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Abstract

Corticosteroids (CS) such as methylprednisolone (MPL) affect almost all liver functions through multiple
mechanisms of action, and long-term use results in dysregulation causing diverse side effects. The complexity
of involved molecular mechanisms necessitates a systems approach. Integration of information from the
transcriptomic and proteomic responses has potential to provide deeper insights into CS actions. The present
report describes the tandem analysis of rich time-series transcriptomic and proteomic data in rat liver after a
single dose of MPL. Hierarchical clustering of the common genes represented in both mRNA and protein
datasets displayed two dominant patterns. One of these patterns exhibited complementary mRNA and protein
expression profiles indicating that MPL affected the regulation of these genes at the transcriptional level. Some
of the classic pharmacodynamic markers for CS actions, including tyrosine aminotransferase (TAT), were
among this group, together with genes encoding urea cycle enzymes and ribosomal proteins. The other pattern
was rather unexpected. For this group of genes, MPL had distinctly observable effects at the protein expression
level, although a change in the reverse direction occurred at the transcriptional level. These genes were
functionally associated with metabolic processes that might be essential to elucidate side effects of MPL on
liver, most importantly including modulation of oxidative stress, fatty acid oxidation, and bile acid biosynthesis.
Furthermore, profiling of gene and protein expression data was also done independently of one another by a
two-way sequential approach. Prominent temporal shifts in expression and relevant cellular functions were
described together with the assessment of changes in the complementary side.

Introduction

Glucocorticoids are steroid hormones produced by
the adrenal cortex that have diverse effects on a variety

of physiological processes including carbohydrate, lipid, and
protein metabolism, immune-regulation, bone homeostasis,
and developmental processes (Barnes, 1998; Vegiopoulos
and Herzig, 2007). The properties of glucocorticoids in reg-
ulating the immune system are exploited clinically with
numerous synthetic corticosteroids (CS) that are used as anti-
inflammatory and immunosuppressive agents (Barnes, 1998;
Swartz and Dluhy, 1978). The CS including dexamethasone,
prednisolone, fluticasone, and methylprednisolone are ex-

tensively used in the treatment of a variety of conditions
including organ transplantation, rheumatoid arthritis, lupus
erythematosus, asthma, and allergic rhinitis (Barnes, 1998;
Swartz and Dluhy, 1978). However, because of their strong
effects on systemic metabolism, long-term usage of CS can
cause many side effects, including metabolic syndrome,
dyslipidemia, steroid-induced diabetes, atherosclerosis, and
muscle atrophy (Bialas and Routledge, 1998; Schacke et al.,
2002).

Because of their diverse physiological effects, CS can in-
fluence the functioning of many tissues. Liver is one of the
primary targets of CS action and plays a central role in
maintaining systemic energy balance (Andrews and Walker,
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1999; Morand and Leech, 1999). The liver stores glucose in
the form of glycogen, which can be released in response to
hormonal signals to maintain systemic glucose concentra-
tions. In addition, de novo synthesis of glucose through glu-
coneogenesis involving utilization of carbon backbones from
free amino acids (released by protein breakdown in muscle)
and glycerol (released from adipose tissue) occurs in the liver
(Andrews and Walker, 1999). Furthermore, the liver plays a
critical role in lipid metabolism and affects synthesis, stor-
age, and utilization of different lipid molecules (Hazra et al.,
2008b). CS have been shown to affect almost all of these
functions in liver, and long-term use of CS results in dysre-
gulation of these processes causing diverse side-effects
(Schacke et al., 2002).

The well-established molecular mechanisms of action for
CS include the passive diffusion of the highly lipophilic CS
molecule through the cell membrane and binding to the cy-
tosolic glucocorticoid receptor, which is held inactive through
the association with heat shock proteins (Schaaf and Ci-
dlowski, 2002). Binding of the drug to the receptor causes
conformational changes, phosphorylation, and activation of
receptor, resulting in the formation of a homodimer of the drug
receptor complex (Oakley and Cidlowski, 2011; Schaaf and
Cidlowski, 2002). This activated complex translocates into the
nucleus and binds to regulator sites, glucocorticoid regulatory
elements (GREs) in the DNA, resulting in the regulation of
transcription rate. However, in addition to direct binding, the
activated complex can regulate gene expression by other
mechanisms including tethering and composite binding to
other transcription factors, activators, or repressors (Barnes,
1998; Schaaf and Cidlowski, 2002). Some of the critical
transcription factors that are affected by CS include NF-jB,
AP-1, and STAT. In addition to these genomic mechanisms,
studies have shown that CS can regulate pathways by signaling
through its receptor in a transcription-independent manner,
although the exact mechanisms for the non-genomic effects
are still unclear (Schaaf and Cidlowski, 2002).

