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Abstract

Significance: An acute lack of oxygen in the lung causes hypoxic pulmonary vasoconstriction, which optimizes
gas exchange. In contrast, chronic hypoxia triggers a pathological vascular remodeling causing pulmonary
hypertension, and ischemia can cause vascular damage culminating in lung edema. Recent Advances: Reg-
ulation of ion channel expression and gating by cellular redox state is a widely accepted mechanism; however, it
remains a matter of debate whether an increase or a decrease in reactive oxygen species (ROS) occurs under
hypoxic conditions. Ion channel redox regulation has been described in detail for some ion channels, such as Kv
channels or TRPC6. However, in general, information on ion channel redox regulation remains scant. Critical
Issues and Future Directions: In addition to the debate of increased versus decreased ROS production during
hypoxia, we aim here at describing and deciphering why different oxidants, under different conditions, can
cause both activation and inhibition of channel activity. While the upstream pathways affecting channel gating
are often well described, we need a better understanding of redox protein modifications to be able to determine
the complexity of ion channel redox regulation. Against this background, we summarize the current knowledge
on hypoxia-induced ROS-mediated ion channel signaling in the pulmonary circulation. Antioxid. Redox Signal.
22, 537–552

Introduction

The effects of alveolar hypoxia on the pulmonary
circulation can be divided into three phases: (i) the acute

phase (30 s to < 20 min), (ii) the sustained phase ( > 30-min to
hours-days), which by hypoxic pulmonary vasoconstriction
(HPV) matches blood perfusion to alveolar ventilation under
conditions of regional alveolar hypoxia (163), and (iii) the
chronic phase, which is characterized by refractory vaso-
constriction (78) and vascular remodeling with media hy-
pertrophy inducing pulmonary hypertension (PH) (Fig. 1).
Alveolar epithelial cells are usually exposed to 100 mm Hg
and rarely experience O2 levels less than 40 mm Hg (133).
Under conditions of generalized alveolar hypoxia, the acute
and sustained phases also contribute to PH development.
There is substantial evidence that these three phases are, in

part, regulated by different mechanisms (51, 93, 111, 165,
166). Although the endothelium alters this vasoconstriction
via release of vasoactive substances, this response is exclu-
sive for pulmonary arterial smooth muscle cells (PASMC)
such as the effector cell type (66). Changes in oxygen (O2)
levels are known to be accompanied by alterations of reactive
oxygen species (ROS) production in PASMC. This ROS
production has been suggested to be a key mediator of hyp-
oxia-dependent signaling (153). While the O2-sensing
mechanisms are still unknown, several lines of evidence for
both mitochondrial and NADPH oxidases as predominant
ROS sources exist. Among the various systems capable of
producing ROS in mammalian cells, the mitochondrial re-
spiratory chain and NADPH oxidases have been shown to be
involved in the regulation of HPV under acute hypoxia, as
well as in cell proliferation, and media hypertrophy during
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chronic hypoxia (133, 138). Although redox signaling has
been suggested to be a crucial event in HPV and remodeling,
there is a current debate as to whether an increase or a de-
crease in ROS triggers this process (152, 159). ROS can react
with DNA, lipids, and polypeptides. However, only their
effect on proteins endows them with specificity. High con-
centrations of ROS can cause a variety of amino-acid mod-
ifications (oxidation of thiol groups [SH], oxidation of
arginine and lysine residues, or oxidation of methionine),
molecular crosslinking, and trapping of proteins in multi-
molecular complexes. In contrast to the irreversible modifi-
cations that destroy protein function, physiological amounts
of ROS can regulate protein function via specific interaction
with amino acids (17).

The recognition of the involvement of ion channels in
hypoxic events of the pulmonary vasculature uncovered L-
type calcium (Ca2 + ) channels and potassium (K + ) channels
as important players (8, 146). Several other types of potas-
sium and calcium channels were discovered, which also
contribute to HPV and chronic hypoxia-induced PH (138,
160). These ion channels are highly sensitive to redox
changes (109). In this regard, two antithetical models are
currently discussed. The first model favors the closure of Kv-
channels mediated by a reduced mitochondrial ROS release,
which activates vasoconstrictive, pro-proliferative, and anti-
apoptotic signaling cascades (6). This proposal is based on
the opposing observations in terms of increased or decreased
ROS production in the pulmonary circulation during hyp-
oxia. There is also a debate about the potential sources of
ROS production (i.e., mitochondria or NADPH oxidases) and
their downstream targets (Fig. 2).

The second model proposes that an increase of ROS from
mitochondria or NADPH oxidases triggers such events via
different membrane channels, including Kv-, transient re-
ceptor potential (TRP)-, and L-type Ca2 + channels and/or
intracellular Ca2 + release (52) (Fig. 2). The discrepancies
between the two models might be explained by studies that
revealed differences in the basal oxidation state among the
subcellular compartments. During acute hypoxia, the cytosol
and intermembrane space showed increased ROS generation,

whereas ROS production in the mitochondrial matrix was
decreased (133). Under normoxic conditions, the mitochon-
drial complexes I and III produce small basal amounts of
superoxide radicals (proportional to alveolar PaO2) (19).
Superoxide from complex I and the Qi side of complex III
enter the matrix, while superoxide formed on the Qo side of
complex III goes to the intermembrane space and is then
converted to hydrogen peroxide (H2O2), which is able to pass
the outer mitochondrial membrane and to enter the cytosol
(133). Besides the mitochondrial respiratory chain, the ROS
locally produced by the Nox family of NADPH oxidases
during normoxia elicit a plethora of cellular responses re-
quired for physiological growth factor signaling (21, 22, 86).
However, under hypoxic conditions, increased (52, 133, 152)
and decreased (5, 6, 156) ROS production during acute and
chronic hypoxia has been described.

