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ABSTRACT The ultimate rate and pattern of approach
to equilibrium of a diploid, monoecious population subdivided
into a finite number of equal, large, panmictic colonies are
calculated. The analysis is restricted to a single locus in the
absence of selection, and every mutant is assumed to be new to
the population. It is supposed that either the time-independent
backward migration pattern is symmetric in the sense that the
probability that an individual at position x migrated from y
equals the probability that one at y migrated from x, or it de-
pends only on displacements and not on initial and final posi-
tions. Generations are discrete and nonoverlapping. Asymp-
totically, the rate of convergence is approximately (1 - u)2t[1
- (2NT)-I] I, where u, NT, and t denote the mutation rate, total
population size, and time in generations, respectively; the
transient part of the probability that two homologous genes are
the same allele is approximately independent of their spatial
separation. Thus, in this respect the population behaves as if it
were panmictic.

Much effort has been devoted to investigating the evolution of
populations under the joint action of mutation, migration, and
random genetic drift. The amount and spatial pattern of genetic
variability at equilibrium have been thoroughly explored for
both finite (1-7) and infinite (7-17) habitats. Knowledge of the
rate of convergence to equilibrium is essential for understanding
when the equilibrium might actually be observed. The transient
problem is particularly significant because, in the absence of
mutation, not only finite, but even geographically structured
infinite populations in one and two dimensions tend to complete
genetic uniformity. The approach to equilibrium is studied in
refs. 5-7, 13, and 18-21 for finite habitats and in refs. 7, 13, 15,
16, 22, and 23 for infinite ones.
The only general result known on the convergence to equi-

librium in finite habitats was derived in a continuous space-
continuous time model (13). If the migration function has no
infinitesimal first moments and the population density is very
high, it was shown that the ultimate rate of convergence is close
to expf-[2u + (2NT)'1Itj, where u, NT, and t are the mutation
rate, total population size, and time in generations, respectively.
It was further demonstrated that asymptotically the transient
part of the probability of allelic identity is constant. However,
in more than one dimension the continuous time-continuous
space model has an unacceptable singularity (5, 13). Further-
more, some populations are distributed in discrete colonies and
have nonoverlapping generations. Therefore, it is important
to study this problem in the stepping-stone model (24, 25).

Let us suppose that there are N diploid monoecious indi-
viduals in each panmictic colony. We use the vector x to locate
the various colonies. The number of spatial dimensions is ar-
bitrary. The n colonies exchange migrants so that the proba-
bility that an individual at x migrated from y is m(yx), inde-

pendent of time. Thus,

[1]E m(y,x) = 1,
y

where the sum is over all the colonies, as are all sums below. We
posit that there is no selection, and all alleles at the locus under
consideration mutate to types not preexisting in the population
at rate u per generation. Let f(t,x,y) represent the probability
that two homologous genes chosen at random in generation t
from subpopulations at x and y are the same allele. Identity in
allelic state is directly measurable and pertinent to the amount
of genetic diversity in an evolving natural population. With
discrete nonoverlapping generations, f satisfies (9, 16, 22)

f(t + 1,xy) = (1-u)2 9m(zx)m(wy)f(tzw)
zw

+ (2N)-l E m(z,x)m(z,y)[1 -f(tz,z)] [2]
z

We decompose f into its equilibrium and transient components
according to

f(t,x,y) = fJ(x,y) + F(t,x,y), [3]

where F(t,xy) o 0 as t - c. Substituting [3] into [2], we ob-
tain

fMo(xsy) = (1-u)2 | m(z,x)m(w,y)f.(zw)
zw

+ (2N)-l E m(zx)m(z,y)[1-fizz)IJ [4a]
z

F(t + 1,x,y) = (1 - u)2 E m(z,x)m(w,y)F(tzw)
zw

- (2N)-l L m(z,x)m(z,y)F(tzz)} [4b]
z

To find the rate of convergence, we set

F(t,xy) = (1 - U)2txtif1(x,y)

and deduce from [4b]

(L + Q)1 = A\/', [5a]
with

L4/(x,y) = E m(z~x)m(wy)4/(zw),
zw

QVI(x,y) = -(2N)-l E m(z,x)m(z,y)q/(zz).

