
Our current understanding of cancer 
genetics is grounded on the principle 
that cancer arises from a  clone that 
has accumulated the requisite somat-
ically acquired genetic aberrations, 
leading to the malignant transforma-
tion. It also results in aberrent of gene 
and protein expression. Next gener-
ation sequencing (NGS) or deep se-
quencing platforms are being used to 
create large catalogues of changes in 
copy numbers, mutations, structural 
variations, gene fusions, gene expres-
sion, and other types of information 
for cancer patients. However, inferring 
different types of biological changes 
from raw reads generated using the 
sequencing experiments is algorith-
mically and computationally challeng-
ing. In this article, we outline common 
steps for the quality control and pro-
cessing of NGS data. We highlight the 
importance of accurate and applica-
tion-specific alignment of these reads 
and the methodological steps and 
challenges in obtaining different types 
of information. We comment on the 
importance of integrating these data 
and building infrastructure to analyse 
it. We also provide exhaustive lists of 
available software to obtain informa-
tion and point the readers to articles 
comparing software for deeper insight 
in specialised areas. We hope that the 
article will guide readers in choosing 
the right tools for analysing oncog-
enomic datasets. 
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Molecular profiling of cancer genomes

Over the years, individual laboratories and large-scale projects such as 
TCGA and ICGC have discovered that cancer is a heterogeneous disease with 
lots of variability within a single tumour type or even within a single tumour 
[1–4]. Nonetheless, much of our current understanding of cancer genetics is 
grounded on the principle that cancer arises from a clone that has accumu-
lated the requisite somatically acquired genetic aberrations leading to the 
malignant transformation [5]. Characterising individual tumours or cohorts 
at the molecular level has helped in identifying common and type specific 
cancer vulnerabilities as well as recording the individual history of tumours 
[4, 6–8]. This has enabled the creation of drugs that target these molecu-
lar vulnerabilities and provide tailored treatments for patients, improving 
therapy efficacy and minimising its side effects [9, 10]. For example, Imati-
nib specifically targets the BCR-Abl fusion tyrosine kinase that exists only in 
the cells of chronic myelogenous leukaemia and other tumours but not in 
healthy cells [11]. Similarly, Herceptin is a monoclonal antibody that is used 
to target HER2 positive breast tumours [12].

At present, the TCGA and other large-scale projects characterise tumours 
with microarray and next generation sequencing (NGS) platforms to obtain 
a different type of genetic information at the whole genome level [6–8, 13–
15]. The microarray platform had been, and is currently being, used to iden-
tify gene and microRNA expression, alternative splicing, copy number alter-
ations, DNA methylation, and identification of protein-DNA and protein-RNA 
interactions [16]. Next generation sequencing platforms are now replacing 
the microarray platforms for obtaining these data. Moreover, sequence 
reads from whole exome sequencing, along with DNA and RNA sequencing, 
also allow detection of mutations and gene fusions for coding and non-cod-
ing regions of the genome [17]. While conceptually similar in experiment 
design, the sequence read information generated using NGS platforms has 
very different statistical properties to intensity-based information acquired 
from microarray platforms [18].  

Multiple articles have reviewed protocols to generate microarray pro-
files and their statistical analysis to extract meaningful information [19–22]. 
While relatively new, a vast amount literature describing statistical meth-
odologies to analyse NGS data already exists [23–28]. So, in this article we 
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focus only on the methodologies to extract meaningful 
information from NGS reads. Moreover, we will discuss 
only those data types that are generated and analysed by 
TCGA. Furthermore, for each data type, we only describe 
the main steps to obtain this information and point the 
readers to an exhaustive list of methodologies/software 
and articles for deeper insight. Also, we do not provide any 
comments on comparison of these methods but rather 
point to articles comparing different methodologies and 
identifying their strengths and errors [29-32].  

Pre-processing and Quality Control of NGS data

To date, several next-generation sequencing platforms 
are available, including the Illumina Genome Analyser, 
which is being used extensively TCGA by consortium for 
tumour profiling. Each platform has its own method for 
generating sequencing reads from samples. But in every 
case, the sequence reads obtained using these platforms 
are short – typically from 36 to several hundred nucleo-
tides. Furthermore the sequencing run can be single-end 
or paired-end, meaning the reads are sequenced in one or 
two directions (from 3’ and 5’ ends). The first tasks in any 
NGS computational pipeline are: performing primary data 
acquisition, determining base calls and confidence scores 
from the fluorescent signals of the sequencer, and con-
verting them to FASTQ files containing the raw sequence 
reads and per base quality scores. When multiple samples 
are pooled in one lane using sample-specific index/bar-
code adapters, the FASTQ should be demultiplexed and 
reorganised based on index information, and the adapters 
ought to be trimmed [33]. 

Quality control is a  very important part of the data 
preparation (Table 1). There are several kinds of sequenc-
ing artefacts that could have a serious negative impact on 
downstream analyses. The artefacts commonly exist in 
raw reads, regardless of the sequencing platform. Firstly, 

sequences may be contaminated with adapters on their 
5′- or 3′ ends that were added as part of the sequencing 
protocol. Secondly, base quality and sequence complexity 
vary both within and between reads. The qualities of bas-
es on most sequencing platforms will degrade as the run 
progresses, so it is common to see the quality of base calls 
falling towards the end of the read. It is desirable to re-
move or trim such sequences with appropriate thresholds. 
Additionally, NGS reads can be highly redundant with the 
same sequence being represented in large numbers, so it 
is important to reduce these PCR amplification artefacts. 
The contamination in the sequencing dataset can also be 
caused by laboratory factors such as sample preparation, 
library construction, and other steps of the experiment. 
Moreover, samples may contain DNA/RNA from other 
sources including viruses, which are hard to avoid during 
the sample preparation process. Finally, general statistical 
methods like sample clustering and principal component 
analysis (PCA), and outlier detection can be used for as-
sessment of overall quality and sample comparison ac-
cording to experiment design.