The determination of the pulmonary vascular tone by ion
channels in response to hypoxia is widely accepted. Whether
due to an increase of decrease of ROS, Ca2 + entry through L-
type channels, and release of calcium from the sarcoplasmic
reticulum (SR) causes an increase in intracellular Ca2 + , and
initiates and maintains contraction of pulmonary vascular
smooth muscle cells (VSMC) in response to hypoxia (151,
158).

Against this background, we, in this review, will focus on
the role of redox regulation of ion channels during acute and
chronic hypoxia. We are aware that we are not able to refer to
all investigations which have been performed in this context.
In addition, in a variety of instances, we refer also to non-
pulmonary investigation if lung-specific literature is missing.

Potassium Channels

Potassium channels conduct K + ions across the cell
membrane and are crucial for the pattern of action potentials
(electric impulse formation), epithelial function, cell volume
regulation, hormone secretion, and adjusting plasma mem-
brane potential (59). The conduction follows the electro-
chemical gradient for K + , and these channels are extremely
selective for K + (63). All known K + channels share the same

FIG. 1. Schematic illustration of the effects of alveolar hypoxia on the pulmonary circulation. The effects of alveolar
hypoxia on the pulmonary circulation can be divided in three phases: (i) the acute (30 sec-20 min), (ii) the sustained phase
(20min-hours), and (iii) the chronic phase (days-weeks). Within seconds, acute hypoxia leads to hypoxic pulmonary
vasoconstriction (HPV), matching blood perfusion to alveolar ventilation. Under conditions of generalized sustained and
chronic alveolar hypoxia, this vasoconstriction is morphologically fixed by media hypertrophy (vascular remodeling)
inducing pulmonary hypertension (PH).
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structure of this very selective pore region. K + channels can
be divided into five subcategories and differ mainly in the
ways in which K + channels are gated open: (i) inward rec-
tifiers (Kir), including classical Kir, G-protein-gated chan-
nels, ATP-sensitive K + channels (KATP), and K + -transport
channels; (ii) four transmembrane segments-2 pores (K2P),
including pH, temperature, fatty acid, voltage, and membrane
stretch-regulated channels; (iii) voltage-gated (Kv); (iv) the
Slo family (KCa), having a very large conductance and in-
cluding the ‘‘big’’ K + channels (BK); and (v) Ca2 + -activated
SK family (SKCa), having a small conductance (SK chan-
nels) (59).

Four major types of K + channels have been identified in
the pulmonary vasculature and the pulmonary arterial smooth
muscle: (i) Kv channels, (ii) KCa channels, (iii) KIR channels,
and (iv) K2P channels (25, 102). In PASMC, efflux of K +

after activation of K + channels leads to membrane hyper-
polarization and, subsequently, vasodilation. In contrast, in-

hibition of K + channels causes depolarization and
vasoconstriction (32). Inhibition of K + channels and influx of
K + (rather the reduction in K + conductance) was shown to
initiate membrane depolarization, activation of voltage-
operated Ca2 + channels (VOCCs), and vasoconstriction. In
PASMC, this role has mainly been assigned to Kv and K2P

channels (105), while KCa channels may be important in fetal
or newborn animals (34, 120, 126) and both KCa and ATP-
sensitive potassium channels (KATP) may modulate hypoxic
depolarization in coronary arterial SMC (38, 39).

Voltage-gated K + channels

Although various types of K + channels are expressed in
the pulmonary vasculature, much interest has been placed on
the role of Kv channels, regarding the membrane potential
(107, 171, 173), changes in pulmonary vascular tone (42,
119), and PASMC proliferation (80, 81, 118). Kv channels

FIG. 2. Opposing models of the effect of acute hypoxia on ROS production and Kv channel regulation. With regard
to the effect of acute hypoxia on PASMC depolarization, two models are discussed: The first model (right side) favors the
closure of Kv-channels mediated by a reduced ROS release (most likely by mitochondria) that activates vasoconstriction.
The second model proposes that an increase of ROS from mitochondria and/or NADPH oxidases triggers such events via
DAG-mediated activation of TRPC6, subsequent influx of Na + and Ca2 + , and inhibition of Kv channels by Na + . DAG,
diacylglycerol; DAGK, diacylglycerol kinase; EC, extracellular; Em, membrane potential; IC, intracellular; Kv, voltage-
gated K + channels; PASMC, pulmonary arterial smooth muscle cells; ROS, reactive oxygen species; TRPC6, transient
receptor potential channel 6; VOCC, voltage-operated Ca2 + channel.
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represent the largest and most diverse family of K + channels.
The family is composed by 40 genes: 36 genes of six trans-
membrane K + channels (KCNA [Kv1 family], KCNB [Kv2],
KCNC [Kv3], and KCND [Kv4], KCNQ [Kv7], KCNH
[Kv10, Kv11, and Kv12]), and a nonconducting group of four
gating modulators (KCNF [Kv5], KCNG [Kv6], KCNV
[Kv8], and KCNS [Kv9]). The functional channel is formed
by four a-subunits (tetrameric organization), with the pore lying
in the axis. Each subunit has six transmembrane domains. Kv
channels arrange as complexes of homo-tetramers or hetero-
tetramers with many possible combinations (59, 127). Under
acute hypoxia, the hypoxic stimulus triggers an inhibition of Kv
channel activity in PASMC (122, 172). This effect has been
described not only for PASMC but also for hypoxic-induced
contraction in pulmonary vein smooth muscle cells (45).

