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Abstract It has long been suggested that prior traumatic brain
injury (TBI) increases the subsequent incidence of chronic
neurodegenerative disorders, including Alzheimer disease,
Parkinson disease, and amyotrophic lateral sclerosis. Among
these, the association with Alzheimer disease has the strongest
support. There is also a long-recognized association between
repeated concussive insults and progressive cognitive decline
or other neuropsychiatric abnormalities. The latter was first
described in boxers as dementia pugilistica, and has received
widespread recent attention in contact sports such as profes-
sional American football. The term chronic traumatic enceph-
alopathy was coined to attempt to define a “specific” entity
marked by neurobehavioral changes and the extensive depo-
sition of phosphorylated tau protein. Nearly lost in the discus-
sions of post-traumatic neurodegeneration after traumatic
brain injury has been the role of sustained neuroinflammation,
even though this association has been well established patho-
logically since the 1950s, and is strongly supported by subse-
quent preclinical and clinical studies. Manifested by extensive
microglial and astroglial activation, such chronic traumatic
brain inflammation may be the most important cause of
post-traumatic neurodegeneration in terms of prevalence. Crit-
ically, emerging preclinical studies indicate that persistent
neuroinflammation and associated neurodegeneration may
be treatable long after the initiating insult(s).
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Introduction

It has been recognized that traumatic brain injury (TBI) may
be associated with the subsequent development of chronic
neurodegenerative disorders. A prior history of TBI has been
reported to increase the incidence of Alzheimer disease (AD)
and other dementias [1-7], including younger onset dementias
[8]. Since the 1920s, repeated mild TBI (mTBI) in boxers has
been linked to later onset neuropsychiatric symptoms and
signs. Similar symptoms and brain pathology have been re-
ported following multiple mTBI in other contact sports, par-
ticularly American football, and termed chronic traumatic
encephalopathy (CTE) [9-12]. Delayed chronic neuropsychi-
atric alterations following repeated concussions have also
been increasingly recognized in military personnel exposed
to improvised explosive devices [13—15].

TBI is the most heterogeneous of neurological disorders,
with a complex and multifactorial pathobiology [16]. The
etiology of AD has been strongly linked to (3-amyloid (Af3)
and amyloid plaques. The fact that TBI can cause rapid
elevations of brain amyloid and early deposition of amyloid
plaques, even in younger individuals, has provided a sug-
gested pathobiological linkage between TBI and AD [17].
Yet certain pathological features differ, and some recent
controlled epidemiologic studies have suggested that
TBI is better associated with delayed-onset dementias other
than AD [6, 7, 18].

The deposition of hyperphosphorylated tau protein has
been proposed as both a mechanism and pathognomonic
feature of CTE [10, 12]. Although hyperphosphorylated tau
deposition and neurofibrillary tangles (NFTs) have been re-
ported in the vast majority of cases of patients with a sports-
related diagnosis of CTE, some of even the best studied boxer
cases did not show this feature [19], and many recent reports
used such deposits to define the condition. In addition, many
cases of CTE show diffuse brain atrophy and other
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pathological features included amyloid plaques, which raise
questions about tau as the likely major causative mechanism.

Animal studies show that TBI, including repeated mTBI,
can cause persistent neurodegeneration and related cognitive
or other behavioral changes [20-25]. Such delayed chronic
neurodegeneration has also increasingly been reported in clin-
ical neuroimaging studies [26—32]. Both experimental and
clinical reports have suggested strong associations between
post-traumatic neurodegeneration and persistent neuroinflam-
mation [20, 22, 23, 33-38], raising the possibility that chronic
neurotoxic inflammation may be a major contributor to pro-
gressive cell loss and dementia. Microglial activation has been
proposed as an important pathobiologic mechanism in major
neurodegenerative disorders, including AD [39, 40].
Microglial activation has also been reported in the pathology
of documented CTE cases [41], although, unfortunately, it
does not appear to have been specifically examined in most
cases. Underscoring the potential importance of neuroinflam-
mation as a causative factor in post-traumatic degeneration
and associated neuropsychiatric symptoms are recent publica-
tions showing that highly delayed, targeted anti-inflammatory
treatments in experimental TBI models can improve behav-
ioral and pathological outcomes [42—44].