Aligning short reads to the reference genome

Accurate alignment of short sequence reads generated 
using NGS platforms to a repeat masked reference genome 
is the first step in obtaining biological information from 
NGS data. Since, the numbers of reads generated in any 
given NGS experiment are very large (typically in millions), 
many efficient algorithms have been developed to deal 
with the alignment process. It is important to note that 
different read mapping procedures are necessary depend-
ing on the needs of downstream analysis, and alignment 
accuracy has a  high impact on the interpretation of the 
data. We comment on that in sections to follow. Most ap-
plications aim to identify uniquely mapped reads - match-
ing to a single “best” genomic position. The non-uniquely 

Table 1. Software for primary quality control of NGS data 

Method name Year 
published

PMID Data type Platform Statistical method Input 
requirements

BIGpre 2011 22289480 Illumina, 
454

Perl Correlation between forward and 
reverse reads, trimming low-quality 
reads

FASTQ

FastQC 2010 – any Java Sequence length, quality, k-mers 
presence reports

FASTQ, SAM/
BAM

HTQC 2013 23363224 Illumina C++ Tail trimming, filter by quality/length/
tile

FASTQ

QC-Chain 2013 23565205 any C++ Quality assessment, trimming, filtering 
unknown contamination

FASTQ

Qualimap 2012 22914218 any Java, R Alignment biases detection, sample 
comparison

SAM/BAM

PRINSEQ 2011 21278185 any Perl Sequence complexity, duplicates, 
occurrence of Ns and poly-A/T tails, 
tag sequences reports

FASTQ, FASTA

PIQA 2009 19602525 Illumina R Assess the clusters density per tile, 
base-calls proportions per tile/cycle

FASTQ

FastUniq 2012 23284954 any C++ De novo PCR duplicates removal for 
paired short reads

FASTQ
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mapped reads are filtered using an upper boundary for the 
number of reported mappings. 

Most short read alignment algorithms use auxiliary data 
structures (also called indexes) for the reads or reference se-
quence. The main indexing methods are based on hash ta-
bles, prefix/suffix trees, or merge sorting methods (Table 2).  
Such representation of the entire human genome takes 

only a  few GB of memory and enables exact matches to 
be found in a short time. Burrow-Wheeler transform and 
FM-index-based algorithms give better results for reads 
from repeated regions, but there is no efficient general 
method for handling errors in the reads for this category. 
Some hybrid solutions have been proposed, e.g. Stampy 
(see Table 2). These enhancements result in higher sensi-

Table 2. Software for mapping sequence reads to genome

Method 
name

Year 
published

PMID Data type Platform Statistical method Input 
requirements

BFAST 2009 19907642 RNA C Based on creating flexible, efficient 
whole genome indexes to rapidly 
map reads to candidate alignment 
locations, with arbitrary multiple 
independent indexes allowed to 
achieve robustness against read errors 
and sequence variants.
Final local alignment uses a Smith-
Waterman method, with gaps to 
support the detection of small INDELs 

FASTQ

Bowtie 2009 19261174 RNA C++ (SeqAn 
library)

Bowtie extends previous Burrows-
Wheeler techniques with a novel 
quality-aware backtracking algorithm 
that permits mismatches 

FASTQ, FASTA

BWA 2009 19451168 RNA C Backward search with Burrows-
Wheeler Transform (BWT), allowing 
mismatches and gaps.

FASTQ

BWA-PSSM 2014 24717095 RNA C Probabilistic adaptable alignment 
based on the use of position specific 
scoring matrices (PSSM) and BWT

FASTQ

CUSHAW2 22576173 RNA C++ Uses Burrows-Wheeler transform 
(BWT), the Ferragina-Manzini index 
and CUDA parallel programming model 
for GPUs. Supports only ungapped 
alignment

FASTQ

DistMap 2013 24009693 RNA Perl, Java Wrapper for many aligners, based on 
MapReduc API for parallel processing. 
Currently not handling spliced 
alignments

FASTQ

MAQ 2008 18714091 RNA C++, Perl Based on Smith-Waterman gapped 
alignment and Bayesian statistical 
model that incorporates the mapping 
qualities and error probabilities

FASTQ

MOSAIK 2014 24599324 RNA C++ Uses hash clustering strategy coupled 
with the Smith-Waterman algorithm. 
Detects mismatches, short insertions 
and deletions

FASTQ

PASS 2009 19218350 RNA C++ Based on precomputed score tables 
(PST) calculated with the Needleman 
and Wunsch algorithm

FASTQ

RMAP 2009 19736251 RNA C++ Uses multiple filtration (Pevzner and 
Waterman) and approximate pattern 
matching.
Incorporates the use of quality scores 
directly into the mapping process 

FASTQ, FASTA

SOAPaligner/
SOAP2

2009 19497933 RNA C Based on Burrows Wheeler 
Transformation (BWT) compression 
index

FASTQ

Stampy 2011 20980556 RNA Python Hybrid probabilistic model for mapping 
quality (measured by Phred score)

FASTQ

ZOOM 2008 18684737 RNA Custom filtering model FASTQ
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tivity and smaller memory requirements of mapping tools. 
Reported mapping positions are particularly useful as they 
prevent the result list being blown up by reads mapping to 
highly repetitive regions. It is important to note that in the 
case of paired-end sequencing the paired reads need to be 
mapped to identical genomic positions to be considered 
multi-mapping reads. Data from Illumina’s machine has 
few substitution errors per read and virtually no insertion 
or deletion (INDELs) errors [34]. Thus, it can be mapped 
efficiently by, for example, Bowtie [35], and then its junc-
tion-mapping extension can be done by Tophat [36], which 
can handle up to three mismatches per sequence and no 
INDELs. 

