 22% or 34%, 

respectively (Fig. 5b, p = 2.1 × 10−5, two tailed t-test for PTB KD; p = 4.5 × 10−7, two tailed 

t-test for QKI KD). In all, these data suggest that PTB and QKI normally act to repress exon 

7 inclusion and promote exon 13 inclusion in N2a cells and highlight AVISPA’s ability to 

suggest novel splicing regulators of exons of interest for experimental investigation.

3.2. Analysis of muscular disease-associated splicing event suggests novel regulators

As mentioned previously, the misregulation of the muscle-specific inclusion of Bin1 exon 11 

has been associated with muscle disorders [27,28], making it an intriguing example to 

analyze (Fig. 2). Although earlier studies found evidence of exon 11 inclusion in 

differentiating mouse muscle cells and similar transcript structure to human BIN1 [25,26], 

there is a lack of transcriptional evidence for this exon’s inclusion. Therefore, for the 

analysis presented here the human sequence was used instead. Notably, applying a mouse 

splicing code to human exons has already been shown to produce accurate predictions for 

human exons [21]. Admittedly, AVISPA’s human exons analysis is still in beta at this time, 

but Bin1 exon 11 analysis serves well to illustrate AVISPA’s capabilities for potential users.

AVISPA accurately predicts exon 11 to be alternatively spliced (FPR = 0.015), in line with 

known transcript structures (Fig. 2). AVISPA’s output summary prediction table (similar to 

Fig. 3b, omitted for this event for brevity) reports tissue-dependent splicing for all major 

tissue groups pass the default threshold (Rank <0.05), with the best rank (i.e., most confident 

prediction) given to differential splicing in muscle (0.005), followed by digestive (0.009) 

embryo (0.016) and CNS (0.023). Although the predicted direction of these changes was 

somewhat ambiguous, the relative confidence in the muscle predictions agrees with the 

literature, suggesting increased inclusion of this muscle-specific, PI domain encoding exon 

(increased inclusion rank = 0.004 vs. exclusion rank = 0.013).

The feature analysis for this event not only recapitulates some of the known regulatory 

mechanisms, but also suggests novel putative regulators of this disease-associated splicing 

event. In DM, expanded CUG and CCUG repeats act to sequester the splicing factor 

Muscleblind-like-1 (MBNL1), which was shown to be an important promoter of exon 11 

inclusion in a BIN1 minigene reporter in muscle through overexpression and siRNA 

knockdown of MBNL1 [27]. AVISPA predicts MBNL1 to be a regulator of this exon where 

it ranks fourth by NFE (Fig. 6a). Strikingly, the MBNL1 binding sites that AVISPA predicts 

to be influential map to two of three non-overlapping segments shown by Fugier et al. [27] 

to bind MBNL1 by UV cross-linking. Additionally, we observe overlap of the predicted 

motifs with four UGC disrupting mutations that together contribute to decreased MBNL1 

binding and a loss of splicing responsiveness upon MBNL1 overexpression or depletion 

(Fig. 6b). AVISPA does not predict MBNL binding at those experimental mutation sites that 
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do not contain a motif similar to the consensus (YGCUKY). MBNL1 CLIP-seq data in 

mouse muscle and proliferating myoblasts (C2C12 cell line) does not show binding within 

these same regions, which highlights AVISPA’s power to suggest regulators that may be 

overlooked when using high-throughput experimental assays in isolation.

In another study focusing on CNM, a patient derived homozygous mutation at the 3′ splice 

site (3′ss) of exon 11 (G>A at the final nt of the intron) resulted in exon skipping in humans. 

Similarly, a 3′ss mutation (A>G at the second to last nt) that activates an upstream cryptic 

3′ss was found to be the cause of the canine Inherited Myopathy of Great Danes (IMGD) in 

five affected dogs [28]. While AVISPA currently does not support alternative 3′ and 5′ 

splice site predictions, it does identify motifs related to these events as affecting its splicing 

predictions. Specifically, AVISPA’s predictions include a CCACAG motif, which maps to 

the annotated 3′ss of exon 11, and a CTGAA motif mapped to the cryptic alternative 3′ss 

utilized in IMGD dogs (Fig. 6b). Previous reports show that competing splice sites can 

affect splicing potential [39], suggesting that the conserved yet cryptic alternative 3′ss may 

be functionally relevant in this event.