In contrast, hypoxia neither inhibits Kv channel activity
nor changes expression of Kv channels in systemic SMC
(119, 147, 149, 172). Thus, Kv channels appear to be a
hypoxic effector in the pulmonary circulation, but not in
systemic SMC, conducting vasoconstriction.

Inhibition of Kv channels has also been suggested to be
mediated by both decreased (6, 124, 156, 161) and increased
(31, 101) ROS production from mitochondria and/or
NADPH oxidases. In general, redox modification of cyste-
ine residues is important for Kv activity. Sahoo et al. sug-
gest that physiological levels of ROS trigger a positive
feedback mechanism, which reduces Kv channel activity
(131). Mittal et al. described a mechanism by which an Nox4-
derived increase in ROS production induces Kv channel cur-
rent inhibition (101). Furthermore, Cogolludo et al. showed
that activation of NADPH oxidase and the subsequent pro-
duction of H2O2 are involved in the Kv channel inhibition and
the contractile response induced by thromboxane receptor
activation in rat pulmonary arteries (31).

In contrast, the complex I (NADH oxidoreductase) inhib-
itor rotenone and the flavoprotein inhibitor diphenyleneio-
donium (DPI) were shown to inhibit HPV and Kv channel
currents (124, 161). However, the effect of rotenone on
mitochondrial respiration strongly depends on the concen-
tration and was shown to trigger HPV, as well as to inhibit
pulmonary vasoconstrictor responses (138). Rotenone-in-
duced pulmonary vasoconstriction (using rotenone con-
centrations > 350 nM), which was similar to the degree of
HPV, has been attributed to nonselective effects rather than
to altered ROS generation (138). Other inhibitors of the
proximal and distal mitochondrial respiratory chain have
also shown to elicit opposing affects regarding HPV (132).

While acute hypoxia acts via inhibition of Kv channel
activity, during chronic hypoxia K + channel density and Kv
channel protein expression (Kv1.5 and Kv2.1) is decreased,
although a Kv current is still detectable (124). However, both
induction and repression of Kv channel subunit expression
under chronic hypoxia has been described (44, 61, 91, 147).
Patch clamp studies showed that the hypoxic inhibition of the
Kv current in PASMC is unchanged even after 2 days of
ambient hypoxia, when HPV is already lost (169). However,
after 3 weeks of chronic hypoxia, PASMC membrane po-
tential was depolarized, Kv1.5 and Kv2.1 channel protein
was decreased, and acute hypoxic inhibition of whole cell K +

current was lost (124). Other studies suggest Kv channel
upregulation due to chronic impairment of the thioredoxin
system under oxidative stress (pathophysiological ROS

levels) (142). Further, interaction with pyridine nucleotides
(76) and S-nitrosylation of Cys445 has been described (10).

Ca2 + -activated K + channels

Ca2 + -activated K + (KCa) channels are subcategorized ac-
cording to their conductance: large (BK), intermediate (IK), and
small (SK). Here, we will focus on BKCa channels. In contrast to
the BKCa channel, the role of SKCa and IKCa channels in VSMC
is not well understood (168). BKCa channels are ubiquitously
expressed in VSMC and can be activated by changes in both
membrane potential and intracellular Ca2 + concentration
(79). These channels were shown to act as a negative-feedback
mechanism in response to depolarization and increased cyto-
solic Ca2 + concentration during vasoconstriction. An increas-
ing intracellular Ca2 + concentration was shown to decrease the
BKCa current and increase the Kv current (35). Thus, cytosolic
Ca2 + levels not only play a major role regulating these channels
but are also sensitive to voltage changes (58).

BKCa channels are present in PASMC, but their role in
whole cell K + currents depends on the species and varies in
different pulmonary artery tree regions (94). Proximal seg-
ments contain a larger proportion of KCa-enriched PASMC,
whereas distal segments contain more Kv-enriched PASMC
(7, 96). In addition, it has been proposed that the hypoxic
response due to K + channels changes as PASMC mature
from fetal to neonatal and adult PASMC (33). It has been
suggested that KCa channel activity is prominent in hypoxia-
induced fetal pulmonary vasodilation (33, 125). The contri-
bution to the hypoxic response by BKCa is still unclear.
During acute hypoxia, BKCa channel activity was attenuated
in PASMC (84, 113, 121), while Ca2 + release from SR in-
creased BKCa channel activity (18).

Since Ca2 + release in the SR is linked to the activation of
large-conductance KCa channels and membrane hyperpolar-
ization (28), it remains unsolved whether acute hypoxia-
mediated Ca2 + release triggers membrane depolarization in
PASMC. Not much is known about the redox regulation of
KCa channels in PASMC or the pulmonary vasculature of
adults. At least for mouse lungs, it was shown that knockout
of the functional essential BK channel alpha-subunit alters
neither acute and sustained HPV nor chronic hypoxia-in-
duced PH (130). KCa channels were shown to be important in
mediation of HPV in fetal lungs, but this was due to stimu-
lation of a cyclic nucleotide-dependent kinase, resulting in
KCa-channel activation, membrane hyperpolarization, and
vasodilation (33).