Transcriptome sequencing produces reads from tran-
scribed sequences with introns and intergenic regions 
excluded. Standard alignment algorithms, which handle 
mismatches and gaps, generally do not handle mapping 
reads spanning across exons. Tools for identifying novel 
splice junctions usually use standard algorithms in the 
first step and then derive exon positions, e.g. from clus-
tering of mapped reads or reads mapped into introns at 
their last few bases. Even in de novo assembly, in some 
parallel algorithms, if the location of each individual read 
is not tracked the reads may still need to be aligned back 
to the assembly. Therefore, sequence mapping is essential 
to almost all NGS techniques. Quantitation of microRNA 
expression requires similar steps but reads are mapped to 
the mature and precursor sequences of known miRNAs 
collected in microRNA databases. Prediction of secondary 
structure and genomic cluster analysis is useful [37].

Expression quantitation and identification  
of differential expression 

The expression level of each mRNA is measured by the 
number of sequenced fragments that map to the tran-
script (or counts and its derivatives), which is expected to 
correlate directly with its abundance level. Counts usual-
ly refer to the number of reads that align to a particular 
genomic feature. Like gene counts, any other targets may 
be quantified, including exons, transcripts, and miRNAs. 
Counts are heavily dependent on RNA sequencing depth 
and the effective length of the feature. Therefore, counts 
need to be adjusted for feature length to make the expres-
sion comparable. Effective gene counts are adjusted for 
the amount of bias in the experiment. Counts per million 
(CPM) mapped reads are counts scaled by the number of 
sequenced fragments multiplied by one million. CPM’s 
length-normalised analogues are reads per kilobase per 
million (RPKM) and fragment per kilobase per million 
(FPKM). RPKM and FPKM are identical for single-end se-
quencing but differ for the paired-end sequencing. Cal-
culating length-normalised measures makes them com-
parable within a  sample. The RSEM package computes 
maximum likelihood abundance estimates using the Ex-
pectation-Maximisation algorithm and effectively takes 
care of multi-mapping reads. The RSEM representation is 
a  current standard for reporting expression by Firehose 
GDAC pipeline. 

A deficiency of the RPKM/FPKM approach is that the pro-
portional representation of each gene is dependent on the 
expression levels of all other genes. Often a small fraction 
of genes account for large proportions of the sequenced 
reads, and small expression changes in these highly ex-
pressed genes will skew the counts of lowly expressed 
genes under this scheme. This can result in deduction of 
erroneous differential expression. Therefore, methods for 
calculating differential expression require counts to begin 
with. Thus RNA-Seq non-negative counts follow discrete 
distribution as opposed to the intensities recorded from 
microarrays, which are treated as continuous measure-
ments and commonly assumed to follow a log-normal dis-
tribution. For RNA-Seq data Poisson distribution and Nega-
tive Binomial (NB) distribution are the two most commonly 
used models [38–42] (Table 3). Other distributions, such as 
beta-binomial [43], have also been proposed. 

The Poisson distribution has the advantage of simplicity 
and has only one parameter, but it constrains the variance 
of the modelled variable to be equal to the mean. The Neg-
ative Binomial distribution has two parameters, encoding 
the mean and the dispersion, and hence allows modelling 
of more general mean-variance relationships. For RNA-
seq, it has been suggested that the Poisson distribution 
is well suited for analysis of technical replicates, whereas 
the higher variability between biological replicates neces-
sitates a  distribution incorporating overdispersion, such 
as Negative Binomial [28, 44, 45]. Analogous to microarray 
data analysis, it is clear that borrowing the variance from 
other genes help to better estimate the variation in read 
counts for a gene and condition. This overcomes a com-
mon problem with an underestimation of variance when 
based on a  low number of observations. The most com-
monly used parametric methods include EdgeR, DESeq, 
and baySeq and use negative binomial distribution. Other 
methods such as Cuffdiff2 uses a beta-negative binomial 
distribution, which is a combination of beta and negative 
binomial distribution. Non-parametric methods like SAM-
Seq also work relatively well on the count data.