The analysis of exon 11 also suggests novel regulatory elements that may control this 

disease-associated event. The top scoring motif in muscle is UGCAUG, a motif known to 

bind the splicing factor FOX-1/2 (Fig. 6a). Here, the motif is found downstream of exon 11 

in a relatively highly conserved region (Fig. 6b). FOX-1/2 is a brain and muscle specific 

splicing factor and it has been shown to more commonly promote exon inclusion in these 

tissues when binding downstream of an alternative exon [33]. In addition, AVISPA’s 

analysis also suggests QKI as a putative regulator of this exon in muscle where it ranks 

second on an individual motif level (Fig. 6a). Here QKI is predicted to bind to an ACUAAC 

motif, a perfect match to its consensus, in a highly conserved region. Additionally, this motif 

falls in a region predicted to be secondary structure free, suggesting this motif exists in an 

accessible, single stranded form (Fig. 6b). This result is in line with recent analysis showing 

QKI can promote exon inclusion when bound downstream of exons in muscle and that it 

regulates splicing of other Bin1 exons [31].

In summary, AVISPA analysis of Bin1 exon 11 is not only consistent with previous 

published results, but also offers QKI and FOX-1/2 as important novel regulators of the 

exon inclusion levels. AVISPA’s predictions thus serve as hypotheses that can be 

experimentally tested to provide a more complete picture of the regulation of this essential 

splicing event in muscle.

4. Conclusions

Several decades of research have revealed the prevalence of alternative splicing throughout 

the genome, its importance for post-transcriptional control of gene expression, and many 

cis- and trans-acting elements that regulate this complex process. Much progress has been 

made more recently in creating predictive splicing code models that consider how these 

regulatory elements may combine to create splicing outcomes that differ across cellular 

contexts. Here we have shown how these splicing code models can now be applied, via the 

AVISPA web tool, by researchers studying RNA biogenesis, development, and diseases 
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with a possible splicing defect component. AVISPA allows researchers to analyze exons 

from any gene of interest. Its graphical summary allows users to test whether a given exon 

matches known cassette events and transcripts in AVISPA’s DB; assess confidence in the 

exon being alternatively spliced and differentially included in specific tissues; identify 

enriched regulatory features such as secondary structure free regions; assess the effect 

regulatory motifs exert on splicing predictions; and map these motifs to the genome 

browser. Using Bin1 as a case study we supplied a detailed how-to guide for splicing 

analysis, highlighting important cautions and limitations of AVISPA’s current 

implementation that users should consider. We have shown that AVISPA’s in silico splicing 

analysis of Bin1 are in line with many experimental results and suggest novel regulators of 

disease-associated splicing events. Such predictions offer users specific hypotheses that can 

then be experimentally validated, for example by using RNAi depletion of splicing factors 

known to bind the identified regulatory motifs. Using this strategy, we validated QKI and 

PTB as novel CNS regulators of the cancer-related Bin1 triplet 12.13.17 triplet and the 

neuronal-specific inclusion of exon 7 in triplet 6.7.8. We hope the illustrative analysis 

presented here will help guide analysis and discoveries pertaining to transcriptome 

complexity, RNA regulation, and human disease.
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Abbreviations

AS alternative splicing

AVISPA advanced visualization of splicing prediction analysis

BIN1 bridging integrator 1

CNM centronuclear myopathy

CNS central nervous system

DM myotonic dystrophy

N2a Neuro2-a

NFE normalized feature effect

PTB polypyrimidine tract binding protein 1

QKI Quaking homolog KH domain RNA binding protein

RBP RNA binding protein

SRE splicing regulatory element
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Fig. 1. 
Overview of AVISPA. (a) The genomic regions of a cassette exon triplet used for analysis. 

These include the putative alternative exon (“A”), the two flanking exons upstream (“PreA”) 

and downstream (“PostA”), and the intronic regions proximal to these exons. (b) Queries are 

input as a single exon or as a triplet (preferred) and first mapped to a transcript database or 

the genome. A matched query has RNA features extracted that are then run through an 

ensemble of splicing codes to predict if the exon is alternative and if it is differentially 

spliced in certain tissues. Graphical summary files indicate what are the putative regulatory 

elements controlling the exon’s inclusion, and where they are located.
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Fig. 2. 
BIN1 alternative splicing. (a) A splice graph for several human BIN1 alternative splicing 

events that are conserved in mouse. (b) Specific isoforms with their associated expression 

pattern (left) and local transcript variation analyzed using AVISPA (right). Notice the 

isoforms at the bottom include a complex, multi-exon alternative splicing event that is not 

modeled in AVISPA. BIN1 protein domains include: N,N-terminal amphipathic; BAR, 

BIN1-amphysin-Rvs167 domain; PI, phosphoinositide-binding domain; MBD, Myc-binding 

domain; SH3, Src homology 3 domain (adapted from Fugier et al. [27]).
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Fig. 3. 
Query matching and predictions summary for Bin1 triplet 12.13.17. (a) The query matching 

section provides information on which database the query was matched against (known 

events, known transcripts, or the genome), the matched sequence location, and any 

discrepancies between the query and the matched sequence. Here, a different start position 