Because of the diverse effects of CS and different molec-
ular mechanisms potentially involved in these actions, an
‘omics’ approach can be effective in gaining better under-
standing of the effects of CS on different pathways and
functions (Nguyen et al., 2010). Previously we used Affy-
metrix gene chips to profile temporal changes in mRNA
expression in multiple tissues following CS administration in
rats (Almon et al., 2003; 2005; 2007a; 2007b). These studies
characterized global dynamics of the system that are regu-
lated by CS at the transcriptional level. Although this infor-
mation is useful and highly relevant, direct profiling of
the protein expression changes and integrating the informa-
tion from the genomic and proteomic response will provide
deeper insights into CS actions, given their diverse and
complex mechanisms. Recently, we were able to develop
high-throughput methodology to perform comprehensive and
accurate profiling of the tissue proteome using an ion current-
based liquid chromatography/mass spectrometry (LC/MS)
strategy (Tu et al., 2012). Using this methodology, we
characterized the temporal changes in the expression of
thousands of proteins in rat liver after methylprednisolone
(MPL) administration (Nouri-Nigjeh et al., 2014).

The present report describes the combined analysis of rich
time-series transcriptomic and proteomic data in rat liver
after a single dose of MPL. We identified two distinct groups

of genes that are significantly affected by MPL. Impact of
MPL administration on one group of genes was at the tran-
scriptional level, which was complemented by subsequent
alterations in protein translation. For the other group, al-
though there was an observable change at the proteomic le-
vel, this change was not accompanied by transcriptional
signatures of the genes. Furthermore, we performed pro-
teomic and transcriptomic profiling independent of one an-
other and defined functional characteristics of hepatic
proteins affected by MPL administration.

Methods

Experiments

All animal protocols adhered to ‘‘Principles of Laboratory
Animal Care’’ (NIH publication 85-23, revised in 1985)
and were approved by the University at Buffalo IACUC
committee.

Proteomics. Sixty adrenalectomized (ADX) Wistar rats
were injected with 50 mg/kg methylprednisolone (MPL) in-
tramuscularly and sacrificed at 12 different time points be-
tween 0.5 and 66 h post-dosing (5 animals/time point). Five
animals, injected with saline and sacrificed at random time
points in the same time window, served as controls. In order to
remove the high concentrations of blood protein, it was nec-
essary to use perfused tissue for proteomic analyses, which
precluded the use of the same tissues employed for tran-
scriptomics (below). Proteins from perfused and flash frozen
livers were extracted, digested, and analyzed using a nano-LC /
LTQ/ Orbitrap instrument. The Nano Flow Ultra-high Pressure
LC system (nano-UPLC) consisted of a Spark Endurance au-
tosampler (Emmen, Holland) and an ultra-high pressure Ek-
sigent (Dublin, CA) Nano-2D Ultra capillary/nano-LC system,
with a LTQ Orbitrap mass spectrometer (Thermo Fisher Sci-
entific, San Jose, CA) used for detection. Protein quantification
was based on the area under the curve (AUC) of the ion-current
peaks. A more extensive description of the experimental setup
and the analytical methodology can be found in our published
report (Nouri-Nigjeh et al., 2014).

Transcriptomics. Forty-three ADX Wistar rats were
given a bolus dose of 50 mg/kg MPL intravenously. Animals
were sacrificed at 16 different time points between 0.25 and
72 h post-dosing. Four untreated animals sacrificed at 0 h
served as controls. The mRNA expression profiles of the liver
were arrayed via Affymetrix GeneChips Rat Genome U34A
(Affymetrix, Inc.), which contained 8800 full-length se-
quences and approximately 1000 expressed sequence tag
clusters ( Jin et al., 2003). This dataset was previously sub-
mitted to the GEO (GSE490).

Computational analysis

Hierarchical clustering of concatenated datasets. Data
analysis for both proteomic and transcriptomic datasets
started first by filtering for differential expression over time.
Proteins and transcripts with differential temporal profiles
were determined by using software for the extraction and
analysis of gene expression (EDGE). We employed within-
class differential expression to extract profiles that have a
differential expression over time (Leek et al., 2006; Storey
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et al., 2005; 2007). Integration of these two datasets for any
further analysis required matching the object identifiers,
which was achieved through running a comparison between
two filtered datasets in Ingenuity Pathway Analysis (IPA,
Ingenuity� Systems, www.ingenuity.com). This analysis
helped us identify the genes that were differentially ex-
pressed both at the transcriptional and translational levels. In
order to find potential co-regulatory relationships at these two
levels, hierarchical clustering was used for first-pass analysis.
For this purpose, temporal transcriptomic and proteomic data
for the common genes were first concatenated and then
clustered using the clustergram function in the Bioinfor-
matics toolbox of MATLAB (Mathworks, Natick MA). The
two clusters were obtained by using correlation as the dis-
tance metric. One cluster contained genes that were regulated
in the same general pattern, while the second cluster con-
tained genes for which the direction of regulation differed in
the protein and transcript datasets. Biological implications of
the genes populated in each cluster were determined through
investigating the enriched canonical pathways and predicted
upstream regulators obtained in IPA.