Identification of alternative splicing from 
transcriptomic reads

A widely recognised source of proteome diversity in eu-
karyotic species is expression of multiple distinct mRNA 
transcripts from a  single gene locus by alternative tran-
script initiation, alternative splicing [47] (Table 4), and al-
ternative polyadenylation [48]. If RNA-Seq reads span exon 
junctions, parts of reads will map to two different exons. 
This allows inference of alternative splicing. However, such 
a  read structure will pose problems to standard aligners 
that map reads contiguously to the reference. Splice sites 
can be detected initially by identifying reads that span 
exon junctions. Split-read aligners such as TopHat, meth-
ods that identify minimal match on either side of exon 
junction, and genomic short-read nucleotide alignment are 
used to identify alternative splicing. Most methods utilise 
a  database of expression and alternative expression se-
quence ‘features’. These and other strategies that perform 
de-novo assemblies present a  number of computational 
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Table 3. Software for RNA-Seq data analysis

Method 
name

Year 
published

PMID Data type Platform Statistical method Input 
requirements

Aldex 2013 23843979 RNA-seq R ANOVA, Dirichlet distribution Raw counts

ALDEx2 2014 24910773 RNA-seq R Dirichlet distribution, glm Raw counts

ASC 2010 21080965 RNA-seq R Empirical Bayes, Raw counts

baySeq 2010 20698981 RNA-seq R Empirical Bayes Raw counts

BBSeq 2011 21810900 RNA-seq R Beta-Binomial, linear model Raw counts

CEDER 2012 22641709 RNA-seq R Negative binomial Raw counts

campcodeR 
(uses edgeR 
& DESeq)

2014 24813215 RNA-seq R Empirical Bayes Raw counts

COV2HTML 
(not 
working)

2014 24512253 RNA-seq Web site

CPTRA 2009 19811681 RNA-seq Python ??? Long-read 
sequence w/ 

annotation, short-
read sequence 

tag // fasta, fastq

CQN 2012 22285995 RNA-seq R Conditional quantile normalisation, 
robust generalised regression

Raw counts

Cuffdiff 2013 23222703 RNA-seq Standalone Beta negative binomial distribution

DegPack 2013 24981075 RNA-seq Web site Non-parametric (ranks) Raw counts

DEGseq 2010 19855105 RNA-seq R MA-plot-based (?) Raw counts

DER Finder 2014 24398039 RNA-seq R Hidden Markov Model Raw counts

DESeq 2010 20979621 RNA-seq R Negative binomial distribution Raw counts

DEXUS 2013 24049071 RNA-seq R Expectation-maximisation algorithm, 
Bayes

Raw counts

EBSeq 2013 23428641 RNA-seq R Empirical Bayes Raw counts

EDASeq 
(users edgeR 
& DESeq)

2011 22177264 RNA-seq R Empirical Bayes Raw counts

edgeR 2012 22287627 RNA-seq R Empirical Bayes, glm Raw counts

edgeR-
robust

2014 24753412 RNA-seq R Weights, empirical Bayes Raw counts

GExposer Machine learning algorithm

iFad 2012 22581178 RNA-seq R Bayesian sparse factor model Raw counts

MRFSEQ 
(uses 
DESeq)

2013 23793751 RNA-seq Standalone Markov random field model Raw counts, 
co-expression 

database

Myrna 2010 20701754 RNA-seq Cloud-
computing, 
Bowtie, R

NOISeq 2011 21903743 RNA-seq R Non-parametric Raw counts

NPEBseq 2013 23981227 RNA-seq R Non-parametric Bayesian Raw counts

pairedBayes RNA-seq R Empirical Bayes Raw counts

PoissonSeq 2012 22003245 RNA-seq R Poisson goodness-of-fit Raw counts

QuasiSeq 2012 23104842 RNA-seq R Quasi-Poisson, quasi-negative 
binomial

Raw counts

RNASeqGUI 
(uses edgeR, 
DESeq, 
NoiSeq, 
BaySeq)

2014 24812338 RNA-seq R Empirical Bayes, negative binomial Raw counts

SAMSeq 2013 22127579 RNA-seq Standalone Non-parametric Raw counts
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Method 
name

Year 
published

PMID Data type Platform Statistical method Input 
requirements

ShrinkBaye 2014 24766777 RNA-seq R Negative binomial, Poisson-Gaussian, 
Bayesian GLM

Raw counts

sSeq 2013 23589650 RNA-seq R Negative Binomial Raw Counts

TCC (uses 
edgeR, 
DESeq, 
DESeq2)

2013 23837715 RNA-seq R Negative Binomial, Empirical Bayes Raw counts

tRanslatome 2013 24222209 RNA-seq R Rank Product, t-test, SAM, limma, 
ANOTA, DESeq, edgeR

Raw counts

TSPM.R

tweeDEseq 2013 23965047 RNA-seq R Poisson-Tweedie distributions Raw counts

Table 4. Alternative splicing algorithm

Method 
name

Year 
published

PMID Data type Platform Statistical method Input 
requirements

ABMapper 2011 21169377 RNA C++, Perl Fast suffix-array algorithm and a dual-
seed strategy for spliced alignment

FASTA, FASTQ

ERANGE 2008 18516045 RNA Python Splice junctions identification relies on 
reference genome exon positions

FASTQ

GEM Mapper 2012 23103880 RNA C, Objective 
Caml

Based on Burrows-Wheeler Transform 
and custom mapping algorithms. Uses 
custom mappability concept 

FASTQ

MapSplice 2010 20802226 RNA C++, 
Python

Algorithm not dependent on splice site 
features or intron length; consequently, 
it can detect novel canonical as well 
as non-canonical splices. This method 
has tag alignment phase and splice 
inference phase 

FASTQ

PALMapper 2010 21154708 RNA Web/ 
Galaxy

Combines GenomeMapper (based on 
BWT and k-mer indexes) read mapper 
with the spliced aligner QPALMA 

FASTQ

QPALMA 2008 18689821 RNA C++, 
Python

SVM-based splice site predictor
with the so-called ‘weighted degree’ 
kernel. Alignment based on extended 
BWT

FASTQ

SpliceMap 2010 20371516 RNA C++, 
Python

Cannoical GT-AG splice sites 
identification using half-read mapping 

FASTQ

SplitSeek 2010 20236510 RNA Candidate junction reads generation in 
intermediate BEDPE format feasible for 
paired-end sequences 

FASTQ

Subread 2013 23558742 RNA R Seed-and-vote - new multi-seed 
alignment strategy for overlapping 
seeds from each read (subreads)

FASTQ

TopHat 2009 19289445 RNA C++ Canonical GT–AG splice sites 
identification

FASTQ

challenges because of computation time and the depth of 
sequencing, which results in few junction-spanning reads. 
This quantitation of alternatively spliced transcripts needs 
to be followed by identification of differential expression 
of these transcripts between samples. 