The effect of ROS on BKCa activity is, from our point of
view, not conclusive and is mainly derived from non-
pulmonary investigations. Figure 3 summarizes the proposed
redox-regulation of KCa channels. While the selective BKCa

channel inhibitor tetraethylammonium (TEA) (104) was
shown to inhibit superoxide-induced vasodilation (154), it
had no significant effect on open state probability of BKCa

channels (88). H2O2 has been reported to induce both acti-
vation and inhibition of BKCa channel activity, depending on
the experimental conditions (135, 143, 144). While cysteine
oxidation decreased the currents of large-conductance Ca2 + -
activated K + channels, methionine oxidation increased cur-
rents (143). Furthermore, H2O2 decreased activity of BKCa

channels by shifting the voltage sensitivity to a more positive
direction (40). In VSMC, peroxynitrite was shown to inhibit
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BKCa channel activity (24) by suppression of whole-cell KCa

current and reduction of open-state probability of single KCa

channels (88). In contrast, endothelial BKCa channels did not
react to peroxynitrite. The authors suggest that this behavior
is due to an insensitivity of endothelial BKCa channels to the
interaction between superoxide and nitric oxide (NO) (43),
which arises from the different b-subunit of BKCa channels
expressed in SMC and endothelial cells (168).

ATP-sensitive K + channels

KATP are a subclass of inwardly rectifying K + channels
(138), show little or no voltage dependence, and have low
open probability under basal conditions. The channels consist
of an octameric complex of four pore-forming inward recti-
fier K + channel subunits (Kir 6.1 or 6.2) and four sulfonyl-
urea receptors (SURs) (3). Coexpression of these subunits
produces two distinct channels, nucleotide diphosphate-
sensitive K + channels (KNDP) and KATP (15). Coexpression
of Kir 6.1 with SUR2B has been detected in human PASMC
(37), and contribution to resting membrane potential in
PASMC has been suggested. In contrast, inhibitors of KATP

did not increase normoxic pulmonary vascular resistance in
adult mammals, suggesting that these channel types do not
control basal pulmonary arterial tone. To date, there is no
proposed role for KATP channels in HPV and they have been
suggested to be closed in the pulmonary arteries and not to be
activated by the levels of hypoxia that cause a constriction
(128).

As for KCa channels, the redox regulation of KATP channels
in PASMC is not well described. In general, KATP channels
are gated by intracellular nucleotides, linking energy me-

tabolism to membrane excitability. In tissues other than the
lung, there is increasing evidence the KATP channel activity is
likely regulated by redox state (12, 13, 82). Unfortunately,
almost all redox dependent regulatory mechanisms were
described in other tissues than the lung. Thus, we will not
describe these mechanisms here.

Two-pore-domain K + channels

Two-pore-domain or K2P channels contain four trans-
membrane domains and two pore domains. A dimer of two
subunits forms a single pore and thus the functional channel
(two pores in total). N- and C-Terminus is located in the
cytosol. K2P channels are selective to K + and are important
for the regulation of the resting membrane potential (back-
ground K + channels), thereby regulating cellular excitability
and K + permeability (27, 95, 140). The regulation of K2P

channels is quite complex, as these channels respond to many
stimuli, including pH, stretch, temperature, fatty acids, O2

tension, sumoylation, phosphorylation, dephosphorylation,
and osmolarity (117, 140). Due to the K + selectivity and the
voltage-independent gating [TREK-1 is voltage gated when
S348 is phosphorylated (92), and TASK-1 was shown to be
voltage dependent in rabbit PASMC (62)], K2P channels are
well suited for mediating background K + currents.

K2P comprise six subfamilies: TWIK, TREK, TASK,
TASK-2, THIK, and TRESK channels (132). In the pulmo-
nary vasculature expression of TASK-1, TASK-2, TREK-2,
THIK-1, and TWIK-2 has been demonstrated (53). However,
only for TASK-1 and TASK-2 (mainly TASK-1), involve-
ment in a noninactivating background K + conductance has
been shown, where hypoxia-induced inhibition of TASK-1

FIG. 3. Proposed redox regulation of Ca21-activated K1 channels. Not much is known about the redox regulation of
KCa channels. Small mitochondrial depolarization causes elevated ROS production and activates transient KCa currents. In
contrast, large mitochondrial depolarization reduces ROS and inhibits transient KCa currents. Hypoxia was shown to reduce
KCa channel activity, but the detailed effects of hypoxia on KCa channels still remain largely unresolved. Oxidizing agents
induce up- or down-regulation of BKCa channel activity depending on the experimental condition. Cysteine oxidation
decreases the currents of large conductance Ca2 + -activated K + channels, whereas methionine oxidation increases currents.
Redox regulation of KCa channels most likely depends on the concentration of ROS or RNS, the oxidant/species, and the
cell type. ? = Effects of hypoxia on KCa channels are largely unresolved. EC, extracellular; IC, intracellular; KCa, Ca2 + -
activated K + channel; RNS, reactive nitrogen species.
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contributed to PASMC depolarization (47, 108) and HPV
(53, 57).

Since TASK-1 cannot sense O2 itself, the NADPH oxidase
NOX4 has been suggested to be the O2-sensing partner mod-
ulating the O2 sensitivity of TASK-1. In HEK293 cells, hyp-
oxia-induced activation of NOX4 inhibited TASK-1 activity
(85). In this process, the heme moiety and FAD-binding domain
were proposed to be responsible for the NOX4 regulation of
TASK-1 (114). Further, in HeLa cells, TASK-1, TASK-3, and a
TASK-1/3 heteromer were shown to be activated by H2O2. This
effect was independent of the oxidation of–SH groups, sug-
gesting that H2O2 acts directly on the channel protein.