TBI and AD
Epidemiologic Studies

Although a history of TBI has widely been accepted as a
major risk factor for AD, this association has not been clearly
established. Many older studies have reported a significant
association between TBI and AD [1-4]. In 1991, Mortimer
et al. [3] performed a meta-analysis of case—control studies
examining the relationship between AD and TBI, using
predefined inclusion criteria. A more recent meta-analysis
conducted by Fleminger et al. [45] sought to replicate the
findings of Mortimer et al. [3]; they included both the 8 prior
studies and 7 subsequent reports that met specified criteria.
Both meta-analyses revealed a significant association in men,
but not in women. However, analysis of the 7 most recent
studies alone failed to find a significant association in either
men or women [45].

Over the last several years a number of epidemiologic
studies have examined the relationship between TBI and AD
or dementias. A very large recent nationwide cohort study
from Sweden by Nordstrom et al. [8] evaluated over
800,000 men conscripted for military service over a mean
period of 33 years; more than 45,000 had at least 1 TBI. After
adjusting for covariates, there was no significant association
for AD in individuals with single mTBI, 2 mTBI, or a single
severe TBI. However, there was a significant association with
other dementias [8]. Three other large recent studies showed
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significant associations between TBI and dementias, but not
specifically AD [6, 7, 46]. One was a nationwide cohort study
by Lee et al. [7] of >700,000 individuals from Taiwan, with
>28,000 cases of mTBI. This study concluded that mTBI was
a significant risk factor for subsequent development of de-
mentia [7]. In a retrospective cohort study, Wang et al. [6]
reported on over 225,000 patients, and Barnes et al. [46]
examined 188,000 older veterans followed for an average of
9 years. After correcting for confounds, these latter 2 studies
reported a 60 % increased risk of dementia. Finally, a recent
smaller study by Dams-O’Connor et al. [47] followed 4200
dementia-free individuals aged 65 years or older that were
evaluated biannually with a mean follow-up of 7.4 years; a
history of TBI with loss of consciousness did not increase the
risk for subsequent development of AD or dementia. Taken
together, the literature supports the conclusion that TBI is a
significant risk factor for subsequent development of demen-
tia, but the association with AD seems tenuous at best.

Mechanistic Associations

Deposition of A3 in brain and increased axonal A3 have been
consistently reported even in the early period after TBI, with
persistent increases years following repeated mTBI or a single
severe insult [48—52]. In fact, a recent study using the carbon
11-labeled Pittsburgh Compound B positron emission tomog-
raphy ligand demonstrated deposition of A3 in cortical gray
matter and striatum in patients with head injury followed for
1 year after TBI [53]. The predominant amyloid identified has
been AP;4, [54, 55], the most toxic form of this peptide
[56-58]. Others have demonstrated elevated expression of
the amyloid precursor protein in cortex from hours to years
after TBI [59-62]. Moreover, presenilin-1 and (3-amyloid
converting enzyme are found in swollen axons characteristic
of diffuse axonal injury after TBI, along with amyloid precur-
sor protein, in both the pig diffuse TBI model and in humans
[59, 62—64]. Thus, all the critical factors for generating A3 are
present concurrently after TBI, and it has been proposed that
subsequent axonal degeneration allows tissue deposition of
this peptide [65, 66]. As it has been shown that A3 can
migrate trans-synaptically [67], it is possible that A3 genera-
tion in primary injury areas can reach more distant sites to
promulgate the process. A3 plaques have been reported in
approximately 30 % of patients who die early after TBI [51],
and occur across the age spectrum [52]. Another study dem-
onstrated the presence of NFTs that contain
hyperphosphorylated tau, as well as Af3, in as many as one-
third of patients surviving more than 1 year after head injury
[49].

It should be noted that the amyloid plaques reported after
TBI are typically diffuse and not the neuritic form more
typically found in later stage AD [68]. Given the weak epide-
miological association between AD and TBI, it is questionable
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whether these AP plaques progress to AD. However, in-
creased A4, is highly neurotoxic, likely contributing to
both post-traumatic apoptosis and inflammation [69—71].
Thus, Af3 release and deposition may contribute to the pro-
gressive neurodegenerative changes observed after TBI, as
well as to the increased risk for dementias. Furthermore,
Loane et al. [72] have demonstrated that (3-amyloid
converting enzyme knockout mice show improved outcomes
following moderate-to-severe TBI compared with wild-type
controls, and that inhibition of y-secretase activity is neuro-
protective in the same model. Thus, distinct from contributing
to AD, post-traumatic release of A3 may contribute to sec-
ondary neurodegeneration and cognitive dysfunction.