Apart from detection and quantitation of expression 
and alternative splicing, RNAseq has the capacity to iden-
tify RNA editing events [49–51], allele-specific expression 
(ASE) [52, 53], quantify noncoding RNAs [54, 55], and de-

tect exogenous RNA [56, 57], single-nucleotide polymor-
phisms (SNPs), somatic mutations [8, 58], and structural 
variations. 

Detection of somatic copy number alterations 
and structural variants

Genomic alterations accumulate in tumours during 
cancer development [59]. In addition to point-mutations, 
inversions, and translocations, somatic copy-number al-

Table 3. Cont.
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terations (SCNAs) are ubiquitous in cancer [60, 61], and 
several recurrent SCNAs are associated with particular 
cancer types [62], tumour aggressiveness [63], and patient 
prognosis [64]. Reliable detection of SCNAs can lead to 
identification of cancer driver genes [65] and development 
of new therapeutic approaches [66–68]. Deep sequencing 
[69] and exome-based sequencing efforts are now replac-
ing microarray-based array CGH (aCGH) [70] and single nu-
cleotide polymorphism arrays (SNP arrays) [23, 71]. More
ever, similarly to microarray-based studies, the inference 
about cancer related copy number alterations requires 
comparison of paired samples – normal and tumour.

The general workflow to detect SCNAs from sequenc-
ing data consists of three main steps: (i) raw copy-number 
inference in the local genome region by either calculating 
read counts or depth of coverage ratio between tumour 
and control samples, (ii) the raw copy-number profiles seg-
mentation to find change-points in the raw copy-number 
signal and divide the chromosomes accordingly into seg-
ments with similar copy-numbers, and (iii) classification 
of different segments into gains or losses. The first step 
is essentially based on understanding variations in depth 
of coverage (DOC) of aligned sequence reads against the 
reference genome [69, 72, 73]. Deviation from the back-
ground in DOC may signify the presence of a copy num-
ber variation (CNV). The last two steps for obtaining copy 
number alteration are not specific to the sequencing data. 

Multiple methods exist for identification of structural 
variations using whole genome sequencing. Methods in-
clude identification of atypical alignment patterns of se-
quence reads against the reference genome, which reflect 
gaps in the sequence alignment [74]. In paired-end read 
mapping, the sequenced ends of a short DNA fragment are 
aligned against the reference genome. The mean insert size 
of the fragment is compared with the reference genome 
distance between aligned fragment ends to deduce the 
presence of deletions or insertions [74–76]. This detection 
requires high alignment accuracy and underscores its im-
portance.

Although coding regions comprise only ∼1% of the 
genome, they are enriched for causal variation, making 
exome-based studies valuable, manageable, and cost-ef-
fective. Whole exome sequencing (WES) data have been 
used effectively for the identification of small INDELs, usu-
ally of a size < 50 bp, within exon targets that are typically 
sized between 200 and 300 bp. The approaches discussed 
above, while appropriate for (deeply sequenced) DNA-se-
quencing data, are less effective for exome sequencing 
and detecting CNV, as the CNV’s breakpoints are likely to 
lie outside the targeted exons [77]. Detecting structural 
and copy number variations from RNA-Seq data presents 
similar challenges.

Identification of cancer driver mutations and 
their functional impact

Cancer is abundantly composed of somatic mutations 
accumulating in the genome over an individual’s lifetime, 
only a  fraction of which drive cancer progression. Muta-
tions can be identified from DNA-seq, RNA-seq, and Ex-
ome sequencing data [78–80] (Table 5). The most basic 

way of detecting somatic mutations from NGS reads is to 
identify mismatch/gaps in the alignment of the read with 
the reference. However, large datasets possess sequencing 
errors: random mutations that occur during cell division 
and single nucleotide polymorphisms that differ from ref-
erence assembly. This makes identification of cancer driver 
mutations a challenging issue [81]. Moreover, intra-tumour 
heterogeneity also hinders the identification of all types of 
somatic mutations [82]. Several methods for detecting so-
matic mutations are currently in use, such as MuTect [83], 
Strelka [84], and VarScan 2 [85] for SNV detection or BIC-
Seq [86], APOLLOH [87], CoNIEFER [88], BreakDancer [89], 
and Meerkat [87] for CNA or SV detection. Most methods 
for somatic mutation detection take into account only part 
of the possible source of errors; therefore, running differ-
ent methods simultaneously is advisable. 