In contrast, TREK-1, TREK-2, TALK-1, TASK-2, and
TRESK did not respond to H2O2 treatment. Superoxide de-
rived from a xanthine/xanthine oxidase mixture only affected
TASK-2 activity in HeLa cells (112). It should be noted that
H2O2 had no significant effect at concentrations till 16.3 mM,
which is a rather unphysiological concentration (137) and
might cause unspecific effects. Earlier, Kim et al. published
conflictive results showing that H2O2 did not affect TASK-1,
TASK-3, and TRAAK currents when the channels were ex-
pressed in CHO cells. However, TREK-2 was activated by
H2O2, presumably as a response to H2O2-induced myosin
light chain kinase (MLCK) activation (77). The different
findings by Kim et al. might be explained by the much lower
H2O2 concentration (5 mM) and the different cell type used in
their study and are partially supported by research published
by Turner and Buckler (145). Their results show that hypoxia
(and thus ROS) inhibits single channel activity of TASK-1
and TASK-2 in type-1 cells isolated from the carotid body.

Calcium Channels

Intracellular Ca2 + concentration is central for the regu-
lation of vessel tone. During homeostasis, intracellular Ca2 +

is *100 nM intracellular and 1.6 mM extracellular (67). This
huge concentration gradient between the intracellular and the
extracellular Ca2 + concentration shows the importance of
tightly controlled cellular Ca2 + homeostasis. Ca2 + -permeable
channels allow Ca2 + to enter into the cell through the
membrane due to its electrochemical gradient. Ca2 + pumps
transport Ca2 + against its concentration gradient, and the
Ca2 + exchangers that can transport Ca2 + to the intra- or
extracellular milieu, depending on the mode of action (109).
The following channels coordinate cytosolic Ca2 + concen-
tration in PASMC: (i) extracellular Ca2 + entry via VOCCs,
(ii) receptor-operated cation channels (ROCs), and (iii) store-
operated channels (SOCs) activated by depletion of the SR
(109). Alterations of the intracellular Ca2 + concentration
play an important role in muscle contraction (skeletal, car-
diac, and smooth muscle) and cell motility, neurotransmitter
release, neuronal excitability, learning and memory, fertil-
ization and development, cell proliferation, differentiation,
apoptosis, and gene transcription. The Ca2 + influx is crucial
for hypoxic constriction of the precapillary pulmonary ar-
teries (136). The best characterized pathways of Ca2 + entry
into PASMC are through VOCCs (regulated by the resting
membrane potential) and TRP channels (TRPC; voltage-
independent nonselective cation channels, SOCs and ROCs)
(160). An increase of intracellular Ca2 + concentration in
PASMC has been widely accepted to be a critical event for
HPV (151). In the pulmonary vasculature, the acute hypoxic

Ca2 + release in PASMC is dependent to a lesser degree on
VOCCs (inhibition attenuated hypoxic Ca2 + release by 30%)
and to a greater degree on other transmembrane channels
such as TRPC (inhibition attenuated hypoxic Ca2 + release by
60%) (141). These channels are mainly responsible for the
sustained PASMC contraction associated with HPV and
modulation of the pulmonary hypoxic response.

Voltage-operated Ca2 + channels

The cellular membrane potential of PASMC is largely
regulated by K + channels. Inhibition of K + efflux (e.g.,
during hypoxia) causes depolarization of the cell. VOCCs are
activated when the depolarization reaches a certain threshold,
a mechanism that is also known as excitation–contraction
coupling (23). Moreover, the discovery that inhibitors of L-
type channels suppress HPV led to the long-standing hy-
pothesis that HPV is primarily caused by redox-mediated
inhibition of delayed-rectifier K + channels, depolarization,
and voltage-dependent Ca2 + entry (97, 157).

VOCCs are ubiquitously expressed in VSMC. Their sub-
units include a1, b1–b4, c1–c8, and a2d1–a2d3, each containing
six transmembrane spanning domains (S1–S6) enclosed by
N- and C-termini. Many of these subunits can co-assemble,
causing the heterogeneity of VOCCs. The a1 subunit is the
major subunit, containing the Ca2 + -selective pore (loop be-
tween S5 and S6) and voltage sensor (S4), is essential for
channel function, and contains sites for channel regulation
via intracellular second messengers, toxins, and drugs. The
combination of a1 subunits with different accessory subunits
forms six functionally distinct subfamilies: the L-, N-, P/Q-,
R-, and T-type channels (26). These major subgroups of the
VOCC family are expressed in many cell types and are re-
sponsible for various cellular functions, including muscle
contraction, control of action potential, secretion, and gene
expression (17). The dihydropyridine-sensitive, high-voltage-
activated and slowly inactivating L-type and the low-voltage-
activated, rapidly inactivating T-type channels were most
extensively studied in VSMC.

L-type channels have been extensively studied in PASMC
and play an important role in increasing cellular Ca2 + con-
centration during hypoxia (48). L-type channels are high-
voltage-activated (167) and regulate excitation-contraction
coupling (56). L-type channels were shown to be upregulated
in chronic hypoxia-induced PH and associated with a Ca2 + -
dependent resistance (68). Compared with conduit arteries,
the density of L-type calcium channels is two-fold higher in
PASMC of the resistance arteries (48).

The other common Ca2 + channel in the pulmonary vas-
culature is the low-voltage-activated T-type channel (174).
These channels are insensitive to common L-type channel
blockers, and their physiological relevance is poorly char-
acterized (83). In the pulmonary vasculature, expression and
function of T-type channels is not well described and their
electrophysiological properties need to be fully character-
ized. Recent studies have also suggested that T-type channels
are important in the proliferation of human PASMC (129). R-
type currents have been shown to be activated by endothelin-
1 (16) and cause enhanced cerebral artery constriction during
subarachnoid hemorrhage (71, 87).