Two-way sequential clustering of individual proteomic
and transcriptomic datasets. While hierarchical clustering
analysis described above identifies the potential co-regula-
tory schemes for the genes in the intersection of tran-
scriptomic and proteomic datasets; it fails to capture the
dynamics in the rest of the genes that may also show differ-
ences in expression over time, although they may not co-exist
in both datasets. In order to evaluate the overall dynamic
patterns and extract the most useful information integrating
these two datasets, a consensus clustering (Nguyen et al.,
2009) method was applied to these two ‘‘-omic’’ datasets
separately. First, proteins with differential temporal profiles
were clustered using p values of 0.05 for significant clusters
and an agreement level of 0.70 for the genes in each cluster.
Then, probe sets corresponding to the proteins in each cluster
were identified through the comparison function in IPA as
before. Temporal profiles of these probe sets corresponding
to the proteins were compiled and separately subclustered
through the less stringent hierarchical clustering method,
again using the clustergram function in MATLAB.

The reverse of the same procedure was also performed—
starting from transcriptional analysis and continuing with the
corresponding proteomic analysis. Here, differential tran-
scriptional profiles were first determined and then clustered

using the same procedures described above. As with the
previous analysis, proteins that were coded by the probesets
within each of these clusters were then identified and sub-
clustered.

Biological interpretation. Functional annotations of pro-
teins and transcripts at each level of analysis were conducted
in IPA by running a core analysis for each cluster and eval-
uating the enriched canonical pathways (at p value threshold
of 0.05) and predicted upstream regulators obtained in IPA.

Results

Studies focused on understanding the relationship between
global mRNA transcription and protein translation have
produced mixed results, many of which concluded that the
transcriptomic and proteomic data is far from being easily
described as complementary (Greenbaum et al., 2003; Haider
and Pal, 2013; Hegde et al., 2003; Nicholson et al., 2004;
Waters et al., 2006). This study aimed to compare and con-
trast the transcriptional and translational changes in liver
induced by the exposure to a synthetic CS at a pharmaco-
logical dose. Although high-throughput omics analyses have
been obtained from samples collected from two independent
studies, the strain of experimental animals, dose and type of
pharmacologic agent, sampled tissue, sampling procedures,
and most of the time points for sample collection were the
same for these studies. These conditions allowed us to as-
sume that the experiments are similar enough to conduct
individual and integrated bioinformatics analyses. The pre-
processing before performing the first-pass analysis involved
identifying the significant genes whose both transcripts and
proteins existed in the individual datasets. The followed
procedure is schematically shown in Figure 1. Differential
expression analysis through EDGE, which utilizes an optimal
discovery procedure in order to test each element in the da-
taset for differential expression (Leek et al., 2006), identified
that 475 out of 959 proteins and 1624 out of around 8800
transcripts had temporal profiles that significantly varied over
time (meeting p value < 0.05 and q-value < 0.01 cut-offs).
After this filtering step, both datasets were fed into IPA in
order to match distinct identifiers used (Swiss-Prot IDs for
proteins and Affymetrix IDs for transcripts). A comparison
between two datasets indicated that 163 genes were found in
both transcriptomic and proteomic datasets (i.e., both
mRNAs and proteins corresponding to these genes were
differentially expressed over time).

FIG. 1. Workflow for hierarchical clustering of the concatenated transcriptomic-
proteomic dataset.
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Hierarchical clustering of concatenated datasets

Temporal transcriptional and protein expression data for
163 common genes were concatenated and clustered
through hierarchical clustering by using correlation as the
distance metric. Overall, this analysis identified two domi-
nant patterns as shown in Figure 2. Cluster 1 was populated
with 80 genes for which corresponding mRNA and protein
expression profiles were essentially parallel in direction,
while for 83 genes in Cluster 2 the directionality was re-
versed. For both clusters, the first 8 hours is seemingly the
most critical time period during which mRNA and protein
expression profiles change direction. Genes in Cluster 1
display upregulation for both mRNA and protein expression

profiles in the first 8 hours, after which downregulation
predominates, most markedly in the transcriptional profiles.
In the second cluster, early downregulation predominates
for transcriptional profiles; however corresponding protein
expression profiles are not complementary. While down-
regulation is observed in these transcripts most notably in
the first 8 hours, expression of the same proteins seems to be
upregulated in the same time frame. After the 8th hour, both
transcriptional and protein expression profiles approach
basal levels, though from opposite directions; elevated
mRNA levels start to be downregulated and reduced protein
levels start to be upregulated.

Functional annotation of the genes in these two clusters,
obtained through enrichment analysis in IPA, is shown in

FIG. 2. Heat map of clustered concatenated dataset. Red color indicates increase in ex-
pression while green indicates decrease.