CTE

The neurobehavioral profile following repeated TBI, which
has been termed CTE, was first formally described in boxers
in 1928 by Martland [73], and further detailed in a larger
randomized sample of boxers in 1969 by Roberts [74]. The
latter reported a 17 % incidence of a relatively stereotypic
behavioral pattern that included neuropsychiatric, cognitive,
and motor changes. In 1973, Corsellis et al. [75] described in
detail the key neuropathological features of CTE in a group
boxers exposed to repetitive brain trauma. Recently, Smith
et al. [19] critically reviewed the chronic neuropathological
changes that have been reported after TBI, including repetitive
insults. Among the 140 cases of CTE summarized, 66 in-
volved athletes with repeated TBI and 23 were military per-
sonnel. Although neuropsychiatric symptoms were not always
detailed, many of the clinical features of the nonboxers
paralleled the earlier descriptions of dementia pugilistica,
including emotional lability, depression, suicidal ideation,
and aggressive behavior; but cognitive and motor changes
appeared to be less frequently noted.

Tau pathology has been proposed as a pathognomonic
feature of CTE [10, 12]. Although 133 of the total cases
demonstrated presence of NFTs [19], many cases defined
CTE on the basis of such pathology. Given this definitional
issue, as well as selection bias and the absence of larger
controlled studies, it is questionable whether CTE reflects a
true tauopathy—as opposed to more complex pathobiology
that includes hyperphosphorylated tau (NFTs) as one impor-
tant component, among others [19]. For example, even in the
best defined CTE samples of former boxers, >10 % of report-
ed pathological cases did not include tau pathology. That CTE
may reflect more multifactorial pathology is indicated by the
high incidence of amyloid plaques and TAR DNA-binding
protein 43 in CTE. In addition, other frequent pathological
changes include the presence of multifocal neuronal loss and
diffuse brain atrophy, as well as pathological changes in the

cerebellum, striatum, and white matter. Thus, CTE should be
characterized as a disorder with “polypathology” [19].

Although neuroinflammation has also been reported in
some cases [41], most pathology reports have not directly
evaluated such changes. Moreover, NFTs are observed chron-
ically in up to 30 % of the neuropathology cases following a
single moderate-to-severe TBI [49]. In addition, Hawkins
et al. [76] have reported the rapid accumulation of tau oligo-
mers after TBI in rats. Thus, distinctions involving tau pathol-
ogy, single versus multiple TBI, and CTE may not be so clear.
It has been suggested that the localization of
hyperphosphorylated tau, particularly in the depths of sulci,
may help to define this condition [10, 12]. However, as
indicated, even in well-defined boxer cases, tau changes
may not be found [19].

Although CTE has received enormous attention as an
important consequence of sports-related repeated head injury,
the frequency of CTE as a consequence of repeated mTBI is
unknown. But given the very high incidence of repeated
concussive and subconcussive insults in contact supports like
American football, the likely incidence of CTE in this popu-
lation must be rather low. Importantly, although the focus on
CTE has helped to underscore the potential consequences of
repeated brain trauma in high-contact sports, it also appears to
have deflected focus from post-traumatic changes that are far
more frequent yet highly consequential, such as progressive
neurodegeneration and neuroinflammation.

Progressive Neurodegeneration After TBI

There is strong experimental and clinical evidence that a
single TBI can cause progressive neurodegeneration over
months to years following the insult [21, 22, 25-27, 30, 32].
Using a fluid percussion model in rats, Smith et al. [25]
showed progressive atrophy and neuronal cell death over
1 year; regions demonstrating greatest loss included cortex,
hippocampus, thalamus, and septum. More recently, Loane
et al. [22] used longitudinal 7 T magnetic resonance imaging
and stereological histological assessment to demonstrate pro-
gressive lesion expansion and hippocampal loss over 1 year
following controlled cortical impact (CCI) injury in mice.
Many clinical imaging studies have reported longitudinal
changes after TBI consistent with progressive neurodegener-
ation over periods ranging from 6 months to 4 years [26-32].
Most used repeated diffusion tensor imaging. Changes were
found in both gray matter and white matter tracts, and in some
reports changes were correlated with neuropsychological al-
terations. Although most of the reports examined patients with
severe TBI, similar findings of progressive neurodegeneration
have been demonstrated after moderate and even single mild
head injuries [28, 32, 77]. A recent review by Keightley et al.
[78] critically evaluated 16 reports in children following TBI,
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which demonstrated progressive degeneration in the hippo-
campus, thalamus, striatum, brain stem, and white matter—
similar to changes reported in adults.