While influx of Ca2 + into the PASMC of resistance ar-
teries is enhanced by hypoxia, the influx into SMC of the
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conduit arteries is inhibited (like systemic arteries) (48, 49).
As previously mentioned, the acute hypoxic Ca2 + release in
SMC of the pulmonary resistance arteries is dependent to a
lesser degree on VOCCs (inhibition attenuated hypoxic Ca2 +

release by 30%) and to a greater degree on other transmem-
brane channels such as TRPC (inhibition attenuated hypoxic
Ca2 + release by 60%) (141). Nevertheless, VOCCs were one
of the first Ca2 + channels to be identified as redox sensitive.
Oxidants affect VOCC activity, expression, trafficking, open
time, and open probability. Cysteine residues in the pore-
forming a1-subunit are the molecular targets for ROS (98),
and both activation and inhibition of channel activity by
oxidation have been described (64, 69, 175) (Fig. 4).

Although almost all studies were done on myocytes or
cardiac L-type channels, it has been suggested that the mode
of action of the redox regulation from other tissues and cells
can probably be translated into VOCCs of PASMC (109).
However, this assumption is challenged by observations de-
scribing different effects of hypoxia on Ca2 + influx into the
PASMC of resistance arteries (enhanced by hypoxia), and on
the influx of Ca2 + into SMC of the conduit arteries (inhibited
by hypoxia) (48, 49). Furthermore, acute hypoxic inhibition
of the pore-forming a1-subunit is known to mediate hypoxic
arterial vasodilatation, but hypoxia was also shown to se-
lectively increase the L-type Ca2 + channels in PC12 cells and
cerebellar granule neurons. Thus, it remains questionable
whether the redox regulation of VOCCs can be translated
from one tissue to another.

Hudasek et al. reported that human cardiac L-type a1-
subunits expressed in HEK 293 cells showed increased cur-

rents after application of 100 lM H2O2 in a voltage-dependent
manner. Catalase treatment reduced these currents. In con-
trast, the NADPH oxidase inhibitors diphenylene iodonium
and phenylarsine oxide had no effect on either basal Ca2 +

currents or responses to hypoxia. The authors concluded that
endogenous production of H2O2 regulates the a1-subunit, but
neither suppression of H2O2 levels nor inhibition of NADPH
oxidase was involved in O2-dependent regulation of the Ca2 +

channel (70). The hypoxia-induced increase in functional
L-type Ca2 + channel expression has been verified in a re-
combinant expression system (HEK-293 cell line stably ex-
pressing the human L-type a1-subunit). However, increased
functional expression was attributed to hypoxia-induced al-
terations of a1-subunit trafficking (116). In general, genera-
tion of ROS is altered during acute and chronic hypoxia, and
oxidation of SH groups by ROS decreased cardiac L-type
Ca2 + -currents (54, 55), whereas oxidation of SH groups by
other oxidizing agents (DTNB) caused stimulation of Ca2 + -
currents in ventricular myocytes. Thus, the effect of oxidiz-
ing agents on L-type channels seems to depend on the species
and the mode of action.

Store- and receptor-operated Ca2 + channels

Influx of Ca2 + across the plasma membrane can also be
triggered by depletion of Ca2 + from the endoplasmic retic-
ulum (ER) and the SR. This so-called store-operated Ca2 +

entry is mediated by SOCs. Besides the inhibition of K +

channels due to oxidation of channel residues, specifically on
Kv1.5 (9, 102), depolarization of PASMC in response to

FIG. 4. Proposed redox regulation of VOCCs. VOCCs are activated when PASMC depolarization reaches a certain
threshold (excitation–contraction coupling), but they are also redox sensitive. Cysteine residues in the pore-forming a1-
subunit are the molecular targets for ROS, and both activation and inhibition of channel activity by oxidation have been
described. Oxidants affect VOCC activity, expression, trafficking, open time, and open probability. Oxidation of SH groups
by ROS decreases cardiac L-type Ca2 + -currents, whereas oxidation of SH groups by other oxidizing agents (DTNB) causes
stimulation of Ca2 + -currents. The effect of oxidizing agents on VOCCs depends on the species and the mode of action.
GSH inhibits the current, and cellular GSH levels are known to be reduced during hypoxia. S-nitrosylation of extracellular
SH groups of the L-type Ca2 + channel increases currents, whereas S-nitrosylation in the a1-subunit decreases currents.
Again, opposing findings might be explained by concentration- and species-dependent effects of ROS or RNS. DTNB,
Ellman’s reagent [5,5¢-dithiobis-(2-nitrobenzoic acid)]; GSH, glutathione; SH, sulfhydryl group.
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hypoxia has been shown to be initiated by a number of other
mechanisms by which hypoxia could lead to inhibition of these
and other Kv channels. These mechanisms include elevation
of cytosolic Ca2 + concentration owing to Ca2 + release from
stores (73, 121), and there is mounting evidence that hypoxia-
induced depolarization of PASMC is at least partially due to
activation of SOCs (1, 148, 155). Activation of membrane
receptors by ligand binding, diacylglycerol (DAG), and protein
kinase C (PKC) can stimulate ROCs, causing Ca2 + influx and
Na+ efflux. Activation of Na+ influx via nonselective cation
channels as a result of either Ca2 + store depletion by SOCs or
activation of a receptor–G protein–second messenger pathway
by ROCs has been shown to be an important primary cause
of depolarization and subsequent voltage-gated Ca2 + entry in
PASMC (134, 148, 155). In the vasculature in general, TRPC
are capable of forming functional ROCs and SOCs (150).