Table 1. Functional Annotation of Differentially Expressed Genes

in Both Transcriptional and Translational Levels

Cluster 1 Cluster 2

mRNA expression is essentially parallel with
protein expression

mRNA expression and protein expression moves
in opposite directions

Functional annotation

CS signaling Xenobiotic metabolism, oxidative stress modulation,
hormone degradation
Cytochrome p450 family
Sulfo-transferases
Glutathione S-transferases
Aldehyde dehydrogenases
Catalase

Protein ubiquitination
Proteasome
Heat shock proteins

Protein translation
Eukaryotic translation factors and
ribosomal proteins

Urea cycle enzymes Fatty acid oxidation, valine-tryptophan degradation, ketolysis

Hormone degradation
Sulfo- and glucuronyl-transferases

Bile acid biosynthesis
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Table 1. Cluster 1 (where direction of regulation is similar)
included a number of genes coding for heat shock proteins,
which take part in the negative regulation of CS signaling
through direct protein–protein interaction with glucocorticoid
receptor to prevent its translocation to nucleus (Chrousos and
Kino, 2005). Complementary transcriptional and proteomic
profiles of these genes indicated that this is a negative feed-
back control induced by MPL delivery, which is regulated at
the transcriptional level. Proteins functioning in the regulation
of protein degradation and translation machinery were also
among the genes in Cluster 1 (including PSMCs, HSPs, EIFs,
RPLs, and RPSs), implying that these processes are also con-
trolled at the transcriptional level after CS exposure. In con-
trast, functions enriched by the genes in Cluster 2 appear to be
regulated at post-transcriptional levels, likely through control
of mRNA processing, initiation of protein translation or pro-
tein stability, since the transcriptional profiles are not emulated
by protein expression, (Waters et al., 2006). Among these
functions most notable are the modulation of oxidative stress,
lipid metabolism, and bile acid biosynthesis.

Functional annotation through IPA core analysis also allows
the identification of upstream regulators that can explain the
observed changes in gene/protein expression based on the prior
knowledge of expected effects between the upstream regulators
and target genes/proteins in the dataset. Definition of upstream
regulator, however, is used rather loosely here, as almost any
type of molecule that affects the expression of other molecules
can be upstream regulators whether they are transcription
factors, kinases, or hormones. The analysis first examines how
many known target genes of each candidate upstream regulator
are present in the dataset. It then also compares the direction of
change in those targets with what is expected from the literature
in order to predict relevant upstream regulators. If the observed
direction of change is consistent with a particular activation
state (i.e., activated or inhibited) of that candidate regulator
then a prediction is made about the activation state. Using the
genes coexisting in both transcriptomic and proteomic datasets,
a number of upstream regulators were identified for each time
point; predicted results are shown in Table 2. Two clusters
obtained through hierarchical clustering were examined

Table 2. Predicted Upstream Regulators and their Activation States* Based on Gene Groups

Obtained by Hierarchical Clustering

0.5 h 1 h 2 h 4 h 5.5 h 8 h 12 h 18 h 30 h 48 h 66 h

Cluster 1 NFE2L2 SLC13A1 NFE2L2 NR1I3 NR1I3 SLC13A1 NFE2L2 LEP
SLC13A1 SLC13A1 LEP LEP

LEP SLC13A1

Cluster 2 ZBTB20 NFE2L2 NR1I3 ZBTB20 ACOX1 ZBTB20 ZBTB20
NR1I3 NFE2L2
NR1I2
NFE2L2

*Green: activated; Red: inhibited.

FIG. 3. Workflow for sequential clustering analysis carried out in both forward and
reverse directions between proteomic and transcriptomic datasets.
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separately; however there are common predicted regulators of
the elements in different clusters. Reliability of a predicted
element increases as the number of times it is identified from
consecutive datasets and also if there is a coherent pattern in its
predicted state (i.e., whether it is activated or inhibited). Based
on this, nuclear factor erythroid-derived 2-like 2 (NFE2L2)
seems to contribute reliably to the observed gene/protein ex-
pression patterns by inducing early upregulation and late
downregulation. Two other important genes are solute carrier
family 13 (sodium/sulfate symporter), member 1 (SLC13A1),
and leptin (LEP), both of which seem to have an inhibitory
effect on gene/protein expression throughout the time course of
the study.

Two-way sequential clustering of individual
proteomic and transcriptomic datasets

The approach followed for the first part of the analysis
described above imposes the stringency that a gene has to be
differentially expressed both in the transcriptional and
translational levels to be included in the final hierarchically
clustered dataset. To fully characterize the temporary

Table 3. Distribution of Elements after Clustering

and Subclustering of Data in Two-Way Analysis

Proteomics / Transcriptomics

# of proteins
Corresponding # of probesets
in the transcriptomic dataset

Cluster 1 44 34
Cluster 2 30 27
Cluster 3 72 45
Cluster 4 42 29
Cluster 5 29 23

Transcriptomics / Proteomics

# of probesets
Corresponding # of proteins

in the proteomic dataset

Cluster 1 413 66
Cluster 2 155 30
Cluster 3 92 25
Cluster 4 334 85
Cluster 5 138 11

FIG. 4. Five clusters of proteins obtained by consensus
clustering (a–e, left side), and heat maps of corresponding
hierarchically clustered probesets (a–e, right side). Cano-
nical pathways enriched by the proteins in these clusters are
given in Table 6.