The most basic task for mutation analysis in cancer is 
the distinction between driver and passenger mutations. 
To help filter a subset of driver mutations from the long list 
of detected somatic and passenger mutations, three ma-
jor computational predictive approaches utilising different 
statistical tests can be applied [90–92]: 

(1) Identification of recurrent somatic mutations is 
based on the idea of clonal evolution of tumour cell pop-
ulations. To predict genes with recurrent single-mutations 
in a cohort of cancer patients, several statistical method-
ologies including MutSigCV [3], MuSiC [93], and DrGaP [94] 
are available. These methods are based on the determina-
tion of the probability of the observed number of muta-
tions in a gene to the expected background mutation rate, 
the BMR (probability of observed passenger mutation) 
across a cohort of patients. As opposed to mutations, there 
is no accurate model established to identify genes with re-
current copy number aberrations (CNAs); therefore, meth-
ods are based on a non-parametric approach, e.g. GISTIC2 
[95], CMDS [96], and ADMIRE [97]. 

(2) Prediction of the functional impact of individu-
al mutations is based on the utilisation of additional in-
formation about protein sequence and/or structure and 
evolutionary conservation of the protein encoded by the 
mutated gene. Methods like SIFT [98], Polyphen-2 [99], 
and MutationAssesor [100] predict the functional impact 
(deleteriousness) of missense mutations. CHASM utilises 
random forest classification to identify driver and pas-
senger somatic missense mutations, based on a training 
set of labelled positive (driver) and negative (passenger) 
examples [101]. Furthermore, clusters of non-synonymous 
mutations across patients, typically to detect ‘activating’ 
mutations, NMC [102] and the Invex [103] method can be 
applied. Moreover, the iPAC method is able to search for 
clusters of mutations, but in the context of crystal struc-
tures of proteins [104].

(3) Identification of recurrent combinations of muta-
tions is based on assessment of combinations of muta-
tions enriched in known pathways (e.g. GSEA [105], Path-
Scan [106], Patient-oriented gene sets [107]), interaction 
networks (NetBox [108], HotNet [109], MEMo [110]), or de 
novo defined sets (Dendrix [109], Muti-Dendrix [111] or 
RME [112]), enabling the discovery of novel combinations 
of mutated genes in cancer. 
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Table 5. Methods for finding mutations 

Method name Year 
published

PMID Data type Platform Statistical method Input 
requirements

ActiveDriver 2013 23340843 DNA-seq R Generalized linear 
regression

FASTA, TAB

CancerMutationAnalysis 2014 24233780 DNA-seq R Empirical Bayes Non-standard 
tables

CanDrA 2013 24205039 DNA-seq Perl U-Mann Whitney, AUC (area 
under curve)

Non-standard 
tables

CanPredict 2007 17537827 DNA-seq Web site SIFT, Pfam-based logR.E-
value metric, GOSS

FASTA

CAROL 2012 22261837 DNA-seq R SIFT, PolyPhen-2 Tab-delimited, 
FASTA

CHASM/SNV-Box 2009 19654296 DNA-seq Standalone CHASM, SNV-Box dnSNP r#, 
Pubmed ID, 

VCF, bed,

CRAVAT 2013 23325621 DNA-seq Web site CHASM, SnvGet Non-standard 
tables

DDIG-in 2013 23497682 DNA-seq Web site Support vector machine-
based method

Non-standard 
tables

DMI 2012 23044540 DNA-seq Standalone Machine learning, 
discrimination index

Text file

DrGaP 2013 23954162 DNA-seq Standalone Chi-square distribution Non-standard 
tables

e-Driver 2014 25064568 DNA-seq Perl Binomial distribution Non-standard 
tables

eXtasy 2013 24076761 DNA-seq Web site Variant impact prediction, 
haploinsufficiency 
prediction, phenotype-
specific gene prioritisation

VCF

FATHMM 2013 23620363 DNA-seq Web site Hidden Markov Model Annotated VCF

InVEx 2012 22817889 DNA-seq Python Permutation-based Non-standard 
tables, power 

FASTA

MuSIC 2012 22759861 DNA-seq Standalone Fisher p-value, likelihood 
ratio test, convolution test 
(summarised log statistic 
of joint binomial point 
probability)

BAM, SNV, 
MAF

MutSig 2013 23770567 DNA-seq Standalone MutSigCV (Background 
mutation rate)

nsSNPAnalyzer 2005 15980516 DNA-seq Web site Machine learning (random 
forest)

FASTA, SNP

Oncodrive-fm 2012 22904074 DNA-seq Standalone SIFT, PolyPhen2, 
MutationAssessor

TDM, TSV

OncodriveCLUST 2013 23884480 DNA-seq Python Clustering Non-standard 
tables

PANTHER 2013 23193289 DNA-seq Web site subPSEC FASTA

PhD-SNP 2006 16895930 DNA-seq Web site Sequence and Profile-Based FASTA

PROVEAN 2012 23056405 DNA-seq Standalone Alignment-Based Non-standard 
tables

transFIC 2012 23181723 DNA-seq Web site SIFT, PolyPhen2, 
MutationAssessor

File w/ 
chromosome/

protein 
coordinates 

(hg19)
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Identification of gene fusions

Gene fusions appear as a  result of chromosomal re-
arrangements, such as deletion, insertion, inversion, or 
translocation. A fused gene is expressed as a hybrid entity 
encoding sequences of two distinct genes. Tumorigenic fu-
sions successfully evade the gene regulation that its con-
stituents are subjected to. Multiple cancer-related gene fu-
sions have been identified, including prototypic BCR-ABL 
[113], EML4-ALK [114], TMPRSS2-ERG [115], KIF5B-RET [116], 
and others [7, 13, 14, 117]. Such alterations may serve as 
a good cancer biomarker or therapeutic target [120, 121]. 
Whole genome [75, 119] and transcriptome sequencing 
[120, 121] profiles can be used to identify fusions. 