Similar to VOCC, TRPC are a part of the superfamily of
six transmembrane spanning cation channels, but lack the
voltage sensitivity (voltage independent). TRPC are nonse-
lective cation channels, but carry predominantly Ca2 + ions
(110). In the pulmonary vasculature, several subtypes of have

been identified according to their mechanism of activation
and presence of regulatory domains in the N- and C-termini.
These subtypes include the classical or canonical TRP
(TRPC1–TRPC7), vanilloid-receptor-related TRP (TRPV1–
TRPV4), and melastatin-related TRP (TRPM1–TRPM8)
channels (115). In VSMC, more than 10 TRP isoforms have
been detected. However, TRPC1, TRPC4, and TRPC6 pro-
tein expression was shown to be higher in the distal pulmo-
nary artery than in the proximal pulmonary artery, correlating
with changes in cytosolic Ca2 + concentration occurring
during HPV (89), and TRPC1 was further shown to play an
important role in pulmonary vascular remodeling underlying
the development of hypoxia-induced PH (93). TRPC6 is
highly expressed in lung tissue as well as in pulmonary and
VSMC and endothelial cells (41). In TRPC6 - / - mice, the
acute phase of HPV is completely absent, while the sustained
phase is not significantly affected (162) (Fig. 5). TRPC6 and
TRPC3 were the first ion channels shown to be activated by
DAG (Hofmann 1998). Under normoxia, DAG is localized in
the cytoplasm. Under hypoxic conditions, DAG translocates
to the plasma membrane gating TRPC6 (162).

FIG. 5. Speculative redox regulation of TRPC3/4 and TRPC1 containing channels. TRPC3/4 are regulated by ROS,
and TRPC3/4 containing channels can be activated in the presence of oxidants. ROS induce disruption of cholesterol-rich
lipid rafts and membrane cholesterol oxidation, which has been suggested to activate TRPC3/4 containing channels. TRPC1
was shown to play an important role during vascular remodeling in chronic hypoxia-induced PH. Similar mechanisms as for
TRPC3/4 might apply for the redox regulation of TRPC1. Although an activation of TRPC3/4 and TRPC1 (similar to
TRPC6) by PLC and PLC-mediated hydrolysis of membrane-bound PIP cannot be excluded, the mechanism of oxidative
stress-mediated TRPC3 activation does not involve PIP hydrolysis. The role of PLC in TRPC1 activation has not yet been
addressed. GSSG, glutathione disulfide.

544 VEIT ET AL.



Possibly, the DAG translocation is triggerd by increased
ROS as an investigation in an animal model of lung is-
chemia–reperfusion (I/R)-induced edema showed that
TRPC6 in endothelial cells can be activated by endothelial
Nox2-derived production of superoxide during the hypoxic
phase of I/R with subsequent activation of phospholipase
C-c, and inhibition of DAG kinase, (164). According to
this concept, superoxide is converted to H2O2, which, via
an extracellular loop, triggers the TRPC6 response (164)
(Fig. 6). As previously mentioned, TRPC are nonselective
cation channels. Thus, we further speculate that sodium entry
through TRPC6 and increasing sub-sarcolemmal Na+ -con-
centrations inhibits Kv-channels and activates L-type Ca2 +

channels (50) (Fig. 2).
It is well known that increased ROS generation can lead to

Ca2 + release from intracellular stores as well as to Ca2 +

entry across the plasma membrane (103). Especially in
nonexcitable cells (e.g., endothelial cells) (106), although
pulmonary microvascular endothelial cells express a func-
tional voltage-gated T-type calcium channel (174), the major
Ca2 + entry pathways are through SOCs and ROCs. TRPC7
(TRPM2) and TRPC3/TRPC4 have been shown to be regu-
lated by ROS in endothelium (30). TRPC7 is no longer
considered a TRPC family member (30). TRPC3/4 contain-
ing channels were shown to be activated and contributing to
endothelial cell depolarization in the presence of oxidants
(14) and to be regulated by oxidative stress (60) by oxidant-
induced disruption of cholesterol-rich lipid rafts.

Similar to TRPC6, TRPC3 activation is regulated by C-
type phospholipase (PLC) and by PLC-mediated hydrolysis
of membrane-bound PIP. However, the mechanism under-
lying oxidative stress-mediated TRPC3 activation does not

involve PIP hydrolysis. It has been speculated that membrane
cholesterol oxidation by ROS might be the signaling event
that activates TRPC3 (60). Poteser et al. concluded that
TRPC3 and TRPC4 contribute subunits to the redox-sensitive
channel. The identity of the other two subunits is unclear
(123). The role of PLC in TRPC1 activation has not yet been
addressed. SOCs were also shown to be indirectly regulated
by cellular redox status through a nonselective cation channel
that is covalently modified by glutathione disulfide (GSSG),
an antioxidant molecule. It has also been suggested that SOCs
may itself be a direct target of GSSG (thus of the cellular
redox state) or some other ROS/reactive nitrogen species
(30). In general, not much is known about redox regulation of
SOC entry channels in the lung. Acute hypoxia (i.e., more
ROS) was shown to enhance capacitative Ca2 + entry through
SOCs in distal PASMC with subsequent depolarization and
activation of VOCCs, suggesting a role for SOCs in HPV
(148). Further, SOC and VOCC antagonists inhibited PASMC
contraction during hypoxia as well as SOC-dependent acti-
vation of VOCCs (155). A hypothesis about ROS-dependent
TRPC1 and TRPC3/4 regulation is given in Figure 5.