FIG. 5. Five clusters of probesets obtained by consensus
clustering (a–e, left side), and heat maps of corresponding
hierarchically clustered protein datasets (a–e, right side).
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patterns of protein translation induced by MPL and to get
additional insights into how that process is connected with
the transcriptional events during the corresponding time
frame, we also followed a sequential approach as sche-
matically shown in Figure 3. What is distinct about the se-
quential approach is that it allows focusing on each dataset
independently of the other (i.e., regardless of the comple-
mentary dataset being also differentially expressed). This
increases the number of elements in clustering analysis.
However, consensus clustering, being an inherently more
stringent approach compared to hierarchical clustering,
elicits the most coherent expression patterns in the dataset
that it is applied to. Therefore, this second approach with
stringency in coherency at one level of expression rather
than commonality at both levels aims to identify the dom-
inant patterns in one level of regulation (transcription or
translation) and to check how closely it is associated with
the patterns in the other level.

First, an in-depth analysis of the proteomic dataset was
done in order to capture the dynamics of protein expression in
liver following MPL dosing. EDGE identified 475 out of 959
proteins to be differentially expressed over time. Consensus
clustering revealed five coherent temporal profiles containing
217 of the 475 regulated proteins. The detailed distribution of
these five clusters is given in Table 3. The first two clusters
(Fig. 4a, b) show early upregulation within the first 5.5 hours
after MPL, followed by a recovery period. Proteins in Clus-
ters 3 through 5 (Fig. 4c–e) display later increase in expres-
sion, peaking at 5.5, 8, and 18 hours after the MPL dose.
Hierarchical clustering of the corresponding probesets for
each protein cluster was used to investigate the dependency
of protein translation (or lack of it) on transcription. Of the
217 clustered proteins, 158 showed regulation of its mRNA
as well. Interestingly, this analysis showed that, while a small
number of the transcripts roughly correlate with expression of
corresponding proteins, in most of the clusters a greater
number of transcripts displayed the opposite pattern. This is
consistent with the observations in hierarchical clustering of
the concatenated dataset and emphasizes the prominent role
of post-transcriptional regulation in establishing the phar-
macologic effects of MPL in liver.

In addition, this analysis was repeated in the reverse direc-
tion (i.e., starting from the transcriptomic dataset and pro-
gressing to the proteomic dataset). 1624 of the probe sets were
differentially expressed, 1132 of those were in five clusters
obtained by consensus clustering. Only 217 of these 1132 probe
sets had corresponding proteins in the proteomic dataset. Dis-
tribution of these 217 proteins to their correspondent probe set
clusters is shown in Table 3. Two of the clusters were consid-
erably more densely populated than the others. The transcrip-
tional profiles of these clusters are shown in Figure 5a and 5d
(left side), and they can be considered as the most dominant
early-up/late-downregulation and early-down/late-upregula-
tion patterns. Heat maps on the right display the expression
patterns of corresponding proteins for each cluster. Compared
to the first part of sequential clustering analysis, considerably
fewer proteins actually correlate with the transcriptional profile
of their respective clusters. Especially for the most densely
populated cluster, Figure 5d, only a couple of proteins show
early-down/late-upregulation pattern in parallel with the cor-
responding temporal pattern of the first cluster. The only cluster
in which expression of the majority of proteins go more or less

in parallel with the temporal profile of the corresponding
transcriptional cluster is the first cluster (Fig. 5a).

Considering that protein expression is a more reliable pre-
dictor of function, the annotation analysis was based on the
proteomic data in this part of the analysis. The proteins in-
cluded in the clusters shown in Figure 4 were function-
ally annotated through core analysis in IPA, pathways with
an enrichment score higher than 0.05 were considered signif-
icant and obtained results are shown in Table 4. The protein
clusters were numbered according to the time at which the
peak activity was observed. Four clusters displayed increasing
activity sequentially within the first 8 hours, and one showed a
relatively delayed activity, around 18 h after MPL dosing.

Discussion

Characterization and analysis of global gene expression
changes has become an integral part in studying mechanisms
of actions of various pharmacological agents (Butte, 2002).
Developments in high-throughput methodologies such as mi-
croarrays allow for relatively affordable and faster character-
ization of the transcriptomics. These genomic approaches offer
a powerful tool in understanding drug effects at the molecular
level and aid in target and biomarker discoveries and in gaining
insights into modulation of relevant pathways. For a long time,
our laboratories have utilized Affymetrix gene chips to un-
derstand the tissue-specific effects of CS actions in a variety of
peripheral tissues (Almon et al., 2003; 2005; 2007a). These
studies helped in understanding of various pathways modulated
by CS at the transcriptional level that are either common across
tissues or unique to certain tissue types (Nguyen et al., 2010;
Yang et al., 2009). In addition, through clustering and other
bioinformatic analyses of time series, we were able to identify
genes that share similar expression patterns across different
dosing regimens and relate drug effects/side effects to func-
tional pathways and gene clusters showing distinct temporal
profiles (Nguyen et al., 2010).