Transcriptome sequencing is proven to be superior over 
WGS and therefore is more commonly used. This is due 
to the fact that RNA-seq covers only transcribed sequenc-
es, which constitute a  small percentage of the genome, 
thus reducing the cost, time, and resources needed for full 
analysis. Furthermore, RNA-seq provides information on 
the transcriptionally active fusion genes and their splicing 
variants. However, it also harbours certain limitations, in-

cluding lack of information regarding non-transcribed re-
gions and dependence on the heterogeneity in the expres-
sion levels between various cell types [122]. Over the last 
few years several software packages (Table 6) have been 
developed for the detection of gene fusions and/or struc-
tural variants (SV) that cause gene fusions. The majority of 
the software utilises RNA-seq data as an input. However, 
other tools use WGS data or both to increase the likelihood 
of detection of true fusion. 

The most common analysis steps for identifying gene fu-
sions are as follows: (i) alignment and filtering, (ii) detection 
of fusion junctions in candidate genes, and (iii) fragment 
assembly and selection of putative fusions [122]. Apart from 
mapping to the current reference genome available, RNA-
seq reads are additionally mapped to annotated transcrip-
tome libraries (e.g. RefSeq). The most commonly used map-
ping tool is Bowtie, due to its speed and high efficiency. The 
reads that map appropriately to the reference genome are 
filtered out from further analysis. The unmapped or discor-
dantly mapped reads are fusion candidates that might be 
further passed through additional filters (e.g. ribosomal fil-

Table 6. Identifying gene fusions

Method name Year 
published

PMID Data type Platform Statistical method Input 
requirements

BreakFusion 2012 22563071 RNA-seq C++, Perl A computational pipeline for 
identifying gene fusions from 
RNA-seq data 

BAM

BreakTrans 2013 23972288 RNA-seq Perl Uncovering the genomic 
architecture of gene fusions 

Tab-delimited 
text files

chimerascan 2011 21840877 RNA-seq Python Identifying chimeric 
transcription in sequencing 
data 

FASTQ

comrad 2011 21478487 RNA-seq, 
DNA-seq

C++ Discovery of gene fusions 
using paired end RNA-Seq and 
WGSS.

FASTQ

deFuse 2011 21625565 RNA-seq C++ Detecting gene fusions from 
paired-end RNA-seq

FASTQ

FusionAnalyser 2012 22570408 RNA-seq C# Detecting gene fusions from 
paired-end RNA-Seq data 

SAM/BAM

FusionHunter 2011 21546395 RNA-seq Perl Detecting gene fusions from 
paired-end RNA-Seq data

FASTQ

FusionMap 2011 21593131 RNA-seq, 
DNA-seq

C# Detecting gene fusions from 
single- and paired-end RNA-
Seq and DNA-seq data 

FASTQ/BAM 
with unmapped 

reads

FusionSeq 2010 20964841 RNA-seq C A modular framework for 
finding gene fusions by 
analysing Paired-End RNA-
Sequencing data 

MRF, SAM

ShortFuse 2011 21330288 RNA-seq C++, 
Python

Detecting gene fusions from 
paired-end RNA-Seq data

FASTQ

SnowShoes-FTD 2011 21622959
 

RNA-seq Perl Detecting gene fusions from 
paired-end RNA-Seq data

FASTQ

SOAPfusion 2013 24123671 RNA-seq Perl Detecting gene fusions from 
paired-end RNA-Seq data

FASTQ

TopHat-Fusion 2011 21835007 RNA-seq C++ Detecting gene fusions from 
single- and paired-end RNA-
Seq data

FASTQ
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Table 7. Available software for purity estimation 

Method name Year 
published

PMID Data type
(technique)

Platform Statistical method Input requirements

Dsection 2010 20631160 RNA
(Microarray)

Web-based 
and

MATLAB

Bayesian model Expression and 
proportion data 
required

csSAM 2010 20208531 RNA
(Microarray)

- Linear regression-based 
model

Expression profile of 
mixed tissue samples

mixture_
estimation.R

2010 20202973 RNA
(Microarray)

R based Variation of electronic 
subtraction method

Expression profile of 
mixed tissue samples

ASCAT 2010 20837533 DNA
(Microarray)

R based Analytical optimisation 
method

SNP array data with Log 
R and B-Allele frequency 
information

PERT 2012 23284283 RNA
(Microarray)

Octave Perturbation model Expression data from 
mixed cell type and 
expression profile of 
each homogeneous cell 
type

ABSOLUTE 2012 22544022 DNA
(Microarray 

and HTS)

R based Gaussian mixture model Copy number data in 
segmentation file

JointSNVMixl, 
JointSNVMix2 

2012 22285562 DNA
(HTS)

Python Probabilistic graphical 
model

Sequence data from 
tumour/normal pairs

CNAnorm 2012 22039209 DNA
(HTS)

R based Analytical optimization 
method

Sequencing data of 
tumour and normal 
samples in bam format

DeconRNASeq 2013 23428642 RNA
(Microarray 

and HTS)

R based Globally optimised 
nonnegative decomposition 

algorithm

Expression data 
from multiple tissue, 
signature of individual 
tissue and proportion 
data required

TEMT 2013 23735186 RNA
(HTS)

Python Probabilistic model 
including position and 

sequence-specific biases

Required RNA-seq 
sequencing data from 
pure tissue and mixed 
tissue

ESTIMATE 2013 24113773 RNA
(HTS)