Outside of the CTE-related literature, whether chronic neu-
rodegeneration occurs in participants of high-impact sports
and the potential relationship with mild TBI have not been
well studied. Very recently, Singh et al. [79] used magnetic
resonance imaging to evaluate hippocampal volume changes
and relation to concussion history in American collegiate
football athletes. They reported significantly smaller hippo-
campal volumes in football players compared with healthy
age-matched controls, with smaller volumes among players
with a concussion history compared to those without. A
significant inverse relationship was found between hippocam-
pal volumes, as well as reaction times, and years playing
football. Although considered preliminary, this study may
suggest that a longer history of even subconcussion exposures
may contribute to subsequent brain atrophy.

Chronic Neuroinflammation After TBI

TBI has long been known to cause acute classical and neuro-
genic inflammation that is associated with cytokine release
[80, 81]. Indeed, many neuroprotective strategies have been
directed at such inflammation or related factors [81-84]. Also
well established, but less well appreciated is that clinical TBI
can cause persistent microglial activation [34, 37, 38, 85-87],
and that such chronic inflammation may contribute to neuro-
degeneration. Recently, Johnson et al. [34] demonstrated that
reactive microglia were present in 28 % of brains examined
more than 1 year after a single TBI, along with evidence of
white matter degeneration in such cases. As only the corpus
callosum and parasaggital cortex were examined, and not
deeper structures such as thalamus that show both degenera-
tion and chronic microglial activation [37], the likely inci-
dence of chronic neuroinflammation after TBI is likely much
higher than reported in this study. Ramlackhansingh et al. [37]
used the positron emission tomography ligand
[T1IC](R)PK11195 to evaluate chronic neuroinflammatory
changes in patients with head injury followed for many
months to years after the initial trauma. They demonstrated
increased microglial activation up to 17 years after a single
TBI; such inflammation was not located at the lesion site but
rather bilaterally at more distant sites such as thalamus and
putamen [37]. Moreover, the locus of thalamic inflammation
correlated with cognitive changes, suggesting that the inflam-
matory process may be mechanistically involved with chronic
behavioral changes. In addition, recent studies have demon-
strated chronically elevated proinflammatory cytokine levels
in the serum or cerebrospinal fluid of patients with head injury
after TBI, which predict unfavorable outcomes, including
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neurobehavioral changes such as post-traumatic stress disor-
der or suicidal ideation [88—90].

Experimental studies strongly support these clinical obser-
vations and suggest both mechanisms involved and potential
therapeutic strategies [20, 22, 23, 33, 35, 36, 91]. Loane et al.
[22] recently showed that TBI in mice caused persistent
microglial activation, which was associated with progressive
lesion expansion and hippocampal neurodegeneration, up to
1 year post-trauma [22]. Chronically activated microglia
expressed major histocompatibility complex class 11 (CR3/
43), CD68, and nicotinamide adenine dinucleotide phosphate
oxidase (NOX2) at the lesion margins at 1 year, along with
evidence of oxidative stress. Multiple experimental studies
have demonstrated that repeated mTBI can also cause persis-
tent microglial activation associated with pathology [20, 23,
92]. Shitaka et al. [92] used a repeated closed head injury
model in mice to show that reactive microglia were localized
in areas adjacent to injured axons at 7 weeks postinjury.
Mouzon et al. [23] reported that repeated mTBI in mice
caused persistent neuroinflammation and continuing white
matter degradation, associated with long-term cognitive defi-
cits up to 18 months post-trauma. In addition, Aungst et al.
[20] used a lateral fluid percussion model in rats to demon-
strate that repeated mTBI, but not single mTBI, caused per-
sistent chronic microglial activation associated with chronic
neurodegeneration, behavioral deficits, and electrophysiolog-
ical changes; repeated mTBI recapitulated changes caused by
single moderate injury with regard to microglial activation,
neurodegeneration, and associated neurological dysfunction.