Although information on mRNA expression changes helps
in understanding mechanisms of drug action, some studies
show that message expression changes may not correlate well
with protein changes and hence might not accurately reflect
drug effects (as the majority of pathway modulators and drug
targets are proteins) (Nishizuka et al., 2003; Shankavaram
et al., 2007). Hence characterization of changes in protein
expression at the proteome level (along with gene expression
profiling) will not only reveal the dynamic and temporal
features of drug-induced protein changes, but will also pro-
vide rich biological information that may lead to improved
understanding of diverse drug effects at both transcriptional
and translational levels. However, comprehensive, accurate,
and reliable profiling of protein expression remains highly
challenging because of the extreme diversity of the chemical
and physical properties of proteins, the large dynamic ranges
in concentrations in most proteomes, and the fact that drug-
responsive proteins are often in low abundance. We recently
developed a robust and highly sensitive label-free quantifi-
cation strategy for accurate expression profiling of complex
tissue proteomes, with the capacity for analyzing large
numbers of biological samples (Tu et al., 2012). This strategy
was utilized to characterize the temporal changes in expres-
sion of thousands of proteins after a single dose of MPL
(Nouri-Nigjeh et al., 2014).
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Table 4. Functional Annotation of Groups of Proteins with Distinct Expression Patterns

in Response to MPL as Identified in Clustering Analysis*

Canonical pathway Genes

Cluster 1
L-Cysteine degradation II CTH
Citrulline degradation OTC
Formaldehyde oxidation II (glutathione-dependent) ADH5
Fatty acid b-oxidation I ACAA1, ACAA2
LPS/IL-1 mediated inhibition of RXR function GSTM2, Cyp2a2, SULT1E1, FABP1
Methylglyoxal degradation I HAGH
Cysteine biosynthesis/Homocysteine degradation CTH
Estrogen biosynthesis CYP2C18, HSD17B2
Proline biosynthesis II (from arginine) OTC
Phenylalanine degradation I (aerobic) QDPR
CMP-N-acetylneuraminate biosynthesis I (eukaryotes) GNE
PPARa/RXRa activation ACAA1, CYP2C18, Cyp2c44
Arginine biosynthesis IV OTC
Urea cycle OTC
Citrulline biosynthesis OTC
Acyl-CoA hydrolysis Ces1e
Glutathione redox reactions I GPX1

Cluster 2
Ketogenesis HADHB, BDH1, HMGCL
Ketolysis HADHB, BDH1
Serotonin degradation UGT2B17, ADH1C, UGT2B15
Xenobiotic metabolism signaling ALDH1L2, UGT2B17, UGT2B15, Gsta3, HSP90AA1
Isoleucine degradation I HADHB, ACADSB
Valine degradation I HADHB, ACADSB
Thyroid hormone metabolism II (via conjugation and/or

degradation)
UGT2B17, UGT2B15

Sulfate activation for sulfonation PAPSS2
Thiosulfate disproportionation III (rhodanese) TST
Sorbitol degradation I SORD
Aryl hydrocarbon receptor signaling ALDH1L2, Gsta3, HSP90AA1
Nicotine degradation UGT2B17, UGT2B15
Glutamate degradation II GOT2
Aspartate biosynthesis GOT2
Superpathway of melatonin degradation UGT2B17, UGT2B15
Glycogen biosynthesis II (from UDP-D-Glucose) UGP2
L-Cysteine degradation I GOT2
Aspartate degradation II GOT2
LPS/IL-1 mediated inhibition of RXR function ALDH1L2, Gsta3, PAPSS2
Sucrose degradation V KHK
Leucine degradation I HMGCL
Colanic acid building blocks biosynthesis UGP2
Mevalonate pathway I HADHB
Phenylalanine degradation IV (mammalian, via side chain) GOT2
Superpathway of geranylgeranyldiphosphate biosynthesis I

(via mevalonate)
HADHB

Glutaryl-CoA degradation HADHB

Cluster 3
Mitochondrial dysfunction HSD17B10, SDHA, NDUFA9, XDH, CYB5R3, COX5A,

NDUFS3, MAOA, AIFM1
TCA cycle II SDHA, SUCLA2, ACO2, ACO1
Serotonin degradation HSD17B10, ALDH3A2, PECR, SULT1C3, MAOA
Ethanol degradation II HSD17B10, ALDH3A2, PECR, ACSL1
Noradrenaline and adrenaline degradation HSD17B10, ALDH3A2, PECR, MAOA
Tryptophan degradation X (mammalian, via tryptamine) ALDH3A2, DDC, MAOA
Dopamine degradation ALDH3A2, SULT1C3, MAOA
LPS/IL-1 mediated inhibition of RXR function ALDH3A2, ACOX1, ALDH8A1, Cyp2a12/Cyp2a22, SULT1C3,

