Skip to main content
. Author manuscript; available in PMC: 2016 Mar 24.
Published in final edited form as: Chem Eng Sci. 2014 Sep 16;125:32–57. doi: 10.1016/j.ces.2014.08.061

Table 2.

Scaling laws for the prediction of droplet diameter in a single EHDA system

Droplet diameter Current Dimensionless parameters References
Dd~dj~R=(ρQ2γ)1/3
when η ≫ 1
I=f(ε)(γQK/ε)1/2 η=(ρKQγε0ε)1/2
(0.51 ≤ η ≤ 2.01)
(de la Mora and Loscertales, 1994)
Dd~dj~r=(Qεε0K)1/3
when η ~ 1

Dd=kdQ12(ρε0γK)16
when β ~ 1
I=kI(QKε0γρ)1/4
β=εε0
(Gañán-Calvo., 1994)
Dd=kdβ1/6(Qε0K)13
when β ≫ 1
I=kI(QKγβ1/2)1/2

d(ε-1)13d0=1.6(Q/((ε-1)12Q0))13-1.0
I=6.2(QQ0(β-1)1/2)1/2
δμδ13=(ε02γ3K2μ3Q)13
(Gañán-Calvo, et al., 1997)
δμδ131
Q0=γε0/ρK
dd0=1.2(QQ0)1/2-0.3
I/I0=11.0(QQ0)1/4-5.0
I0=(ε0γ2/ρ)1/2
δμδ131
d0=(γε02/ρK2)1/3

Dd=G(κ)r* I = f(κ)(γKQ/κ)1/2 κ = dielectric constant
r* = (Qεε0/K)1/3
(Chen and Pui, 1997)
G(κ)=−10.9κ−6/5+4.08 κ−1/3 f(κ) = −499−0.21κ+ 157κ1/6+336κ

d=2×1.89R0fb=3.78π-2/3Q1/2(ρε0γK)1/6fb
I=4.25(γKQln(QQ0)1/2)1/2
Q0=ρK/γε0 (Gañán-Calvo, 1997)

dd0=kd(QQ0)1/2
II0=kI(QQ0)1/2
d0=(γε02π2ρK2)1/3
(Gañán-Calvo, 1997)
kd: Constant; It depends on needle-to-electrode potential difference as well as on the needle radius. k1: Constant; It depends on needle-to-electrode potential difference as well as on the needle radius.
I0=(γε01/2ρ1/2)

dd~(ρε0Q3γK)1/6
I=(γKQ)1/2 The velocity profile in the jet is assumed to be flat (Hartman et al., 2000)

Dd~d=(ρε0Q3γK)1/6
I=(γKQ)1/2 Inertia and electrostatic suction scaling *: αpαμ1/4 and αp/(β−1)≫1 (Gañán-Calvo, 2004)
Dd~d=(ρε0Q3γK)1/6
I=(ρK2Q2(β-1)ε0)1/2
Inertia and polarization forces scaling: 1αρ(β-1)αμ(β-1)2
Dd~d=(με02Q3γK2)1/8
I=(γKQ)1/2 Viscous force and electrostatic suction scaling: αpαμ1/4 and αμ/(β−1)4≫1
Dd~d=(μQ(β-1)γ)1/2
I=(μ2K3Q2(β-1)4γ2ε02)1/2
Viscous force and polarization force scaling: αρ(β-1)αμ(β-1)21

αρ=ρKQγε0;αμ=μ3K2Qγ3ε02;β is the liquid polarity parameter.