(green circle) and a single nucleotide discrepancy (red circle) were detected. (b) The 

predictions table lists for every prediction task (rows) the matching false positive rate (FPR), 

relative rank, and sensitivity associated with the query’s score. Only predictions that pass the 

user defined threshold are listed. Predictions for differential inclusion are denoted with an up 
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blue arrow, and for differential exclusion with a down red arrow. Here, the muscle 

dependent splicing predictions were expanded for illustrative purposes (details for other 

predictions are found by clicking the “+” in the output). In this case AVISPA’s predictions 

were more confident in muscle dependent differential exclusion, though predictions for 

changes in both directions passed the user defined threshold. Additionally, links to the in 

silico feature analysis (as in Figs. 4b and 6a) for each prediction are available as clickable 

bar charts in the final column. (c) The final portion of the output summary allows users to 

visualize predicted regulatory motifs for each prediction by mapping them to the UCSC 

genome browser (“Motif map” icon, as in Figs. 4c and 6b) or representing NFE values (see 

main text) as stacked bar charts colored by regional location (“Motif effect” icon, as in Fig. 

4a). Users can specify which splicing prediction they wish to visualize and apply regional 

restrictions by using the drop down menus.
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Fig. 4. 
In silico feature analysis of Bin1 triplet 12.13.17 in CNS. (a) Top scoring motif effects 

represented as a stacked bar chart. Each name in the first column (“MetaFeatures”) 

corresponds to a motif and RBP known to bind it. The second column provides a summed 

normalized feature effect (NFE) value for all occurrences of that motif in the seven genomic 

regions analyzed and the stacked bars are a visual representation of these values where each 

bar corresponding to NFE of 10−3. Colors correspond to the region in which the motif was 

found as in the legend provided. (b) Enrichment of non-motif features. Each feature (row) in 

the query is compared against several reference sets (columns) indicated by the header (AS, 

alternative set; Const, constitutive set; CNS Inc, CNS inclusion set; and CNS Exc, CNS 

exclusion set). The table entries correspond to the relative rank of the query’s feature value 

compared to the reference set of each column. Enrichment is visually represented as a heat 

map where red is associated with high values and blue is associated with low values. The 

region containing each feature is indicated in the second column, with colors matching the 

provided regional legend. (c) Motif map of top four scoring motifs on the UCSC genome 

browser along with a custom track containing NOVA CLIP binding clusters from mouse 

brain [37] to show overlap between AVISPA predicted NOVA motifs and in vivo binding 

sites.
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Fig. 5. 
In vivo validation of QKI and PTB regulation in N2a cells. (a) Western blots confirm siRNA 

knockdown of QKI and PTB when compared to controls transfected with GFP siRNA. 

Antibodies for hnRNP-L were used as loading controls. (b) RT-PCR validations of predicted 

CNS splicing regulation with QKI or PTB depletion in N2a cells for triplet 12.13.17 (left) 

and 6.7.8 (right). Representation of isoform structure is presented next to each gel and 

correspond to Fig. 2. Percent inclusion (%inc) and standard deviation (SD) represent data 

from at least four replicates.
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Fig. 6. 
In silico feature analysis of BIN1 triplet 10.11.12 in muscle. (a) Top 25 scoring individual 

motifs predicted to affect muscle specific splicing predictions, separated by region. This 

table provides motif enrichment values compared to reference sets, as in Fig. 4b, and NFE 

values for each of these individual motifs, as in Fig. 4a. (b) A portion of the motif map 

proximal to exon 11 on the UCSC genome browser with select top-scoring motifs of 

interest, secondary structure, and conservation. Predicted MBNL motifs show overlap with 

experimentally derived mutations shown to affect MBNL1 UV-crosslinking to an exon 11 

BIN1 minigene [27]. Additionally, we map a CNM patient derived disease SNP that induces 

exon skipping in humans (bottom track) or activates an upstream cryptic 3′ss (not shown) in 

canines with IMGD [28], both of which overlap AVISPA predicted motifs CCACAG and 

CTGAA, respectively.
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