To further address whether persistent microglial activation
after TBI contributes to chronic neurodegeneration and be-
havioral deficits, several studies have examined the therapeu-
tic impact of modulating such inflammation long after the
injury. Byrnes et al. [42] treated mice 1 month after CCI with
a single intracerebroventricular injection of the metabotropic
glutamate receptor 5 agonist (R,S)-2-chloro-5-
hydroxyphenylglycine , which acts as an NOX2 inhibitor to
attenuate microglial activation [93-95]. Such treatment mark-
edly reduced inflammation, lesion volume, and neuronal loss
at 4 months postinjury, with ex vivo diffusion tensor imaging
showing marked preservation of white matter tracks in treated
animals versus vehicle-treated TBI controls [42]. Protective
effects were blocked by concurrent systemic treatment with an
allosteric metabotropic glutamate receptor 5 antagonist. Piao
et al. [43] showed that delayed voluntary exercise beginning
5 weeks after mouse CCI reduces chronic microglial activa-
tion, progressive neurodegeneration, and behavioral deficits;
the protective mechanism appeared to be through inhibition of
NOX2, similar to what was suggested in the (R,S)-2-chloro-5-
hydroxyphenylglycine study by Byrnes et al. [42]. In addition,
Rodgers et al. [44] recently demonstrated that delayed treat-
ment with the anti-inflammatory drug Ibudilast—a phospho-
diesterase inhibitor—at 1 month after lateral fluid percussion
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in rats reduced chronic anxiety behavior and reactive gliosis in
the thalamus at 6 months postinjury.

Although most of the studies detailed above underscore the
neurotoxic effects of persistent microglial activation after TBI,
post-traumatic neuroinflammation is highly complex, includ-
ing multiple microglial phenotypes (M1 vs M2a,b,c), as well
as effects of systemic inflammatory cells such as macrophages
and other white blood cells [83]. Given that M2 phenotypes
have anti-inflammatory and neurorestorative effects [96], why
has most emphasis been placed on the neurotoxic M1 pheno-
type? It has been proposed that NOX2 activation acts as a
switch between M1 and M2 activation states [97], serving to
activate the former and suppress the latter. Given that exper-
imental evidence indicates that NOX2 is chronically activated
after TBI [22], this would favor the persistent expression of

Chronic neurodegeneration after TBI
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Fig. 1 Chronic neurodegeneration after traumatic brain injury (TBI)—a
complex and multifactorial pathobiology. Single or repeated TBI initiates
complex biochemical mechanisms that lead to chronic neurodegeneration
and delayed chronic neuropsychiatric changes. The biochemical and
pathological features of Alzheimer’s disease, chronic traumatic brain
inflammation, and chronic traumatic encephalopathy following TBI are
shown. A3 = (-amyloid; APP = amyloid precursor protein; PS-1 =
presenilin-1; BACE = (3-amyloid converting enzyme; TDP-43 = TAR
DNA-binding protein 43; NFTs = neurofibrillary tangles; NOX2 =
NADPH oxidase

the M1 and highly neurotoxic phenotype. One consequence of
continued M1 expression may be to create an environment
that is unfavorable to the survival of new neurons generated in
response to trauma [43]. However, it should be recognized
that phagocytic microglia may help clear A3 plaques after
injury [98].

There is no established nomenclature for persistent post-
traumatic neuroinflammation. To distinguish this condition
from acute inflammatory mediated degeneration, several
terms may be considered. The persistent neuroinflammation
and associated neurodegeneration are features found in chron-
ic noninfectious encephalitis, such as autoimmune encephali-
tis or paraneoplastic limbic encephalitis [99, 100]. Although
chronic traumatic encephalitis may therefore be appropriately
descriptive for this condition, its eponym would cause confu-
sion with that well established for CTE. Less confusing terms
would be chronic traumatic neuroinflammation, or chronic
traumatic brain inflammation (CTBI). We favor the latter,
which reflects the brain localization and has the eponym
CTBI. Importantly, recent studies indicate that CTBI may be
treatable late after injury, with reduced chronic neurodegener-
ation and improved neurological outcomes [42—44], offering
potential opportunity for effective late therapeutic intervention
in human head injury.

Conclusions

TBI is a highly heterogeneous disorder, which initiates com-
plex biochemical and structural alterations that may continue
for months or years. Although the association between TBI
and classical chronic neurodegenerative disorders has some
epidemiological support, more recent large cohort studies
have raised questions about the relationship of TBI to even
AD—the best supported of these associations. Instead, the
collected evidence indicates that head injury causes chronic
neurodegeneration and dementias that are likely multifactori-
al, consistent with the complex and diverse pathological
changes that are observed (Fig. 1). Although CTE and AD
have received the major attention as chronic brain disorders
following TBI, CTBI appears to be considerably more fre-
quent as a contributing mechanism of late brain atrophy and
cognitive decline. More than an issue of nomenclature, recog-
nition of the important pathogenic role of persistent inflam-
mation after TBI may lead to new therapies that attenuate
progressive tissue loss after head injury.
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