ACSL1, MAOA
Adenosine nucleotides degradation II XDH, AOX1
Urate biosynthesis/Inosine 5¢-phosphate degradation XDH, AOX1
Guanosine nucleotides degradation III XDH, AOX1
Purine nucleotides degradation II (aerobic) XDH, AOX1
Oxidative ethanol degradation III ALDH3A2, ACSL1
Phenylalanine degradation IV (mammalian, via side

chain)
ALDH3A2, MAOA

Serotonin receptor signaling DDC, MAOA
Putrescine degradation III ALDH3A2, MAOA
Ethanol degradation IV ALDH3A2, ACSL1

(continued)
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Table 4. (Continued)

Canonical pathway Genes

c-Linolenate biosynthesis II (animals) CYB5R3, ACSL1
tRNA charging DARS, TARS
Glutamine biosynthesis I Glul
Thyroid hormone biosynthesis CTSD
GDP-glucose biosynthesis PGM1
4-Aminobutyrate degradation I SUCLG2
Acetate conversion to acetyl-CoA ACSL1
Fatty acid b-oxidation I HSD17B10, ACSL1
Glucose and glucose-1-phosphate degradation PGM1
Pentose phosphate pathway (oxidative branch) PGLS
Heme degradation BLVRB
Serotonin and melatonin biosynthesis DDC
Catecholamine biosynthesis DDC
Phenylethylamine degradation I ALDH3A2
Melatonin degradation II MAOA
Glutamate degradation III (via 4-aminobutyrate) SUCLG2
Glycogen degradation II PGM1
NAD phosphorylation and dephosphorylation NADK2
Pentose phosphate pathway PGLS
Glycogen degradation III PGM1
Leucine degradation I MCCC2
Purine nucleotides de novo biosynthesis II ADSS

Cluster 4
EIF2 signaling RPL3, EIF4A2, EIF4G1, RPLP0
Acetyl-CoA biosynthesis III (from citrate) ACLY
4-Hydroxybenzoate biosynthesis TAT
4-Hydroxyphenylpyruvate biosynthesis TAT
Remodeling of epithelial adherens junctions TUBB3, ARF6
Methylmalonyl pathway MUT
Histidine degradation III FTCD
2-Oxobutanoate degradation I MUT
Tyrosine degradation I TAT
Aspartate degradation II MDH1
Tryptophan degradation to 2-amino-3-carboxymuconate

semialdehyde
TDO2

NAD biosynthesis II (from tryptophan) TDO2
Regulation of eIF4 and p70S6K signaling EIF4A2, EIF4G1
Lipid antigen presentation by CD1 ARF6
Bile acid biosynthesis, neutral pathway CYP27A1
Gluconeogenesis I MDH1

Cluster 5
Superpathway of methionine degradation CBS, MAT1A, GOT1, MAT2A, BHMT2
Cysteine biosynthesis III (mammalia) CBS, MAT1A, MAT2A
S-Adenosyl-L-methionine biosynthesis MAT1A, MAT2A
Acute phase response signaling HPX, HP, C3, TF, FGB
LXR/RXR activation HPX, C3, TF, ACACA
Methionine degradation I (to homocysteine) MAT1A, MAT2A
L-Cysteine degradation III GOT1
Cysteine biosynthesis/Homocysteine degradation CBS
Tyrosine biosynthesis IV PAH
Melatonin degradation I POR, Sult1a1
1, 25-Dihydroxyvitamin D3 biosynthesis POR
Methionine salvage II (mammalian) BHMT2
Phenylalanine degradation I (aerobic) PAH
Glutamate degradation II GOT1
Aspartate biosynthesis GOT1
Superpathway of melatonin degradation POR, Sult1a1
Biotin-carboxyl carrier protein assembly ACACA
L-Cysteine degradation I GOT1
Aspartate degradation II GOT1
TR/RXR activation HP, ACACA
Glycine betaine degradation BHMT2
Lipid antigen presentation by CD1 CANX
Phenylalanine degradation IV (mammalian, via side chain) GOT1

*Cluster profiles are shown in Figure 4.

88 KAMISOGLU ET AL.



Availability of rich time-series datasets for changes in both
mRNA and protein expression after single-dose administra-
tion of MPL allowed us to integrate both transcriptional and
translational states and enabled us to perform a unique
analysis to compare and contrast the two. With this analysis
we developed an algorithm to compare temporal changes in
both gene and protein expression. This allowed us to examine
the relationship between the two and to differentiate the
transcriptional and translational effects of CS dosing. These
drugs affect a wide range of pathways that are involved in
metabolism (carbohydrates, lipids, and proteins), immune-
regulation and other critical cellular functions (Bialas and
Routledge, 1998; Swartz and Dluhy, 1978). Because CS
regulate diverse sets of genes and proteins, the dynamic ef-
fects of these drugs provide a relevant system to compare,
contrast, and integrate both the genomic and proteomic data.
Although our data were obtained from different but very
similar animal studies, it is reasonable to integrate the two for
the following reasons: both studies were performed in the
same strain of rats (Wistar) that were adrenalectomized and
maintained under similar conditions; MPL was given in both
studies and identical doses of 50 mg/kg were used. The only
major difference between the two studies is that the gene
expression analysis were performed in animals that were
given an intravenous dose of the drug and the proteomic
measurements were performed in rats given an intramuscular
injection of MPL. However, our previous studies comparing
the two routes of MPL dosing indicated that, though there are
some early differences in the pharmacokinetic profiles of
MPL, the pharmacodynamics of an important biomarker ty-
rosine aminotransferase (TAT) expressed in liver were com-
parable (Hazra et al., 2007).