It should be noted that TRPM2, TRPM7, TRPC5, and
TRPV1 are activated by ROS (2, 72, 170). In the case of
TRPC5, TRPV1, and TRPA1, activation was triggered via
oxidation of a free cysteine sulfhydryl group (139, 170). It
remains to be determined whether these findings are consis-
tent with other TRPC or TRPC in the lung.

Conclusion

Redox regulation of ion channel expression and gating
under hypoxia and hypoxia-associated conditions, as well as

FIG. 6. Hypothesized role of TRPC6 in lung ischemia-reperfusion injury. In an animal model of LIRE, opening of
TRPC6 in pulmonary vascular endothelial cells and subsequent Ca2 + influx was triggered by endothelial Nox2-derived
production of superoxide, activation of phospholipase C-c, inhibition of DAG kinase (DAGK), accumulation of DAG, and
DAG-mediated activation of TRPC6. In this model, H2O2 re-enters the cell (extracellular loop), activates PLCc, and
inactivates DAGK. H2O2, hydrogen peroxide; LIRE, lung ischemia–reperfusion-induced edema; Nox2, NADPH oxidase 2;
PIP2, phosphatidylinositol 4,5-bisphosphate; PLCc, phospholipase C-c.

HYPOXIA-DEPENDENT ROS SIGNALING: FOCUS ON ION CHANNELS 545



under other conditions with an impact on the cellular redox
state is a widely accepted mechanism. Direct reversible
effects of ROS on ion channels include, but are not re-
stricted to, oxidation of thiol groups, oxidation of arginine
and lysine residues, and oxidation of methionine. Indirect
reversible effects comprise, for example, alterations of GSH
levels, activation of PLC (DAG), activation of PKC, and
alterations of cytosolic Ca2 + levels.

Although our understanding of ion channel redox regula-
tion is quite detailed for some ion channels (Kv channels,
TRPC6), it remains generally scant. In addition to the the
debate of increased or decreased ROS production during
hypoxia, we need to understand why different oxidants under
different conditions can cause both activation and inhibition
of channel activity. According to the available literature, the
ROS from an identical source can act on different amino-acid
residues of an ion channel, thereby mediating opening or
closing of the channel.

At the moment, most of the described redox regulatory
mechanisms of ion channels are based on speculations and
extrapolation of a few known redox regulatory mechanisms.
While the upstream pathways affecting channel gating are
often well described, the effects of ROS on the individual
proteins of the pathways remain mostly unknown. One issue
is to get a better understanding of redox protein modifications
to be able to determine the complexity of ion channel redox
regulation. It will be crucial to decipher how ROS are or-
chestrated and what role the spatial distribution of ROS plays
in this regard. It has become obvious that physiological redox
signaling is confined both spatially and temporally in sub-
cellular compartments and microdomains. The redox status
of a cell is not necessarily a global imbalance of oxidants and
reducing molecules, but rather the net status of the redox
status in different cellular compartments.

As the most redox-active compartment in the cell, mito-
chondria are a prominent site for ROS production (20, 75).
Although mitochondria have a very high antioxidative ca-
pacity, excessive ROS release can cause a variety of disorders
(74). The cytoplasm can also represent a subcellular com-
partment. Stimulation of the plasma membrane can trigger
oxidation of specific proteins in the cytosol without affecting
other organelles (100). Other redox active compartments are
the nucleus, the ER lumen (36), peroxisomes (46), endo-
somes, and lysosomes (11). Within these compartments, ROS
in microdomain generation can also be very diverse (90).
Against this background, NADPH oxidases, another promi-
nent cellular ROS source, have been shown to be expressed in
such ROS microdomains [e.g., in caveolae (65) and endo-
somes (99)]. It has even been suggested that single Nox
isoforms (Nox1) can have multiple signaling effects by oc-
cupying different microdomains within the cell (4, 29).
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Abbreviations Used

BKCa¼ large Ca2+-activated K+ channel
Ca2+¼ calcium
DAG¼ diacylglycerol

DAGK¼ diacylglycerol kinase
DPI¼ diphenyleneiodonium

DTNB¼ 5,5¢-dithiobis-(2-nitrobenzoic acid)
EC¼ extracellular
Em¼membrane potential
ER¼ endoplasmic reticulum

GSSG¼ glutathione disulfide
H2O2¼ hydrogen peroxide
HPV¼ hypoxic pulmonary vasoconstriction

IC¼ intracellular
IKCa¼ intermediate Ca2+-activated K+ channel

I/R¼ ischemia–reperfusion
K+¼ potassium

K2P¼ two-pore-domain K+ channels
KATP¼ATP-sensitive potassium channels

KCa¼Ca2+-activated K+ channels
KIR¼ inwardly rectifying K+ channels

KNDP¼ nucleotide diphosphate-sensitive K+ channel
Kv¼ voltage-gated K+ Channels

Na+¼ sodium
NADPH¼ nicotinamide adenine dinucleotide phosphate

(reduced form)
NO¼ nitric oxide

Nox¼NADPH oxidase
PASMC¼ pulmonary arterial smooth muscle cells

PH¼ pulmonary hypertension
PIP2¼ phosphatidylinositol 4,5-bisphosphate
PKC¼ protein kinase C
PLC¼C-type phospholipase
RNS¼ reactive nitrogen species
ROC¼ receptor-operated cation channel
ROS¼ reactive oxygen species
SKCa¼ small Ca2+-activated K+ channel
SOC¼ store-operated channel

SR¼ sarcoplasmic reticulum
SUR¼ sulfonylurea receptor

TRPC¼ transient receptor potential channel
VOCC¼ voltage-operated Ca2+ channel
VSMC¼ vascular smooth muscle cell
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