R based Gene signature (ssGSEA) 
based model

Expression data in Gene 
Set Enrichment Analysis 
(GSEA) gct format

THetA 2013 23895164 DNA
(HTS)

Python Explicit probabilistic model Copy number data 
in interval count file 
format

ExPANdS 2013 24177718 DNA
(HTS)

R based 
and 

MATLAB

Probability distributions 
model

Somatic mutations 
and copy number data 
required

Virmid 2013 23987214 DNA
(HTS)

Java based Probabilistic model and 
maximum likelihood 

estimator

Disease and normal 
sequencing data in bam 
format

MuTect 2013 23396013 DNA
(HTS)

Java based Bayesian model Tumour and normal 
sequencing data

TrAp 2013 23892400 DNA
(HTS)

Java based Linear mixture model with 
evolutionary framework

Tumour karyotypes and 
somatic hypermutation 
datasets

Seo et al. 2013 23650637 RNA
(Microarray)

– Linear mixture model Disease-associated 
variants and expression 
of heterogeneous 
normal tissue
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ter, repetitive region filter, short distance filter, etc.) to elim-
inate potential false negatives. Next, the reads remaining 
after filtration are divided into smaller fragments (so-called 
“split reads”) with even or pre-defined length, and both 
terminal parts are independently aligned to the reference 
genome. If they map to two different genes, they are fur-
ther subjected to detection of fusion junction. The sequenc-
es of both genes are put together according to the fusion 
boundary, and the whole read is re-aligned to the candidate 
fusion gene to call supporting reads essential for the final 
selection of fusion. Another approach for the detection of 
fusion intersection is grouping discordantly mapped reads 
(“spanning reads”) according to the same breakpoints. De-
tection of fusion junction from such groups fuels prediction 
of the putative fusion transcript. Subsequently, the reads 
are re-aligned to predicted sequences and the predictions 
with the highest mapping scores aid identification of can-
didate fusion genes. The final selection of the fusion genes 
depends on several parameters including the number of 
supporting reads, quality of the alignment, and sequencing 
coverage [122, 123]. 

Estimating sample purity

Most genomics and expression-profiling studies includ-
ing TCGA use a mixture of different clonal populations of 
tumour cells, which is often contaminated with stromal 
and immune cells. Indeed, many common tumours, such 
as pancreatic tumours, are intensively infiltrated by stro-
ma [124] making it difficult to obtain homogenous material 
for genomic studies. Furthermore, epithelial cells are also 
often found in tumour samples, as they are at the interior 
surface of blood vessels necessary for providing nutrients 
for cancer cells. Methods like laser capture micro-dissec-
tion are rarely used in RNA-studies requiring stable materi-
al [125]. Estimating purity and clonality of a tumour sample 
containing a mixed population of cells requires accurate 
measurement of the proportion of tumour and stromal 
cell samples. Over the years several different methods  
(Table 7) have been developed to deconvolute genomic 
and transcriptomic data obtained from mixed-cell popula-
tions. Software packages based on these methods provide 
powerful tools for estimation of tumour heterogeneity 
and purity and in consequence identification of likely early 
driver events during tumorigenesis [126]. 

Comparative and integrative analysis of tumour 
samples

One of the major achievements of the TCGA project is 
the generation of different types of data from the same 
sample for a  large number of tumours. This data gener-
ation is followed by uniform data processing and cor-
relation with clinical information by Firehose and other 
analysis pipelines at various genome data analysis cen-
tres. The availability of such paired data allows detection 
of functional impact on genomic lesions (e.g. mutations, 
copy numbers, and gene fusions) on gene/miRNA (using 
RNA-Seq) and protein expression (using RPPA arrays) and 
pathway levels while reducing errors due to individual pa-
tient variation. Another example is the utilisation of mul-

tiple data types to identify integrated subtypes for a given 
tumour type using the iCLUSTER method [13, 14, 127]. Oth-
er approaches include integration of pathway information 
(e.g. PARADIGM & Paradigm-shift) and regulatory network 
information (e.g. GEMINI – [128]).

Comparative analysis of multiple tumour types increas-
es the statistical power to detect common events that 
drive tumorigenesis and repurpose the therapy. For exam-
ple, ERBB2-HER2 is mutated and/or amplified in subsets 
of glioblastoma, gastric, serous endometrial, bladder, and 
lung cancers. The result, at least in some cases, is respon-
siveness to HER2-targeted therapy, analogous to that pre-
viously observed for HER2-amplified breast cancer. There 
are more examples that underscore the importance of 
such comparative analysis [4].

Future of cancer profile analysis

As we are entering the era of $1000 genome sequenc-
ing, tumour profiles are being sequenced routinely. More-
over, tumour catalogues and pre-clinical models [129, 
130] have similar types of information available, with or 
without drug treatments. Integration of such datasets can 
speed up pre-clinical drug development and repurposing 
of available drugs. Tumour profiling by sequencing is also 
expected to enter both the pre-clinical and clinical setting 
for standardised testing as well as personalisation of med-
icine. However, the sequencing data fits the definition of 
“big data”, and a reliable computational infrastructure for 
storage, processing, analysis, and visualisation [131, 132] 
is required to make most of this avalanche of information 
[133]. Indeed, ambitious efforts like the cancer moonshot 
program and APOLLO launched by the UT MD Anderson 
Cancer Centre, aim to combine big data warehousing with 
IBM WATSON based cognitive and adaptive learning to re-
duce cancer mortality for several tumour types, will fully 
realise the power of tumour profiling.   
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