With the hierarchical clustering of the concatenated genomic
and proteomic data we identified two dominant patterns, one of
which showed upregulation of expression at both mRNA and
protein levels (Fig. 2). Most of the genes and proteins in this
cluster show similar temporal patterns (with peak expression
occurring at similar times) or with a slight delay in the peak
expression time of the protein compared to the gene profiles.
For example, some of the classic pharmacodynamics markers
for CS actions, including tyrosine aminotransferase (TAT) and
aspartate aminotransferase (GOT1), fall into this category with
upregulation of both the mRNA and protein expression after
MPL dosing. Similarly, this group includes genes/proteins in-
volved in glucocorticoid signaling, confirming the direct
pharmacological action of MPL at both the genomic and pro-
teomic levels (Hazra et al., 2008a). One of the primary effects
of CS in liver is to stimulate gluconeogenesis (production of
glucose) from amino acids released by protein breakdown in
muscle (because of CS action) through deamination and
utilization of the carbon backbone for glucose production in
the liver. As a result, the excess amines are removed through
the urea cycle to maintain proper homeostasis (Bialas and
Routledge, 1998; Hazra et al., 2008a). As illustrated in Table
1, Cluster 1 includes genes and proteins involved in the urea
cycle that are upregulated after MPL dosing and both gene
and protein expression share similar temporal profiles. The
other functional sets that are enriched in Cluster 1 include the
ones involved in protein translation and processing (Table 1).
Ribosomal proteins and translational factors that play critical
roles in translation of mRNA to proteins and heat shock
proteins that help in proper chaperoning of newly formed

proteins show upregulation at both gene and protein levels
(Warner and McIntosh, 2009). All the genes/proteins in
Cluster 1 represent direct transcriptional effects of CS,
resulting in temporal expression changes in mRNA that
directly translate to concurrent or slightly delayed protein
expression changes. Since mRNA profiling is more
straightforward, well established, and cheaper than the pro-
tein counterpart, an important point to note here is that
mRNA expression markers can be representative of their
corresponding proteins in assessing the effects of CS actions
for genes/proteins populated in Cluster 1.

Genes and protein expression profiles in Cluster 2 are more
intriguing, and we have very limited understanding of the
biology and mechanisms behind this observation. Although
previous studies have been conducted in identifying differ-
ences in the changes at the transcriptional and translational
levels for one or selected few proteins, global assessment
through high throughput methodologies have never tried to
address this issue (Nouri-Nigjeh et al., 2014; Qu et al., 2006;
Sukumaran et al., 2011). Studies that have characterized and
compared genomic and proteomic data have almost always
been single time-point studies that do not provide the relevant
temporal information necessary to identify and character-
ize transcriptional and translational differences (de Godoy
et al., 2008; Gry et al., 2009). These single time-point high
throughput studies showed poor correlation between mRNA
and protein expression data (Gry et al., 2009). Analysis from
our study shows that some of the functional pathways in-
volved in lipid, protein, and xenobiotic metabolism that are
important pharmacological targets of CS showed different
temporal expression patterns for mRNA and proteins. This
suggests that, in addition to the direct transcriptional effects
of CS, there could be additional translational or post-trans-
lational effects that result in different protein expression
temporal patterns compared to the mRNA profiles. Factors
including regulation of microRNAs (which can alter protein
translation) and direct or indirect translational controls could
produce the different mRNA and protein profiles (He and
Hannon, 2004). Whatever the mechanisms that control the
difference between gene and protein expression are, mRNA
profiles in Cluster 2 cannot be directly used for deciphering
the regulation of the functional pathways they represent.

Conclusions

The results of the present study elicited both expected and
unexpected relationships between mRNA transcription and
protein translation in liver after a single CS dose. Roughly
half of the genes commonly found in both transcriptomic
and proteomic datasets had complementary temporal pro-
files, indicating regulation at the transcriptional level. Some
of the functions with which these genes are associated were
regulation of corticosteroid signaling, protein degradation,
and translation machinery. The lack of complementarity
between message and protein expression profiles in the
other half of genes was intriguing. Although our under-
standing of the involved mechanisms is limited at this
point, this result suggested additional translational or post-
translational impacts of CS in addition to their direct tran-
scriptional effects.

Independent from the corresponding profiles, we also
examined the rich time-series data through stringent two-
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way clustering and subclustering approach. We used pro-
teomic data to portray the cellular landscape after CS dose
due to its higher priority in representing the actual pheno-
type. This allowed us to define the prominent temporal shifts
in protein expression and to determine associated cellular
functions.
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