[5b]

[5c]

As the subpopulation sizes become very large, N - a,, we
expect the dominant eigenvalue, Xo, to tend to unity. Indeed,
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owing to [1], the constant ko is an eigenfunction of L with ei-
genvalue 1: Lko = ko. Introducing for any functions k(x,y),
i&(x,y) the inner product

(t0) = E 0*(x,y)O(x,y)
xy

[6]

where the asterisk indicates complex conjugation, we normalize
4Oo so that (0o, o) = 1, which implies ko = 1/n. To apply stan-
dard perturbation theory to estimate Xo, we need to prove that
L is self-adjoint. In that case (26),

Xo 1l +(4o,Q0o). [7]
We shall establish self-adjointness under two conditions. We
exclude pathologies with the biologically reasonable assumption
that the migration pattern is irreducible and ergodic (27).
Symmetric migration
Let us assume that the probability that an individual at y
originated at x equals the probability that one at x migrated
fromwy:

m(x,y) = m(yx). [8]
Exchange between nearest neighbors provides the simplest
example. From [Sb], [6], and [8] we have

(= E 01*(xy)m(zx)m(wy)'P(zw)

= E [m(xz)m(yw)4(x'y)]*/(zw)
xyzw

as required. Now [1], [Sc], [7], and [8] yield

Xo t 1 - (2N)-1 E Om(zx)m(z,y)OO
xyz

= 1 - (2Nn2)-' A Fi m(x,z) E m(y,z)
z x y

= 1- (2NT)-', 191
where NT = Nn is the total population size.
Maruyama has derived [9] and the approximate uniformity

of the probability of identity for nearest neighbor exchange
between subpopulations arranged in a circle (18) and in a line
(19).

Homogeneous migration
We assume now that the migration pattern depends only on

displacement and not on initial and final positions. With a finite
number of colonies, this can happen if the habitat has a natural
periodicity. Thus, we take

m(x,y) = ,t(y - xl mod b), [10]

where the notation means that yj - xi is calculated mod bi for
all components. For example, for 13 colonies in a circle, x and
y are just integers, y - x being evaluated mod 13. In two di-
mensions, we have the torus-like model (1, 2, 7, 21). Clearly,

4'(x,y) = I(x - yl mod b). [11]

From [Sb] and [6] we have

EA *(x-yymod b)A(x-zJ mod b)
xyzw

X ,t(y - wl mod b)'(z - wl mod b)

= E +4*(x'l mod b),i(z'l mod b)
xx#yfzf

X ,t(z' + y' - x'I mod b)I(y'l mod b),

where x' = x - y, y' = z - w, and z' = x - z. Therefore,

(0,L6) = n E 4*(xtl mod b)r(y'- x'I mod b)

xi(y'l mod b), [12]

in which

r(xl mod b) = E A(yl mod b)IA(y + xl mod b).
y

Now, r is even, for

r(-xl mod b) = E iA(yl mod b),g(y -. xl mod b)
y

= Eu(z + xj mod b),u(zl mod b)
z

= r(xl mod b).

[13]

[14]

Hence, [12] yields

(L+,@) = n E3 r(y - xl mod b)4*(yl mod b)I(xl mod b)
xy

= n E *(yj mod b)r(x - yJ mod b)'(xl mod b)
xy

as required for self-adjointness.
Returning to [Sc] and [71, we derive

1 - (2Nn2)-l E IA(x - zJ mod b),t(y - zi mod b)
xyz

= 1 - (2NT)-',
as for symmetric migration.
We conclude that with respect to the transient component

of the probability of allelic identity the population behaves
asymptotically as if it were panmictic. The range of subpopu-
lation sizes for which this result holds depends on the arrange-
ment of the colonies and the migration pattern (5-7, 13, 18-21).
Our analysis shows that even if L is not self-adjoint, ultimately
the transient component of the probability of identity will be
approximately constant. Provided L can be diagonalized, as is
generically the case, [5] informs us that the rate of convergence
is (1 -u)2t[1- k(2NT)Alt, where k depends on the configu-
ration and number of colonies and the migration structure.
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